
Conzilla - a Conceptual Interface to the

Semantic Web

Matthias Palmér, Ambjörn Naeve

No Institute Given

Abstract. This paper has two foci that are intended to be complemen-
tary. First, it describes Conzilla as an incarnation of a concept browser.
More specifically, as a technical solution for expressing context-maps,
concepts, concept relations etc. Second, it introduces Conzilla as a fairly
complete RDF editor which combines graph- and form-based manipula-
tion of RDF-graphs.
Apart from these foci, the main requirements for the Conzilla design
is: It should serve as a collaboration tool for more or less formalized
modeling techniques, most notably UML-dialects. It should simplify the
task of creating information according to various metadata standards. It
should support customized presentations of existing information without
requiring duplication or modification of information sources. These re-
quirements are fullfilled by choosing a three layered approach for working
with semantic web information in Conzilla, i.e. the information, presen-

tation and style layers.

1 Introduction

Our concept browser[8] Conzilla[10] originated from a need to build and present
complicated knowledge structures that can enhance the learning process in var-
ious ways. The resulting expressions were inspired by object-oriented modeling,
most notably UML. However, they soon expanded to include navigational sup-
port like hyperlinks, occurrence relations similar to Topic Maps[13] and support
for filtering of such occurrences. Since the user groups included teachers and stu-
dents as well as other non-expert groups, an effort was made to keep the inter-
faces intuitive and attractive. This led to the use of a more linguistically coherent
modeling technique called Unified Language Modeling (ULM) [8], which focuses
on depicting how we speak about concepts and their relations. In practice we
developed surfable context-maps containing concepts, n-ary role-based concept-
relations and a basic type system, all expressed as interrelated XML-documents
using Uniform Resource Names, URN:s. The resulting concept browser proto-
type, Conzilla1, was a combined browser and editor for these types of knowledge
expressions[10]. Because of a need for more flexible authoring and extensions to
richer modeling languages, as well as for reasons of scalability, harmonization /
standardization / interoperability, we have since then investigated how to change
to another backend for knowledge representation. We found that the semantic
web and most notably RDF[5] was appropriate for our needs, and we were a

little surprised to find that from our point of view, it still seemed to lack good,
generic user interfaces.

We have chosen to equip Conzilla with an RDF backend because we wanted to
strengthen the bridge between human- and machine-understandable semantics.
Moreover, RDF represents an important step in the right direction with regard to
scalability and extensibility. In general, with millions of users on the web - users
with diverse and sometimes very conflicting opinions - it is crucial that RDF
is designed to support knowledge representation in a scalable manner. It is also
very important that items of knowledge can refer to other such items. Otherwise,
questions like ’who said this’ will not be answerable in a standardized manner.
From a learning perspective these issues are equally important, especially since
we believe that learning should not be regarded as an activity that is separated
from other activities.

However, this paper will not focus on learning issues, rather will it describe
how context-maps are defined in RDF in order to enable generic user interfaces to
edit and present knowledge expressed in RDF. Inspired by the needs of technol-
ogy enhanced learning environments, we will show how to design context-maps
that allow parts of RDF expressions to be summarized, suppressed and presented
in a form that is more comprehensible to humans. An effort is made to design
the context-maps so that they can be kept in tune with the various knowledge
sources. Furthermore, Conzilla2 is still a concept browser and provides func-
tionality such as hyperlinks between context-maps and the specific separation
between content and context. We believe that these features beyond being useful
in the setting of a concept browser are truly beneficial for the Semantic Web as
they contribute to providing a better overview of the rather verbose and obsure
expressions in RDF.

Conzilla2 has also replaced the hardcoded IMS metadata editor of Conzilla1
with SHAME[4], a configurable meta-data editing, presentation and querying
library. SHAME uses a sort of application profile to generate interfaces to nearly
all kinds of metadata as long they are expressed in RDF. Many of the imple-
mentation issues we have faced when developing Conzilla2 have been used as
a source of inspiration for the ideas and problems presented in this paper. In
preparing the figures in this paper we have used Conzilla as a modeling tool and
drawing tool.

