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Abstract. We study the problem of determining the complexity of op-
timal comparison-based in-place sorting when the key length, k, is not
a constant. We present the first algorithm for lexicographically sorting
n keys in O(nk+nlogn) time using O(1) auxiliary data locations, which
is simultaneously optimal in time and space.

1 Introduction

We study the computational complexity of the classical problem of comparison-
based sorting by considering the case in which the keys are of non-constant
length, k. We aim at minimizing simultaneously the time and space bounds under
the assumption that the keys are vectors € X* of k scalar components over a
totally ordered, possibly unbounded set Y. Denoting the ith scalar component of
vector x by z(i) for 1 < i < k, we indicate the vector’s chunks by z(i, j), which
are the contiguous portions of z consisting of x(i), (i + 1), ..., x(j), where
1 <4 < j < k. The lexicographic (or alphabetic) order, z < y, is defined in terms
of the scalar components: either x(1) < y(1) or recursively x(2,k) < y(2,k) for
x(1) = y(1). The model easily extends to k-field records in Xy x Yo x - -+ x Xy,
but we prefer to keep the notation simple.

We are given a set ¥ C Yk of n vectors stored in n wvectorial locations,
one vector of ¥ per location. We permit two kinds of operations on the vector
locations: (1) exchange any two vectors in O(k) time; (2) access the ith scalar
component of any two vectors for comparison purposes in O(1) time. Hence,
determining the lexicographic order of any two vectors from scratch takes O(k)
time. We are also given a number of auziliary locations, each location storing one
integer of O(logn) bits. We employ the standard repertoire of RAM instructions
on the auxiliary locations, with O(1) time per operation.

The model resulting from the above rules naturally extends the comparison
model to keys of non-constant length. (We obtain the comparison model by fixing
k = 1.) We are interested in exploring algorithms using the minimal number of
auxiliary locations, referring to the model using just O(1) auxiliary locations as
the in-place model for vectors. This model is useful for studying, in an abstract
way, the complexity of in-place sorting and searching for a variety of keys: k-
length strings, k-field records, k-dimensional points, k-digit numbers, etc.

One significant example is how to perform in-place searching on a set ¥ of
n vectors. With sophisticated techniques for proving upper and lower bounds



on the complexity of searching ¥ in lexicographic order, Andersson, Hagerup,
Hastad and Petersson have proved in [1] that it requires
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time. This bound is worse than ©(k+logn), obtained by searching ¥ plus O(n)
auxiliary locations (e.g., Manber and Myers [18]). Using permutations other
than those resulting from sorting is a way to reach optimality: Franceschini and
Grossi [10] have shown that for any set ¥ of n vectors in lexicographic order,
there exists a permutation of them allowing for ©(k + logn) search time using
O(1) auxiliary data locations.

In-place sorting is an even more intriguing example in this scenario. Any
optimal in-place sorting algorithm for constant-sized keys can be turned into an
O(nklogn)-time in-place algorithm for vectors, losing optimality in this way.
The lower bound of 2(nk 4+ nlogn) time easily derives from decision trees [14].
If the number of comparison is to be minimized, the best up-to-date result for
in-place sorting is nlogn + O(nklog™ n) scalar comparisons and nlogn + O(nk)
vector exchanges by Munro and Raman [20]. Since each vector exchange takes
O(k) time, the time complexity sums up to O(nk? + nklogn). For the same
reason, the multikey Quicksort analyzed by Bentley and Sedgewick [4] yields a
non-optimal algorithm of cost O(nklogn) when adapted to run in the in-place
model for vectors, since it requires O(nlogn) vector exchanges. The original
version of the algorithm takes O(nk + nlogn) time since it can exploit O(n)
auxiliary locations to store the pointers to the vectors. It exchanges the point-
ers rather than the vectors, following the address table sorting suggested in
Knuth [14, p.74]. Recently, Franceschini and Geffert [9] have devised an optimal
in-place algorithm for constant-sized keys with O(n) data moves. Subsequent
results by Franceschini [7, 8] have shown how to achieve cache-obliviousness or
stableness for in-place sorting. However, the O(k)-time cost of each vector com-
parison makes these methods non-optimal in our setting. The bit encoding for
vectors in Franceschini and Grossi [10] cannot help either, as it assumes that
vectors are initially sorted while this is actually the major goal in this paper.

