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Abstract. In his grammar of ancient Sanskrit, Panini represents the
phonological classes as intervals of a list. This representation method
and especially the actual list constructed by Panini, which is called the
Sivasitras, earns universal admiration. The legend says that god Siva
revealed the Sivasatras to Panini in order to let him start developing his
grammar of Sanskrit. A question still discussed is whether it is possible
to shorten the Sivasatras. In the course of this paper, I am going to
prove that this question can be reduced to a question about the graph-
theoretical form of a particular formal concept lattice. Furthermore, I
show how the Sivasutras can be reconstructed from Panini’s grammar.

1 Introduction

1.1 Panini’s Grammar of Sanskrit

Panini’s grammar of Sanskrit (see [1], commented edition) is not only one of
the oldest recorded grammars (according to [2], it dates from around 350 BC),
but also one of the most complete grammars of any language ever written. It
earns universal admiration among linguists: “The descriptive grammar of San-
skrit, which Panini brought to its perfection, is one of the greatest monuments
of human intelligence and an indispensable model for the description of lan-
guages”, ([3]). Panini developed a number of ingenious techniques to represent
his grammar system in a very compact and concise way, including the introduc-
tion of a semi-formalized meta-language and an intricate system of conventions
governing rule applications (e.g. [4], [5]). Since the grammar was designed for
oral tradition, its compactness was particularly desirable, and the linear form of
the whole grammar was a prerequisite.

The science of Sanskrit developed as a tool used for the preservation and
propagation of the Vedas, the religious scriptures of ancient Hindus. The various
Vedic texts were produced in different regions of India, beginning about 1500
BC (see [6]). In the course of time, a gap developed between the language of

* Thanks to James Kilbury for providing me with the subject of this paper as a nice
riddle.
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the ancient scriptures and the colloquial use of Sanskrit. This gap affected both
the phonetic form of the orally preserved texts and the comprehension of them.
The late Vedic texts tell an anecdote to illustrate the importance of correct
pronunciation and stressing (Satapatha—Brahmana 1.6.3.8): The demon Tvastr
longed for a son who would kill the war god Indra. But instead of begging
for an indra-satri (‘Indra-killer’), he asked for an indra-satru and got a son
who was killed by Indra. Hence, a guidance for the correct recitation of the
religious texts became necessary. Panini’s grammar comprises both the Vedic
Sanskrit and bhasa, the language spoken by the priestly class of his time, to which
we refer as classical Sanskrit nowadays. Panini’s grammar and its canonization
laid the foundations for the development of Sanskrit into a lingua franca of
adminsitration and science.

Sanskrit is an inflected language with a rich morphology and sandhill| The
mastery of the sandhi rules is particularly important since two methods of recit-
ing are used in rituals: the standard method of reciting whole continuous sutras
and the padapatha — ‘word for word’-recitation — of the Veda. For the latter,
the stitras must be analyzed and decomposed into single words and all sandhi-
processes must be canceled. This explains why the phonology of Sanskrit stands
in the center of interest.

Panini’s grammar consists of four components: Astadhyayz, Sivasutras, Dhatu-
patha, and Ganapatha. The Astadhyayi is the central component consisting of
about 4.000 rules, which make references to classes defined on the elements of the
other three components. The Siasitras (see Fig.[M) are the smallest component
and consist of only 14 stitras, which comprise a list of the phonological segments
of Sanskrit and meta-linguistically used stop markers. According to this list, the
natural phonological classes of Sanskrit are defined by a representation method
specified in the Astadhyayr. The Astadhyayi refer to the phonological classes
defined by the Sivasutras in 100s of rules.