2 State of the art

As a remedy for the web’s lack of semantics - as well as to meet the rapidly
increasing need to express metadata about web resources - the W3C has de-
fined RDF[5]. At its basic level RDF has very little semantics. However, with
the help of the RDF Vocabulary description language[2], people are encouraged
to introduce new layers of semantics on top of the old ones. For more compli-
cated data, the Web Ontology Language, OWL[12] is probably more suitable.
It is important to notice that the base of RDF is agnostic to the kind of in-
formtion that is actually expressed. There are many applications for working

with RDF and the more specific languages expressed with the help of it. General
frameworks such as RedLand1, KAON2, Jena23, Sesame4[3] and SCAM5 [11] for
parsing, storing, querying and making connections to inference engines are suffi-
cient for their respective purposes. However, generic authoring tools, especially
visual graph-based interfaces for end users, still seem to be lacking. In figure 1 we
compare the performance of our tools Conzilla26 Meditor7 with IsaViz8, VUE9

RDFAuthor10, InferEd11, Protege12 with respect to RDF editing and/or concep-
tual modeling capabilities. We claim neither that this list of tools is complete,
nor that the features considered are exhaustive with respect to their capabilities.
Instead, the features brought up reflect what we believe to be important in the
design of Conzilla2. Hence it is no mystery that Conzilla2 stands out as the most
feature-rich tool in this comparision.

Let us perform a more qualitative investigation of IsaViz and VUE. We se-
lect IsaViz because it is a capable graph-based RDF-editor, and we select VUE
because it is a capable knowledge-structuring and modeling tool.

VUE is a concept-mapping tool that connects to - and filters - the content
of various digital repositories. The focus is on maps and the management of
content in nodes and links. It has many nice features, including the filtering
of content and presentation paths through maps. However, in comparison with
Conzilla2 it lacks a visual language strong enough for modeling in e.g. UML and
since nodes cannot occur in several maps the navigational aspects (feature 9) are
rather weak compared to the capabilities of a concept browser. Furthermore the
separation between information and presentation is done only for content, while
the nodes and links appear in the presentation layer only. From the perspective
of comparing VUE with Conzilla2 it would be interesting if the presentation
file format used RDF. And provided machine understandable semantics for the
concepts, concept relations, navigational aspects and the relation to content.
However, as it stands now, VUE is not an RDF tool (feature 1,2, and 3), even
though it might integrate content from repositories that uses RDF internally.

IsaViz on the other hand has a strong focus on the information representation
as is mainly an RDF editor. It has a lot of nice features like a zoomable interface
and the ability to apply Graphical Stylesheets[14] to customize the presentation
of individual graphs or schemas. However, because of how RDF is designed,

1 http://www.redland.opensource.ac.uk
2 http://kaon.semanticweb.org/
3 http://jena.sourceforge.net/
4 http://www.openrdf.org/
5 http://scam.sourceforge.net/
6 http://www.conzilla.org/
7 Meditor is an application of the SHAME framework
http://kmr.nada.kth.se/shame

8 http://www.w3.org/2001/11/IsaViz/
9 http://vue.tccs.tufts.edu/

10 http://rdfweb.org/people/damian/RDFAuthor/
11 http://www.intellidimension.com/pages/site/products/infered/default.rsp
12 http://protege.stanford.edu/

http://www.redland.opensource.ac.uk
http://kaon.semanticweb.org/
http://jena.sourceforge.net/
http://www.openrdf.org/
http://scam.sourceforge.net/
http://www.conzilla.org/
http://kmr.nada.kth.se/shame
http://www.w3.org/2001/11/IsaViz/
http://vue.tccs.tufts.edu/
http://rdfweb.org/people/damian/RDFAuthor/
http://www.intellidimension.com/pages/site/products/infered/default.rsp
http://protege.stanford.edu/

�

� � � � � � � 	

������

��
����� � � � � � � � � �

� � � � � � � � �
��� � � � � � � � � �

� � � � � � � � �

� � � � � � � � �

� � � � � � � � �

� � � � � � � � �

���	
���

�����

��������������������������������
������ ����!�������"#�������$%�

�������������	�������������������
�������##�������&������'��#��&��(

���	
���
�������	��
�

�
�)
�*

�
�+
�
��
�
��&
�
�,�(

���
�$
%
�

�
�)
�-
�
.
�
�/
�
.
#
�
��0

��
/���

#
��
�
�
�
��
���

�
���)

�1
�
���

#
#
��
�
0
��

�
�)
��
!
���
��
�
,�+

��
!
��
2�$

%
�

�
�)
��
!
����

'
���

�
���

��
!
��
�
.
�
�
�
(

���)
�1
�
���

#
#
��
�
0
��

�
�)
�

�
.
0
��
�
�
�.

�
���#

��
�$
%
�
�.