The above discussion highlights the fact that the known algorithms, to the
best of our knowledge, are unable to simultaneously achieve time optimality
and space optimality for sorting vectors (in place). Our main result is that of
obtaining the first optimal bounds for sorting an arbitrary set of n vectors in
place, taking @(nk + nlogn) time and using O(1) auxiliary locations. An im-
plication of our result is that we can provide optimal in-place preprocessing for
efficient in-place searching [1,10-12, 15] when the vectors are initially arranged
in any arbitrary order, with a preprocessing cost of O(nk + nlogn) time. An-
other implication is that sorting bulky records can be done optimally in place
by exchanging them directly without using the O(n) auxiliary locations required
by Knuth’s address table sorting.
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Fig. 1. An instance of GVSP{m,p,h}. Each of the n vector locations in ¥ contains
one vector. Each of the O(1) auxiliary locations contains one integer of O(logn) bits.

2 High-Level Description

We present our in-place sorting algorithm for vectors in a top-down fashion. We
describe how to reduce the original problem to a sequence of simpler sorting
problems to solve. In our description, we identify the n input vectors in ¥ with
their vectorial locations. At the beginning of the computation, ¥[i] represents
the ith vectorial location, for 1 < i < n, and contains the ith input vector. At the
end of the computation, ¥[i] contains the vector of rank ¢ after the sorting (ties
for equal vectors are broken arbitrarily). During the intermediate steps, we solve
several instances of a general vector sorting problem, denoted GVSP{m,p,h}
(see Figure 1). Given n vectors in ¥, we refer to GVSP{m,p, h} as the problem
of sorting a subset of m contiguous vectors in ¥, using

— O(1) auxiliary locations,

— p vectors as placeholders taken from a contiguous subsequence of p locations
in 7,

— h heavy bits suitably encoded by h pairs of vectors taken from two contiguous
subsequences, each consisting of h locations in 7,

under the requirement that m + p + 2h < n and that the four subsequences of
h, p, m, and h vector locations, respectively, are pairwise disjoint as shown in
Figure 1. Placeholders and heavy bits are defined in the rest of the section.
The general notation of GVSP{m,p, h} is useful for expressing the various
sorting instances that we get by reducing our initial problem, GVSP{n,0,0},
to simpler problems (with suitable values of m, p and h). Some basic instances
occur just a constant number of times in the reduction and are easy to solve.

Lemma 1. Any instance of GVSP{O(n/logn),0,0} takes O(nk) time.

Proof. We employ the in-place mergesort of [21] and pay a slowdown of O(k)
in the time complexity, since we run it on O(n/logn) vectors, each of length k.
The cost is O(k x (n/logn)log(n/logn)) = O(nk) time.

We now present the high-level structure of our reduction. In the following,
for any two vectors x and y, we denote the length of their longest common prefix
by lep(z,y) = max({0} U{l <<k : 2(1,0) =y(1,0)}).



Heavy bits (Section 3). To begin with, we reduce an instance of GVSP{n,0,0}
to a suitable instance of GVSP{n—o(n),0,0(n/log?n)} plus a constant number
of instances of GVSP{O(n/logn),0,0}. We partition in place the sequence ¥
into contiguous subsequences .&, .#, and %, such that for each v € &, y € A
and z € #Z, we have x < y < z. Moreover, the number of vectors in . equals
that of #Z, namely, |.Z| = |#Z| = O(n/logn). Assuming that max.Z # min %
(otherwise sorting is trivial), we consider the pairs P = {(Z]i], Z[i]), for 1 <
i < |Z]}. Note that for every pair (z,y) € P, vectors x and y are distinct
(x < y) and their first mismatching scalar component is at position lep(z, y) + 1.
Based on this observation we identify a subset H of the pairs in P satisfying two
constraints:

1. |H| = 2(n/log?n).
2. There exists an interval [I,r] C [1,k] of size max{l,k/logn}, such that
lep(z,y) + 1 € [l, 7] for every pair (z,y) € H.