IV IR MY YA I TaE IO STHS TR ST |
MEYY S ey NFEETTed [ 0g Ta g |

a-i-un||r-lk|| e-onl|ai-auc ||hayavarat ||lanT| namanananam ||jhabhari ||

ghadhadhas ||jabagadadas

khaphachathathacatatav || kapay

Sasasar||hal||

Fig. 1. Panini’s Sivasutras

Figure [l shows the Sivasutras in a linear sequence of siitras, as constructed
by Panini for oral tradition. Nowadays, it is common to present them in the
tabular form of Tab. [ to support readability. Each stitra consists of a sequence

! Sandhi refers to the systematic phonological modifications morphemes and words
undergo if they are combined. An example of a sandhi phenomenon in English is the
variation of the indefinite determiner (a/an), which depends on the first sound of
the following word.



How Formal Concept Lattices Solve a Problem of Ancient Linguistics 339

Table 1. Panini’s Sivasttras in tabular form

1.l a i u N
2. r 1 K
3. e o N
4. al au C
5./ h y v r T
6. 1 N
7. n m n n n M
8.|jh bh N
9. gh dh dh S
10| j b g d d S
11.|kh ph ch th th

¢ t t A\
12.| k P Y
13. $ S S R
14.| h L

of phonological segments, denoted in the table by lower case letters, followed by
one stop marker (called anubandha), identified by using capitals. The anubandhas
are taken from the set of consonants of Sanskrit. As a result, some consonants
occur twice in the list: once as an anubandha and once as a phonological segment.
Furthermore, there is one phonological segment, namely h, and one anubandha,
N, occurring twice in the same role.

Panini represents the phonological classes of Sanskrit as intervals of the list
given by the Sivasutras. Thereby, each class is encoded as a continuous sequence
by giving its start segment and the marker element immediately following the
last segment of the sequence. Two questions, which are discussed to this day, are
whether it is possible to optimize the Sivasatras with respect to the length and
how Panini was able to construct the Sivasutras. About the latter, the legend
says that god Siva revealed the Siwasatras to Panini in order to let him start
developing his grammar of Sanskrit. In the course of this paper, I am going to
prove that the question of optimality can be reduced to a question about the
graph-theoretical form of a special formal concept lattice. Furthermore, I prove
that the Siasatras can be reconstructed from the Astadhyayr without making
a claim on additional aids. Hence, the hypothesis that the Sivasitras must be
necessarily older than the Astadhyayr proves untenable (e.g. [7]).

We will use a simple phonological rule of Sanskrit as an example to show how
the Sivasitras interact with the Astadhyayr. Phonological rules are operational
rules of the form, “A is replaced by B if preceded by C and succeeded by D,”
or in modern notation

A—B/c p . (1)

As mentioned before, Panini’s grammar is designed for oral tradition and hence,
non-linguistically signs like ‘—’ cannot be used in rule representations. Panini

2 Alternatively, such a rule can be denoted as a context-sensitive rule: CAD — C'BD.
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denotes operational rules by using grammatical case markers to prescribe the
role an expression plays in a rule. The functions of such meta-linguistically used
case suffixes are laid down in individual stutras of the Astadhyayr; e.g., the in-
terpretation of the genitive suffix is laid down in sttra 1.1.49:

1.1.49 sasthi staneyoga (W&ﬁ Fﬂeﬂﬂjﬂ’) “The function of the genitive case in
a sutra is that of the phrase ‘in the place of” when no special rules qualify
the sense of the genitive” ([8]).

The four components of (dl) are marked by case markers as follows: A is marked
by the genitive, B by the nominative, C' by the ablative, and D by the locative
suffix.