�
!
�
��

�
�)
�3

�
!
�
��
�
�
���

���)
�1
�
���

#
#
��
�
0
��

�
�)
��
��
�
�
��4

�'
��
#
�
���+

�
�&
��
(

�
�)
��

�
�,���

"
���

���
�
��
!
�&
��
(

���)
�1
�
���

#
#
��
�
0
��

�
�)
�5
�
�
�*

6
-
7*

6
8
��
!
����

'
�
�)
�-
�
#
�
��
��
!
��
!
����

'
���)

�1
�
���

#
#
��
�
0
��

�
�)
�

�
�
��
�
#
#
��
�
�
���

2�
�.

�
���

�
�
�)
�9
��
�
�
�
��
��
&
�
�,��

��
'

���)
�1
�
���

#
#
��
�
0
��

�
�)
�

�
�
��
.
�

�
0
��
���

,�
�
�

�
�)
�:
�
��
.
�
��
���

,�
�
���

�
�,

���)
�1
�
���

#
#
��
�
0
��

�
�)
�:
#
#
�
�
��
�

�
�
�
�
���

���
!
�0
,��

�,��
�
�)
�:
#
#
�
�
��
�

�
�2�"

�
!
�0
,���

�
���

�
�

���)
�1
�
���

#
#
��
�
0
��

�
�)
�1
�
&
�'
�
���

�
�0
�
�(
�
�
�
�&
��
(
�

�
�)
�1
�
��
�
&
�'
�
���

�
���)

�1
�
���

#
#
��
�
0
��

7����

$%�:�����

7�2���!

9����'�

3�!����

Fig. 1. A feature overview of RDF and/or conceptual modeling tools.

there are problems with referring to parts of graphs from the outside. This has
as a consequence that the IsaViz designers have chosen to use their own format
(feature 1) for saving graphs whenever the appearance is customized (e.g. when
doing your own layout or suppressing information). Unfortunately this has some
serious drawbacks, e.g. you cannot customize the presentation of an RDF graph
without making a snapshot of it, and therefore, independent subsequent changes
cannot be incorporated without starting all over. IsaViz is oriented around RDF,
not around maps and consequently has no navigational primitives beyond the
navigation within the customized view of a single RDF-graph (feature 9).

3 Short Conzilla Interface Overview

3.1 Basic browsing and editing

Conzilla2 allows you to browse context-maps and inspect concepts and concept-
relations. Figure 2, depicts two context-maps in browse mode. Here we see several
transparant popups with parts of the Dublin Core metadata fields [1] for concepts
and concept-relations. In the context-map in front we have brought up a pop-up
menu, which contains the alternatives surf, view and info. The info alternative
would bring up a more complete metadata inspector, that allows you to view
other parts of the descriptions that are suppressed in the map. You can change
your language preference in the settings menu.

Fig. 2. The context-map in the back displays a ULM class/instance diagram with
three transparent pop-ups showing Dublin Core information around the concept
’SHAME’, a relation named ’kind of’ (similar to rdfs:subclassof), and a relation
named ’is a’ (similar to rdf:type). The concept ’Brew Coffee’ is shown in blue (in
both maps) to indicate that it is selected. In the context-map in front we see a
ULM activity diagram with a popup-menu showing the three alternatives, surf,
view and info on the selected concept. The surf-submenu shows the conceptual
neighborhood with the present context-map (Brew and Serve Coffee) grayed out.
Since the info alternative was previously chosen, the list of content-components
for the concept “Brew Coffee” is still shown to the right.

In figure 3, we see one of the context-map from figure 2 - but this time in edit
mode. We also see a Dublin Core metadata editor for the newly created concept
of type Activity with the English title ’Drink’. If you would like to edit other
metadata fields than those provided by Dublin Core you can change metadata-
form in the choice-box where, it says Dublin Core. Only a few metadata-forms are
provided by default e.g. Dublin Core, LOM and FOAF. But, via the Formulator

application of the SHAME framework, you can create new metadata-forms or
reuse parts from established standards / schemas. Which metadata-form that
should be used in the browse mode can be specified in the style layer.

Fig. 3. A context-map showing how to brew coffe as a ULM Activity diagram.
The activity ’Drink’ has just been inserted and the user is choosing the property
’transition’ in the type menu to be able to connect the activity to the synchro-
nizationbar14. On the side we see the Dublin Core metadata editor for the newly
inserted activity with Swedish translations of the ’title’ and the ’description’.