Under constraints 1-2, we can use the vectors in H for implicitly representing
O(n/ log® n) bits, called heavy bits, so that decoding one heavy bit requires O(1+
k/logn) time while encoding it takes O(k) time. Let us see why do we need these
bits. When designing an optimal in-place algorithm, the constraint on using just
O(1) auxiliary locations, namely, O(logn) extra bits of information, is rather
stringent. Fortunately, permutations of the keys encode themselves further bits
of informations. Potentially, we are plenty of log h! bits by permuting h distinct
keys. Based on this idea, bit stealing [19] is a basic technique for implicitly
encoding up to h bits of information by pairwise permuting h pairs of keys. In
its original design, the technique encodes a bit with each distinct pair of keys
x and y, such that x < y. The bit is of value 0 if z occurs before y in the
permutation; it’s of value 1 if x occurs after y in the permutation. The main
drawback of this technique in our setting is that we need O(k) time for encoding
and decoding one bit since x and y are vectors. As we shall see, we will require
an amortized number of O(1) encoded bits and O(log n) decoded bits per vector,
so that we have to decrease the cost of decoding to O(1+k/logn) to stay within
the claimed bounds.

At this stage, sorting ¥ reduces to sorting .# as an instance of GVSP{n —
o(n),0,0(n/log?n)}. After that, it also reduces to sorting . and Z as instances
of GVSP{O(n/logn),0,0} solved by Lemma 1.

Buffering and session sorting (Sect. 4). We solve GVSP{n—o(n),0,0(n/log?n)}
reducing to O(logn) instances of GVSP{O(n/logn),O(n/logn),O(n/log*n)}
and to O(1) instances of GVSP{O(n/logn),0,0} solved by Lemma 1. We logi-
cally divide .# into contiguous subsequences A1, ..., Ms_1, Ms, where |.#s| =
s = | M| < | M| = O(n/logn) and s = O(logn). Moreover, | 41| =
O(n/logn) has a sufficiently large multiplicative constant, so that .#; can host
enough vectors playing the role of placeholders. With reference to Figure 1,
we sort the m = O(n/logn) vectors in each individual .#;, ¢ # 1, using the
p = O(n/logn) placeholders in .#; and the h = O(n/log®n) heavy bits en-
coded by the pairs in H C ¥ X Z.



Let us first give some motivation for using the placeholders while sorting.
Having just n vector locations, we cannot rely on a temporary area of vector
locations for efficiently permuting the vectors with a few moves. We therefore
exploit a virtual form of temporary area using the internal buffering technique of
Kronrod [16]. We designate the vectors in . as placeholders for “free memory”
since we do not care to sort them at this stage. Hence, they can be scrambled
up without interplaying with the sorting process that is running on a given .#;,
1 # 1. When we need to move a vector of .#; to the temporary area, we simulate
this fact by exchanging the vector with a suitable placeholder of .#;. At the same
time, we should guarantee that this exchange is somehow reversible, allowing us
to put the placeholders back to the “free memory” in .#; without perturbing
the sorting obtained for ./, i # 1.

Assuming to have obtained each of A5, ..., #s_1, #s in lexicographic order,
we still have to merge them using the heavy bits in H and the placeholders in
1. Tt turns out that this task is non-trivial to be performed. Just to have a
rough idea, let us imagine to run the 2-way in-place mergesort for O(logs) =
O(loglogn) passes on them. This would definitively give a non-optimal time
cost for the vectors since the number of vector exchanges would be w(n), losing
optimality in this way. We introduce a useful generalization of the technique
in [7,16], thus obtaining what we call session sorting. Let us assume that the
vectors are distinct (we shall disregard this assumption in Section 4).