Sutra 6.1.77. of the Astadhyayr serves us as an example for the interaction
of the Sivasatras with the Astadhyayz; it encodes the phonological rule of San-
skrit that the vowels of the class (i,u,r,1) are replaced by their non-syllabic
(consonantal) counterparts (y,v,r,!) if they are followed by a vowel:

6.1.77. iko yan aci (Eﬁ qut 3il|§|)

Cancelling all sandhi processes results in the padapatha or ‘word-for-word’-form
tkah yan aci, which is morphologically analyzed as:

[1k] genitive [yall] nominative [ac] locative -

Like the grammatical case markers, the technical expressions ik, yan and ac
belong to Panini’s meta-language, too; they are called pratyaharas and denote
phonological classes. A pratyahara consists of a phonological segment followed
by an anubandha. The vowel ‘a’ in the expression yan fulfills two tasks: first,
it serves as a linking vowel which turns the pratyahara into a pronounceable
syllable, and second, it prevents the consonant ‘y’ from being mistaken for the
anubandha °Y’. Using the convention of distinguishing the anubandhas by capi-
tals, we can write the pratyaharas of stitra 6.1.77 as iK, yIN and aC. Pratyaharas
denote intervals of the givasﬂtms, their interpretation is defined by sttra 1.1.71
of the Astadhyayr: A pratyahara consisting of a phonological marker ¢ and an
anubandha M denotes the continuous sequence of phonological segments in the
Siasitras which starts with a and ends with the phonological segment which
is the direct predecessor of the anubandha M. Table 2] shows the interpretation
of the pratyaharas which are involved in sttra 6.1.77. Note that although IN
denotes two distinct anubandhas, the meaning of the pratyahara yIN is unam-
biguous since only one of the anubandhas is a successor of y.

Now we are able to state the phonological rule encoded in sttra 6.1.77 in a
modern form:

K — [yN}/_[aC] .

It states that the elements of the class iK= {i,u,r,l} are replaced by their coun-
terparts of the class yN= {y, v,r,1} if they occur right in front of a member of the

3 The sttras are given in Latin transliteration and Devanagari.
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Table 2. Interpretation of the pratyaharas of sutra 6.1.77. (iK= {¢,u,r,1}, yN=
{y7 v, T, l}7 aC= {a7 i7 u,r, 17 €, 0, ai7 au})

iK aC
1.|a @ u / N N @ 7 d / N
2. i ! 2. T 1 K
3. e o N 3. @ ® N
4 ai au ylN C 4. ai au
5. h @ v 5 \ T 50 h y v r T
6. 1 6. 1 N
7.0 m n n n M 7| m n n n l\~[
8.|jh bh X 8. jh bh X
9. gh dh dh S 9. gh dh dh S
10.] j b 5 d d $ 10 b g d a $
11.|kh ph ch th th 11.| kh ph ch th th
c t t A c t t A%
12,k b v 12.] k p v
13. $ s s R 13. $ s s R
14.|h L 14 h L

class aC= {a,i,u,r,],e,0,ai,au}. Other stitras ensure that the correct ‘counterpart’
is selected.

There are 100s of sutras in the Astadhyayt using pratyaharas for the deno-
tation of phonological classes, but altogether not more than 41 different pratya-
haras are actually used for this purpose. We will refer to those 41 phonological
classes of Sanskrit identified by Panini in the Astadhyayr as Panini’s phonological
classes.

Phonological segments form a natural phonological class if they behave simi-
larly in similar phonological contexts. This analougous behavior can be expressed
in generalized rules as we have seen in stitra 6.1.77. The phonological classes of
a grammar are mutually related: classes can be subclasses of other classes, two
or more classes can have common elements, etc. These connections are naturally
represented in a hierarchy. The pratyahara representation encodes such connec-
tions in a linear form. An aim of this paper is to determine the conditions under
which a set of sets in fact has a Sz’vasﬂtm—style linear representation.

1.2 The Economy Problem of the Sivasutras

Panini does not discuss the criteria on which he constructed the givasﬂtms;
but, by looking at the intricate methods he used in the Astadhyayr to make
it as compact as possible, it becomes clear that he aimed at an economical
representation.

Since the Sivasitras denote a list of phonological segments and anubandhas,
two interesting sublists can be regarded: the list of sounds and the anubandha
list. Hence, the Sivasutras can be optimized in three respects, concerning the
length of the lists:

1. The length of the whole list is minimal.

2. The length of the sublist of the anubandhas is minimal and the length of the
whole list is as short as possible.

3. The length of the sublist of the sounds is minimal and the length of the
whole list is as short as possible.
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It should be noted that none of these minimality criteria implies one of the others.
Looking at the givasﬂtms, the double occurrence of the sound h is especially
astonishing. This is why the third minimality criterion is in the focus of attention
in research on the economy of Panini’s Sivasatras. For example, [9] and [10] argue
that Panini’s Sivasitras are optimal with respect to the third criterion, using
linguistic principles and arguments referring to the construction principles of the
other parts of the grammar.

By looking at the phonological segments as attributes and at the phonological
classes as objects, a formal context can be associated with the Sivasitras[A T am
going to prove that Panini’s Sivasitras respect the third minimality criterion and
that this property depends solely on two facts: first, the corresponding formal
concept lattice is planar and second, there exists a plane drawing of the Hasse
diagram of the lattice in which each attribute concept lies at the boundary of the
infinite face if one removes the top node of the lattice and all edges connecting
it with co-atoms of the lattice (see Fig. R).

The rest of this paper is organized as follows: This introductory section will
be completed by some preliminary definitions formalizing the third minimality
criterion and two short subsections about Formal Concept Analysis and the
theory of planar graphs. Section 2] shows that Panini was forced to duplicate
at least one of the phonological segments and presents a sufficient condition
for the existence of a S/ivasﬂtm—style representation. Finally, Sect. [ explains,
how an optimal givasﬂtm—style representation can be constructed if it exists.
Furthermore, it is proven that solely the duplication of the h enabled Panini to
construct the Sivasitras such that they fulfill the third minimality criterion.

1.3 Preliminary Definitions

The following definitions formalize the main concepts of the preceding sections:
Definition 1 derives the notion of an S-alphabet from the linear form of the
Sivasitras. Definition 2 and Def. 3 generalize Panini’s method of using pra-
tyaharas to represent phonological classes. The phenomenon of the duplicated
phonological segment h in Panini’s Sivasutras is covered by the notion of an
enlarged S-alphabet. Finally, Def. 4 formalizes the third minimality criterion.

Definition 1. A well-formed Sivasﬁtra—alphabet (short S-alphabet) is a triple
(A, X, <) consisting of two disjoint finite sets A and X, and a total order < on
AU X. A is called the alphabet and X the marker set.

Definition 2. A subset T of the alphabet A is S-encodable in (A, X, <) if and
only if there exists a € A and M € X, such that T ={b€ Ala <b< M}. aM
is called the pratyahara or S-encoding of T in (A, X, <).

In the following, we call a pair (A, @) consisting of a finite set A and a set @ of
subsets of A (i.e., @ C P(A)) a system of sets.

4 Formal contexts and formal concept lattices are defined in Sec. 4l
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Definition 3. An S-alphabet (A', X, <) corresponds to a system of sets (A, P)
if and only if A= A" and each element of ® is S-encodable in (A, X, <). An S-
alphabet which corresponds to (A, ®) is called an S-alphabet of (A, ®). A system
of sets for which a corresponding S-alphabet exists is said to be S-encodable.

For example, take the set of subsets
& = {{d e}, {bed, f.g.h ik {abh (i} Lo doe, fg.hi} {g, h1 (2)
of the alphabet A = {a,b,c,d,e, f,g,h,i}; it is S-encodable and
abMicgh My fiMsdMye Ms (3)

is one of the corresponding S-alphabets. The S-encodings of @ are: dM5, bMy,
aMy, fMs, cMs5, and gMs.