The main goal of session sorting is that of rearranging all the vectors in
My, ..., Ms_1, Ms, so that they are not too far from their final destination. If
any such vector has rank r among all the other vectors in Ao M5 - - Ms_1 M,
and occupies a position g > r after session sorting, we guarantee that g — r <
|-#;]. (Note that we do not claim anything regarding the case g < r.) Using
this strong property, we show that the sequence of 2-way in-place operations for
merging #; and ;1 for i = 2,3,...,s — 1 (in this order) yields the sorted
sequence. (We remark that this is not generally true if we do not apply session
sorting.) As a result, the entire sequence Mo M3 - - - Ms_1 M5 is in lexicographic
order with a linear number of moves.

What remains to do is sorting £, .#1, and # individually as instances of
GVSP{O(n/logn),0,0} by Lemma 1. Merging them in place with the rest of
sorted vectors is a standard task giving ¥ in sorted order. Hence, we are left with
an instance of GVSP{O(n/logn),0(n/logn), O(n/log?n)}, which corresponds
to sorting a given .#;, i # 1, using the placeholders initially hosted in .#; and
the heavy bits encoded by the pairs in H.

Sorting each A; individually (Section 5). We describe this stage in general
terms. For a given ¢ # 1, let A4’ = .#; and .#p = .4, for the instance of
GVSP{|.4'|,|#5|,|H|} that we are going to solve with the heavy bits in H
(see Figure 1). Using .#p as a “free memory” area, we simulate the sorting of
the m’ = |.#| vectors by inserting them into a suitable structure that is incre-
mentally built inside .#p. Each insertion of a vector x € .#’ into the internal
structure of .#p exchanges x with a placeholder. After each such exchange we
permute some of the vectors inside .#p, so as to dynamically maintain a set of



O(m’ /log®m') pivot vectors in the internal structure. The pivots have buckets
associated inside .#p for the purpose of distributing the non-pivot vectors in-
serted up to that point, like in distribution sort. Each bucket contain @(log® m’)
vectors that are kept unsorted to minimize the number of vector exchanges
needed to maintain the internal structure of .#5.

The pivots inside .#p are kept searchable by a suitable blend of the tech-
niques in [10, 13, 18], requiring to decode O(logn) heavy bits per inserted vector
(which is fine since decoding takes O(1 + k/logn) time). In particular, we logi-
cally divide each vector z into a concatenation of O(logm’) = O(logn) equally
sized chunks. We only store the lcp information for the chunks considered as
“meta-characters,” thus obtaining an approximation of the lcp information for
the vectors. After that the distribution completes by inserting all the vectors
of .#' into the internal structure of .#p, we sort the buckets individually by
using a constant number of recursive iterations of session sorting whose param-
eters are suitably adapted to the buckets’ size. The base case of the recursion
consists in solving GVSP{O(+/logm’),O0(y/logm’),0}, for which we design an
optimal ad-hoc algorithm. After completing the individual sorting of the buck-
ets, which still reside in .#g, we exchange them with the placeholders that were
temporarily moved to .#’. We place back the sorted buckets and their pivots to
A" according to their relative order, which means that the m’ vectors in .#’
are in lexicographic order. Since this stage is quite full of technicalities, we give
more details in the full paper.

Known tools. We use a few optimal algorithmic tools for atomic keys: in-place
stable mergesort and in-place merge [21]; in-place selection for order statis-
tics [17]. We apply these algorithms to vectors in a straightforward way by
paying a slowdown of O(k) per elementary step in their time complexity. We
also use Hirschberg’s linear scanning method [11] for searching in place a set of
n vectors of length k, with the simple bound of O(k + n) time. We go through
the convention that the last lowercase letters—. .., z, y, w, z—denote vectors and
the middle ones—..., i, j, k,[, .. —are auxiliary indices or parameters.

3 Heavy Bits

We detail how to reduce the problem of sorting in place n vectors—an in-
stance of GVSP{n,0,0}—to an instance of GVSP{n — o(n),0,0(n/log*n)}
plus a constant number of instances of GVSP{O(n/logn),0,0}. (The nota-
tion for GVSP{m,p,h} is defined in Section 2 and illustrated in Figure 1.)
We recall that we partition in place the sequence ¥ into &, .#, and %, where
|Z| = |%Z| = p = O(n/logn). We obtain this partition by performing order
statistics in place [17] so as to identify the pth and the (n — p + 1)st elements
of ¥ in O(nk) time. In the rest of the paper we assume that wy, # wg; other-
wise, .# is made up of all equal vectors and sorting is trivially solved by applying
Lemma 1 to . and Z.

Let us consider the set of pairs of vectors thus obtained, P = {{Z]i], Z[i]) :
1<i<p}C.LxZ.Let us conceptually divide each of these vectors into chunks



of k/¢ = O(1 + k/logn) scalar components, where £ = min{k, logn}. We index
these chunks from 1 to ¢, in the order of their appearance inside the vector.
We assign an integer label j to each pair (Z[i], Z[i]), where 1 < j < ¢ and
1 <4 < p. Since .Z[i] < Z]i] by construction, label j is the index of the chunk
containing the first mismatching position for Z[i] and Z[i]; that is, it satisfies
(G =D k/t < lep(ZLi], Z]i]) < jk/¢. By the pigeon principle, there must exist
a value of j for which at least p/¢ = 2(n/log® n) pairs in P are labeled j. We
can identify that value by running at most £ in-place scans of £ and Z, with
an overall cost of O(¢ x pk) = O(nk) time. With a further scan of .£ and Z, we
single out h = ©(p/{) = O(n/ log® n) pairs in P that have label j, moving them
in place at the beginning of . and %, respectively. Consequently, we identify
these vectors in the first h locations in .£ and Z by a set of pairs, denoted H:

— HC P and |H|=h=06(n/log’n);

— H = {(Z]i],Z]i]) : 1 <i < h} after the preprocessing;

— there exists j € [1, /] such that (j — 1) k/¢ < lep(z,y) < jk/{ for every pair
(z,y) € H.

We steal bits in H using the knowledge of j as follows. For 1 < i < h, we
encode the ith bit of value 1 by exchanging .£[i] and Z[i] in O(k) time; namely,
Z|i] occupies now position i inside #Z and Z[i] does it inside .Z. If the bit is 0,
we leave them at their position (no exchange). In order to decode the ith bit, we
only compare their jth chunk to find their mismatching position in the interval
[(j—1)k/€+1,7 k/£]. In this way, we can establish whether or not the two vectors
have been exchanged during encoding (and so we decode either 0 or 1). Decoding
performs at most k/¢ scalar comparisons and thus takes O(1 + k/logn) time.
The non-constant cost of bit stealing motivates our choice of referring to these
bits as heavy.

Lemma 2. We can encode h = ©(n/log?n) heavy bits by the pairwise per-
mutation of vectors in H C £ x %Z. Encoding one bit requires O(k) time while
decoding it requires O(1+k/logn) time. Preprocessing requires O(nk) time using
O(1) auziliary locations.

We keep .Z and Z unsorted for encoding bits until the end of the algorithm.
At that point, we can in-place sort £ and # by Lemma 1, in O(nk) time.
Consequently we are left with the problem of sorting . .

Lemma 3. There exists an O(nk)-time reduction from GVSP{n,0,0} to GVSP{n—
o(n),0,0(n/log*n)}, using O(1) auziliary locations.

4 Buffering and Session Sorting

In this section, we detail how to sort the vectors in ., which is an instance
of GVSP{n —o(n),0,0(n/log?n)}. We logically divide .# into contiguous sub-
sequences A1, ..., Ms—1, Ms, called blocks, where | Mo| = -+ = | Ms—1] <
|.#s| = O(n/logn) and s = O(logn). In the following, we assume without



loss of generality that |.#5| = |.#s_1| (if not, we treat .#; differently, apply-
ing Lemma 1 to it). We remark that only a constant number of blocks can be
sorted with the bounds of Lemma 1. Hence we should proceed otherwise. We
designate the O(n/logn) vectors in ., for a sufficiently large multiplicative
constant, to act as placeholders [16]. In this way we obtain O(logn) instances
of GVSP{O(n/logn),0(n/logn),O(n/log®n)}, plus a constant number of in-
stances of GVSP{O(n/logn),0,0} solved by Lemma 1.