In order to formalize the third minimality criterion and to deal with the
double occurrence of A in the Sivasiatras, we need the concept of enlarging an
S-alphabet: A is said to be an enlarged alphabet of A if there exists a surjective
map ¥ : A — A. 9 extends naturally to sets: ¥ : P(A) — P(A). It is clear that
for every system of sets (A, ®) we can find an enlarged alphabet A and a set of
subsets @ with @ = {0(¢') : ¢’ € &} such that (A, ) is S-encodable. To achieve
such an S-encodable system of sets (./l, @) we enlarge A so that the sets of &
are pairwise disjoint. Then we arrange the sets of @ in an arbitrary sequence
and separate them by markers. The induced S-alphabet (/l, b3 , <) corresponds
obviously to (A, ).

An S-alphabet of (A, @) will sometimes be called an enlarged S-alphabet of
(A, ®). Since we always find a finite, enlarged S-alphabet of (A, @), a minimally
enlarged S-alphabet exists.

Definition 4. An enlarged S-alphabet (fl, >, <) of (A, D) is said to be optimal
if and only if it fulfills the following conditions: First, there exists no other en-
larged S-alphabet (A, X, <) of (A, ®), the alphabet A of which has fewer elements

thgn:/l and furthermore, as a secondary condition, no other enlarged S-alphabet
(A, X, <) of (A, D) exists with |A| = |A] and |X| < | 2.

1.4 Formal Concept Analysis

Formal Concept Analysis (see [11]) starts with the definition of a formal context
K as a triple (G, M, I) consisting of a set of objects G, a set of attributes M,
and a binary incidence relation I C G x M. For any subset of objects A C G,
their set of common attributes is defined as A’ := {m € M|Vg € A: (g,m) € I}.
Analogously, the set of common objects for B C M is B’ := {g € G|Vm € B :
(g,m) € I}. A formal concept is a pair (A, B) with the properties A = B’ and
B = A’, where A is called the extent and B the intent of the concept. The
set of all formal concepts of a context is partially ordered by the subconcept-
superconcept-relation: (A1, B1) < (Ag, B2) & A1 C Az < By D Bs. The set of

formal concepts together with this partial order forms a complete lattice, called
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the formal concept lattice. As usual, we denote the set of all formal concepts of
a formal context (G, M, I) by B(G, M, I) and the corresponding concept lattice
by B(G, M, I). The attribute concept p(m) associated with an attribute m is the
greatest concept whose intent contains m, and analogously, the object concept
~(g) of an object g is the smallest concept whose extent contains g.

Formal Concept Analysis has been applied to a number of linguistic problems
before. A survey of these linguistic applications can be found in [12]. What is
remarkable about the application discussed in the present paper is that the at-
tention is focused on the graph-theoretical form rather than the order-theoretical
form of the formal concept lattices as it is generally the case.

1.5 Criterion of Kuratowski on Planar Graphs

If a graph can be drawn in the Euclidean plane, such that neither a vertex nor
a point of an edge lies in the inner part of another edge (i.e., no crossing edges
exist), then it is said to be planarﬁ A lattice is said to be a planar lattice if its
Hasse-diagram augmented by an extra edge from the top to the bottom node is
a planar graph. One of the most important criteria for the planarity of graphs is
the criterion of Kuratowski, which is based on the notion of minors of a graph.
A graph M is said to be a minor of a graph G if it can be arrived from G by
first removing a number of vertices and edges from G and then contracting some
of the remaining edges.

Proposition 1 (Criterion of Kuratowski). A graph G is planar if and only
if G contains neither a K° nor a K33 as a minor (see Fig. Q).

]

Fig. 2. The complete graph K® with 5 vertices (left) and the complete bipartite graph
K3 3 with 2 - 3 vertices (right)

2 Planar Formal Concept Lattices and S-encodability

2.1 Are Panini’s Phonological Classes of Sanskrit S-encodable?

To each system of sets (A, ®) we define the corresponding context (P,.A,3).
The Hasse-diagram of B(®,.A,>) gives us a first hint on whether (A, ®) is S-
encodable:

® Formal definitions of planar graphs and planarity can be found in most textbooks
on graph theory (e.g. [13]).
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Proposition 2. If (A, ®) is S-encodable, then the corresponding formal concept
lattice B(®, A, 3) is planar.