We are still missing a crucial part of the reduction performed at this stage,
namely, how to obtain all the vectors in o M3+ Ms_1.#; in lexicographic
order. We introduce the right-bounded permutations, since they rearrange the
vectors so that each vector cannot occupy a position beyond a bounded dis-
tance to the right of its final position in the sorted sequence. As we will prove,
the net effect of the right-bounded permutation is that we can simulate the
in-place merging scheme by the following scheme: IN-PLACE-MERGE (Ao, #3);
IN-PLACE-MERGE(.#3, #}); . . . ; IN-PLACE-MERGE (#s_1, #). We describe this per-
mutation in general terms as it is of independent interest.

4.1 Right-bounded permutations

We are given three positive integers m, p, ¢, such that ¢ divides p and p divides
m, satisfying

(Z-1) xa-v<p 1)

Given a sequence Z of m vectors, we logically divide it into m/q sub-blocks of
q vectors each, denoted .71,...,.%, /4. The sub-blocks are grouped into blocks
of p/q sub-blocks each, thus logically dividing & into m/p blocks of p vectors
each, denoted %1,...,%,,/,. A right-bounded permutation is the arrangement
of the vectors in £ resulting from steps P1-P2, with steps P3-P4 yielding the
sequence in lexicographic order:

P1. For j =1,...,m/p, sort each block %; individually.

P2. Sort stably the m/q sub-blocks .71,. .., .7, /4 according to their first vector
(i.e., comparisons are driven by the minimum vector in each sub-block, and
the rest of the vectors are considered as “satellite data”).

P3. For j =1,...,m/p, sort each block £, individually (note that the content
of the blocks changed!).

P4. For j =1,...,m/p—1, merge the vectors contained in blocks %; and %, 1.

Lemma 4. For each vector ABli], 1 < i < m, let g; be the number of vectors
Blj) > Bli] such that 1 < j < i right after steps P1-P2. Then

ms(%—gxm—n. 2)

Proof. Let us consider the arrangement of the vectors in & right after steps P1-
P2. In order to prove equation (2), we need to counsider the intermediate ar-
rangement of the vectors in A after step P1 and before step P2. Recall that



we logically divide £ into blocks and sub-blocks, indexing the blocks from 1
to m/p. We assign a unique type to each block based on its index, namely, block
P, is assigned type t, where 1 <t < m/p, since it is the tth block in Z. For the
intermediate arrangement above, we say that a vector has type t if it belongs to
Py (recall that %, is sorted). We can assign type ¢ to the sub-blocks of each %,
in the same manner, since each sub-block contains vectors of the same type t by
construction. Hence the type of a sub-block is well defined. We refer to the first
vector of each sub-block, which is also the minimum in it, as the header of the
sub-block.

Let us now resume the arrangement of the vectors in % right after steps P1-
P2. Consider a generic vector AJi] belonging to a sub-block, say .’ of type ¢/,
and let g; be defined as above. We give an upper bound to g; so as equation (2)
holds. Specifically, we count the maximum number of vectors contributing to g;.
Let us discuss them by their type. By the stability of the sorting process in
step P2, we know that the vectors of type ¢’ have maintained the relative order
they had in the intermediate arrangement (after step P1 and before step P2)
and so they cannot contribute to g;.

Let x be the header of the sub-block .’ containing Z[i]. Let us evaluate the
contribution to g; for the vectors of type t” # t’. Consider all sub-blocks of type
t": we claim that at most one of them, say ./, can contain vectors contributing
to g;. Precisely, " is the sub-block of type t” having the largest header less than
or equal to z. Let y < x be the header of ./ and z be one of such contributing
vectors in .#”. Sub-block .#" is laid out before .’ by construction but z > Zi]
by definition of g;. Note that there can be at most ¢ — 1 such vectors z in .#”.
For any other sub-block of type t”’, we show that its vectors cannot contribute to
gi. Since the block of type ¢ is sorted after step P1, there are two possibilities
for its sub-blocks .7 £ #": (a) %" contains all vectors that are less than or
equal to y < z (i.e., & is laid out before .#”'); they do not contribute to g; by
transitivity since < Z[i]. (b) " contains all vectors that are greater than or
equal to z > ABli| > = (i.e., " is laid out after .#"); they do not contribute
because the header of " is strictly larger than x by transitivity and so "
is laid out after .. Summing up, the total contribution to g; for the vectors of
type t" # t' is at most ¢ — 1 (a subset of the vectors in ). Since there are
% — 1 different types other than ¢, we obtain the upper bound for equation (2).