Proof. Let (A,X,<) be an S-alphabet of (A, ®). The proof is based on the
construction of a plane drawing of the Hasse-diagram of B(A, @, €) with stair-
shaped edges@ For each formal concept (A, B) of (A, P, €), its coordinates in
R? are given as follows: The smallest object of A w.r.t. (A, ¥, <) determines the
x-coordinate of the vertex;ﬂ its y-coordinate is given by the length of the longest
descending chain between (A, B) and (0”,0') in B(A, &, €).

The edges of the constructed Hasse-diagram are stair-shaped polygonal arcs:
Let (A, B) and (A, B) be two formal concepts of (A, ®, €) with (4, B) < (A, B).
If min(A) = min(A), then the edge between (A, B) and (A4, B) is a straight
line; else the vertices (A, B) and (A, B) are connected by the polygonal arc (see

Fig. [3)

((A7 B)ﬂh (ILL B)y)7 ((‘i B)ﬂcv (Avé)y - %)7

1 - = 1 1
((A7 B)ﬂc - 57 (A7 B)y - 5)7 ((A7 B)ﬂc - 57 (A7 B)y)v ((A7 B)xv (A7B)y) .
The only exception to this edge-construction rule is that every edge between
a concept (A4, B) and (0", () is just a straight line. The construction of the edges
guarantees that no vertex of the Hasse-diagram lies in the inner part of an edge.

i
V(A B) LIIIILLL
NS

. R

~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~

Fig. 3. Stair-shaped edge of the Hasse-diagram

With a simple but detailed case distinction it can be proven that every conflict
which occurs between two edges (i.e. every crossing of two edges) can be solved
by slightly transforming one of the edges in such a way that the distance between
the transformed and the original edge does not exceed i. a

Figure M shows the resulting plane Hasse-diagram of B(A, ®, €) with ¢ and
A taken from example ([@); the vertices are placed w.r.t. the S-alphabet given
in (3).

It follows as a corollary that a system of sets is not S-encodable whenever
the corresponding formal concept lattice is not planar.

Together with Kuratowski’s criterion this proves that Panini’s phonological
classes are not S-encodable since Fig. bl shows a section of the concept lattice

S Rotating the constructed Hasse-diagram by 180° yields in a plane Hasse-diagram of
B(®d, A, 3).

" If the smallest element of A is the n-th smallest element of A in (A, ¥, <), then the
z-coordinate is n. If A = (), then the z-coordinate is 0.
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{a,b,c,d,e, f, g, h,i}
4 4+ . . . . . . .
P {@C,d,f,g,]’hl’}

3T {e.de, f,g,h,i} : . N -

2 Cvd7f797h77;}‘ {dVe}.‘

1 {ap -

0 t t
d e

Fig. 4. Stair-shaped plane Hasse-diagram of the concept lattice of (A, ®, €) with &
and A taken from (£)); the vertices are placed w.r.t. the S-alphabet in (B)).

corresponding to the phonological classes, which has K° as a minor. Hence,
Panini was forced to duplicate at least one of the phonological segments. But it
remains to prove that h is the best candidate for the duplication; this discussion
will be postponed.

Proposition 3. Panini’s phonological classes of Sanskrit are not S-encodable.

2.2 Excursus: A Sufficient Condition of S-encodability

The condition for S-encodable systems of sets given in Prop. 2lis necessary but
not sufficient, however. Figure [ (left) shows an example of a system of sets
which is not S-encodable, although its corresponding concept lattice is planar.
We need a stronger condition to fully identify those systems of sets which are
S-encodable.

Proposition 4. Let (A, ®) be a system of sets and ® = U {{a} : a € A}. The
following statements are equivalent:

1. (A, ) is S-encodable.
2. B(®, A, >3) is planar.

Proof. By adding a new singleton {a}, a € A, to @, the S-encodability is pre-
served (at most one new marker immediately following a has to be inserted in
an S-alphabet of (A, ®)). Hence, (A, ®) is S-encodable if and only if (A, ®) is
S-encodable. Together with Prop. Bl this proves that statement 1. implies state-
ment 2.

Given a plane drawing of B(®, A, 3), all singletons of @ are co-atoms of the
lattice and the z-coordinates of their corresponding attribute concepts induce
a total order on A. Inserting a marker behind each element of A yields an S-
alphabet encoding of (A, ®). O
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Q f
Fig. 5. The figure shows a section of the concept lattice corresponding to Panini’s
phonological classes which has K® as a minor. The minor K° can be derived by deleting
all but the highlighted edges and contracting the edges marked by crosses. The figure

shows that the class memberships of the phonological segments h, v and ! (denoted by
12) are independent of each other.

Fig. 6. Left: formal concept lattice of (®,.4,3) with & = {{d, e}, {a,b}, {b,c,d},
{b,¢,d, f},{a,b,c,d,e, f}}; middle: formal concept lattice of (®,.4,3) which has K33
as a minor (see right figure)

It follows as a corollary, that a system of sets (A, @) is S-encodable whenever
a plane Hasse-diagram of B(®, A, 3) exists in which each attribute concept lies
at the boundary of the infinite face if one removes the vertex (', ") from the
Hasse-diagram. This boundary graph is called the S-graph of (A,®) and it is
fixed up to isomorphism. The left part of Fig. [ shows a plane drawing of the
formal concept lattice corresponding to () in which the S-graph is highlighted.
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Looking back at the example given in Fig.[d], it is clear that by moving from
@ to @ the concept lattice loses the quality of being planar; B(®, A, ) has the
bipartite graph K3 3 as a minor (figure on the right side). Hence, (A, $) cannot
be S-encodable; this can be also derived from the fact that the attribute concept
w(f) does not lay in the S-graph of the Hasse diagram of B(®, A, ) (left figure).

3 Constructing givasﬁtra-Style Representations

3.1 The S-graph Determines the S-alphabet

If (A, ®) is a system of sets which is S-encodable, then an S-alphabet (A, X, <) of
(A, ®) can be found as follows: Take the labeled S-graph of (A, #) and a path in
it, that starts and ends at the vertex corresponding to (A’, A”). The path must
meet the following conditions: First, the path passes each attribute concept at
least once; second, none of the edges occurring more than once in the path is
part of a cycle in the S-graph. By looking at the S-graph as a subgraph of the
directed Hasse-diagram, the edges of the path can be directed.

The S-alphabet, seen as a sequence of markers and elements of A, can be
constructed from the empty sequence by traversing the path from the beginning
to the end: If an attribute concept p(a) is reached, then add a to the sequence.
If an edge is passed whose direction contradicts the traversal direction, a new,
previously unused, marker element is added to the sequence, unless the last
added element is already a marker. Finally, after the end of the path is reached,
revise the sequence as follows: If an element of A appears more than once in
the sequence, delete all but the first occurrences. The definition of the S-graph
guarantees that, if the path passes an attribute concept p(a) more than once, the
path goes upwards immediately after it reaches u(a) for the first time. Hence,
eliminating all but the first occurrence of a reduces the number of markers in
the resulting S-alphabet.

Applied to our small example (2), we may choose the path illustrated in
Fig.[@, which fulfills the required conditions. Traversing the path, we pass first
u(a) and p(b) without using an edge against its destined direction. Now we move
downwards and violate the direction of the edge, and therefore we have to add
a marker to our sequence, so that it starts with abM;. Now moving upwards
we collect the ¢ and the g, but since u(g) = p(h) we also have to collect the h.
After this we move downwards again, and that is why we add a new marker. We
again reach p(c) and add ¢ a second time to our sequence. So far our sequence
is ab M cgh Mjc, and if we continue we end up with the S-alphabet depicted
in (3).