Theorem 1. After steps P1-P/, the sequence A is sorted.

Proof. We proceed by induction on the length of prefixes of blocks in Z. The
base case is obvious, as we know that % is sorted by step P3. Let us assume
that the jth prefix of blocks %%, - - %; is sorted by induction, for j > 1.
After step P3, the upper bound in equation (2) still holds for any vector v in
block #;41 (modulo the inner permutation due to the sorting of %;1). Indeed,
the number of vectors z > v that are laid out before v cannot increase; those
inside %11 disappear after sorting it and so the upper bound in equation (2) is
anyway valid. By equation (1), we derive that p, the size of each block, is larger
than the upper bound of equation (2). As a result, the number of vectors z > v
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that belong to the jth prefix of blocks cannot exceed p. Hence, they should be
contained in the last locations of block %; since p = |%;| and %155 --- B; is
sorted by induction. This allows us to conclude that after merging %; and %;,1,
the (j+1)st prefix of blocks %1% - - - %41 is sorted, thus proving the statement
of the theorem.

4.2 Session sorting

We apply the steps stated in Theorem 1 to sorting the vectors in .# into sessions.
We choose .2, of size O(n/logn) for the placeholders. We then fix ¢ = log®n,
p = qn/log*n = O(n/logn), and we pick m as the largest multiple of p such
that m < |.#| — |.#1|. These values satisfy equation (1). We therefore obtain

the logical division of .# into blocks #1, ..., Ms_1, M5, as expected. We
comment on how to apply steps P1-P4 to 4o, ..., A (assuming w.l.o.g. that
| M| = | Ms—1]).

In steps P1 and P3, we have to solve a number of m/p = O(logn) instances
of GVSP{O(n/logn),O(n/logn),O(n/log*n)} (see Section 5).

In step P2, we have just m/q = O(n/log®n) vectors to sort, which are the
minimum in each sub-block. We refer to them as headers and to the rest of
the vectors as satellite data (with ¢ — 1 vectors each). We associate a unique
implicit index in the range from 1 to m/q with the satellite data in each sub-
block. We employ the heavy bits in H so as to form a sequence of m/q integers
hi,ha; ... by, q of logn bits each, employed to encode a permutation of these
indexes. Note that we have direct access to any hj, 1 < j < m/q, in O(klogn)
time for encoding it and O(k + logn) time for decoding it by Lemma 2.

At the beginning of step P2, we set h; = j and exchange the jth header
with the jth placeholder in 7, for 1 < j < m/q. We then apply the in-
place stable mergesort on the headers thus collected in .#;. Each comparison
cost is O(k) time while each exchange requires O(klogn) time. Indeed, when
exchanging two headers inside .#), say at position j' and j”, we have also to
swap the values of h;; and h;~, involving their decoding and encoding in H.
Note that the satellite data is not exchanged but hj; and h;» are correctly
updated to maintain the association of the headers with their satellite data in
the sub-blocks. At the end of the mergesort, we exchange the jth header in .
with the placeholder temporarily hosted in the hj;th sub-block. The total cost is
O((m/q)log(m/q) x (klogn)) = O((n/log® n)logn x (klogn)) = o(nk).