Note that this procedure does not yield a unique S-alphabet since we have
several decisions to make: (a) If two attribute concepts are identical the order
of the attributes in the S-alphabet is arbitrary; (b) from p(c) we can either go
to p(g) or u(4); (c) the path can be traversed clockwise or anti-clockwise.

Whenever a run violates the direction of an edge immediately after passing
an attribute concept, a new marker has to be added to the S-alphabet. Hence,
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Fig. 7. Left: plane Hasse-diagram of the formal concept lattice corresponding to (@)
with highlighted S-graph; right: possible path in the S-graph from which the S-alphabet
abMicghMs fiMsdMaseMs can be achieved

every optimal S-alphabet of (A4, @) can be constructed by finding a run through
the S-graph which minimizes the number of such marker-insertion situations.

3.2 Panini’s Sivasatras Are Optimal

Figure [§] shows a plane Hasse-diagram of the concept lattice of (éfi, A, 3), where
A is the alphabet of phonological segments of Sanskrit, @ is the set of Panini’s
phonological classes, and A and & are enlarged by duplicating the segment h
according to Panini (the duplication of & is denoted by h_)@ The black and the
striped rectangles next to some of the vertices mark the places where markers
have to be added, depending on the traversal direction (black: anti-clockwise [14
markers|, striped: clockwise [17 markers]). It is obvious that no S-encoding can
have less than 14 markers and the optimal S-alphabets are the various combina-
torial variants of

<a7i7uyM17 LLM% {<{e70}7 M3>7 <{aivau}7 M4>}7h7Y7V7r7M5717M67
ﬁamv{ﬁ7n7n}7 M77jh7bh7M87 {gh7dh7dh}7 M97j7{b7g7d7d}7 M107
{khvph}v {Chvth7th}7 {Cvtvt}y M117 {kvp}v M127 {S,,$,S}, M137h7M14> .

among which Panini’s Sivasitras can be found. [O] argues in detail that the
order chosen by Panini out of the set of possibilities is unique if one requires a
subsidiary principle of restrictiveness.

So far we have argued that Panini was forced to enlarge the alphabet of
phonological segments, but it remains to show why duplicating the h is the best
choice. If h is entirely removed from the 41 phonological classes, then the optimal
S-alphabet has only one marker less, namely 13.

In Panini’s phonological classes the phonological segments h, v, and [ oc-
cur independently of each other. The Hasse-diagram of a concept lattice of a
formal context which contains three independent attributes has K° as a minor
and is therefore not planar (see Fig. B]). Triples of three independent attributes
are called K®-triples. Hence, to get a planar concept lattice it is necessary to
duplicate at least one element of each K°®-triple.

8 Drawings done by ‘Concept Explorer’ (http://www.sourceforge.net/projects/conexp)).


http://www.sourceforge.net/projects/conexp
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Looking at Panini’s phonological classes, we find 249 K°-triples; each of them
contains h, and no other element is contained in each of them. Hence, to avoid
the duplication of & it would be necessary to duplicate more than one element.
For this reason, there is no other choice then duplicating h in order to get an
optimal S-alphabet corresponding to Panini’s phonological classes.

This answers the question whether Panini’s Sivasutras are optimal in the
sense that there exists no other sequence of the phonological segments inter-
rupted by less stop markers.

Proposition 5. Panini’s Sivasttras form an optimal S-alphabet.

4 Outlook

Panini’s method of linearly encoding a subset of a power set could also be in-
teresting from the viewpoint of other coding and sorting problems. However, it
should be noted that the property of S-encodability with no or only moderate
enlargement of the alphabet set is rare, at least among the phonological systems
of natural languages (see [14]). Hence, linguists should investigate how Panini’s
phonological analysis of Sanskrit differs from phonological classifications of other
languages. Furthermore, it would be interesting to give an alternative mathe-
matical description of S-encodable systems of sets and enlarged S-alphabets for
testing and using the property.
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