We now have to permute the sub-blocks according to the values of hy, ..., by, /q
encoded in H. Specifically, the h;th sub-block must occupy the jth position
among the sub-blocks to reflect the stable sorting of their headers. We em-
ploy an additional sequence of integers r1, 72, ..., 7y, /4 encoded in H, initializing
r; = j if and only if h; = i. We proceed incrementally for j =1,2,...,m/q—1
(in this order), preserving the invariant that we have correctly placed the first
J — 1 sub-blocks, with hy,... hy/q and r1,72, ..., 7, /4 suitably updated to re-
flect the fact that one permutation is the inverse of the other (in particular,
hj = rj = j' for 1 < j" < j, so the invariant is meaningful for the rest of
the indexes). Note that some of the sub-blocks may have exchanged in order
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to place the first j — 1 sub-blocks. Hence, when we refer to the jth and the
hjth sub-blocks, they are taken from the current arrangement of sub-blocks. If
j = hj, the current sub-block is already correctly placed and the invariant is
trivially preserved. Otherwise, we exchange the jth and the h;th sub-blocks by
pairwise exchanging their ¢th vectors for ¢+ = 1,2,...,q. In order to preserve
the invariant, we simultaneously swap the values of h; and h,, and the val-
ues of r; and 74, respectively, re-encoding them in H. Since the exchange of
sub-blocks requires the pairwise exchange of ¢ vectors plus the encoding and
decoding of O(1) values among hi,...,h,,/q and r1,72,... 7 q, the cost is
O(qgk + klogn). When j = m/q — 1, the last two sub-blocks are placed cor-
rectly and we have performed a total of O(m/q) such exchanges. The final cost
is O(m/q x (qgk + klogn)) = O(n/log®n x klog®n) = O(nk). Hence, the total
cost of step P2 is O(nk).

Finally, in step P4, we use the in-place merging with comparison cost O(k).
As a result, we obtain a total cost of O(m/p x pk) = O(nk) for step P4 (and .#
is sorted).

Lemma 5. There is an O(nk)-time reduction from GVSP{n—o(n),0,0(n/log®n)}
to a number of O(logn) instances of GVSP{O(n/logn),O(n/logn),O(n/log*n)},
using O(1) auziliary locations.

5 Sorting Each Block Individually

We have to solve an instance of GVSP{O(n/logn),O(n/logn),O(n/log*n)}
(see Figure 1). We reformulate it as GVSP{m’,O(m'),O(m’/logm’)}, where
m’ = O(n/logn) vectors in .#’' should be sorted using a sufficiently large
number O(m’) of placeholders in .#p. We need to encode O(1) sequences of
integers of O(logm’) = O(logn) heavy bits each in H C £ x %, totalizing
O(m'/logm') heavy bits. We sort .#’ by repeatedly inserting its vectors in an
internal structure maintained inside .#g to mimic a distribution sort into buckets
of O(log2 m’) vectors each. Each bucket is sorted by applying a constant number
of recursive calls to session sorting (Section 4.2). The base case is an instance
of GVSP{O(y/logm’), O(v/log m’),0}. We first rank the vectors by linking them
in a sorted list without moving the vectors (we mimic the insertion sort in a list
without moving vectors). The list pointers of O(log log m’) bits each, however, are
not encoded with heavy bits in this case. Since we sort one bucket at a time and
have O(y/logm’) such pointers, we can keep the O(y/log m’ loglogm’) = o(logn)
bits for all the pointers in one auxiliary location. We can access any such pointer
in constant time, and we can append a new pointer to them within the same
complexity by using RAM operations. We apply Hirschberg’s linear scanning to
add a new vector to the sorted list and mimic insertion sort. Hence, the cost
per vector is O(k + /logm/). After setting up the linked list that reflects the
sorted order, we permute the vectors using the temporary buffer of O(y/logm/)
placeholders. Thus the time complexity of GVSP{O(y/logm’), O(v/log m’),0} is
bounded by O(k+/logn + logn). We summarize the resulting bounds, leaving
several technical details to the full paper.
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Lemma 6. An instance of GVSP{O(n/logn),O(n/logn),O(n/log®n)} takes
O(n + nk/logn) time using O(1) auziliary locations.

Theorem 2. An arbitrary set of n vectors of length k can be sorted in place
optimally, taking O(nk + nlogn) time and using O(1) auziliary locations.
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