3.2 Advanced usage

All editing is done in sessions. Among other things, a session specifies contain-

ers15 for storing concepts and concepts-relations as well as graphics and style
information. From a collaboration perspective it is important that you are able
to use sessions with different containers for the same context-map. If the different
containers are loaded the map shows everything combined, in editing mode you
still see everything, but you can only edit according to the priviledges of your
session. The container-manager can be used in order to investigate context-maps
that have mixed origin. The concepts and concept-relations can also be grouped
into different layers in order to simplify the editing process or aid in a certain
presentation perspective.

15 for the moment can containers only be regular RDF/XML files locally or via ftp, we
plan to support remote RDF-stores like SCAM or SESAME

4 Context-map design

Fundamentally, a context-map should present concepts and concept relations in
a manner that fullfills the requirement of a concept browser. Also, we have made
it a priority that the information that makes up a concept or concept-relation
is expressed in RDF, is separated from its graphical layout, and is allowed to
reside in several RDF graphs. Support for the reasoning behind this design can
be found e.g in [15] and [6]. Our motivation can summarized in the following
design goals:

1. Concepts and concept-relations are human expressions that may be more or
less strict. It is important that the expression has the potential for beeing
machine readable.

2. Expressing information is often a task that requires collaboration or at least
positioning within a larger setting. Hence, it is important that authors can
work with separate information sources and still have a unified view.

3. Human expression is seldom uncontroversial, allowing the same information
to be viewed from another perspective without loosing sight of the similarities
is important. Hence it is important to provide good separation between the
information and presentation layers of a context-map.

It is noteworthy that from a technical perspective, the nature of RDF allows
information to be spread out. Hence, in order to make full use of the strength of
RDF, we need to ensure that context-maps are able to collect information from
disparate sources and assemble this information into a unified presentation.

In the following subsections we will describe the context-map design in terms
of three different layers, an information, a presentation and a style layer. This
division in layers is inspired by how the regular web has evolved into a division
between data storage (typically a database), HTML (typically generated via
some template language) and a stylesheet (typically CSS or XSL).

4.1 Information Layer

The information in the information layer is made up of statements around re-
sources expressed in RDF. In most cases the actual resources have an extent that
cannot be captured in the information layer. This extent may include things with
digital representations like documents or pictures or it might equally well include
things like ideas, processes or people. A concept in a context-map is constituted
of a subgraph of RDF-statements centered around a specific RDF-resource. In a
similar manner a concept-relation in a context-map is constituted of a subgraph
of RDF-statements centered around the reification of a specific RDF statement.

The expression of the information may follow a schema, a standard or be
locally defined, it depends on what is suitable for the domain and the user.

As mentioned above, information presented in one context-map may reside
in several RDF graphs.

4.2 Presentation Layer

The focus of the presentation is the idea of a context-map as introduced in [8].
In short it is a map of concepts and connecting concept-relations presented by
boxes and lines. There might be text in the form of a label within the box and
on the side of the line, both excavated from the information layer.

Every concept or concept-relation has its own integrity, i.e. its existence is
not bound to a specific context-map. The concepts or concept-relations are in-
cluded in a context-map via layouts. Layouts are intermediate resources holding
information regarding position, size, and in-line styles such as text-alignment,
visibility etc. Observe that the same concept or concept-relation may be inserted
several times in the same map yielding different layouts. There is a special kind
of layout, which groups other layouts. Such layouts are typically used for creating
context-map layers.

In addition to the context-map presentation it is possible to interact with
concepts and concept-relations in various ways. The three interactions presented
below are central to the the idea of a concept browser and quite useful for an
RDF editor as well:

Surfing First of all, there are hyperlinks on concepts and concept-relations lead-
ing to other context-maps. A hyperlink is stored on the layout, hence for a con-
cept / concept-relation there might be different hyperlinks depending on where it
is encountered. Second, since the same concept (or concept-relation) may occur
in different context-maps it is possible to provide a contextual neighborhood [8]
which is a list of all context-maps where the given concept (or concept-relation)
occurs.

Since it is possible to include concepts / concept-relations in context-maps
without anyone else’s knowledge, it is impossible to be sure that you have a
complete listing of contextual neighbourhoods. We have considered and tested
to use the p2p network Edutella [9] for finding contextual neighbourhoods. How-
ever, in the long run it might be neccessary to develop a specific service which
specializes in keeping track of contextualizations of concepts / concept-relations
for efficiency reasons. The current implementation of Conzilla2 only checks all
RDF-graphs that are loaded already.

Viewing Content One of the main design principles of a concept browser is to
have content-components separated from their initial context. Content-components
can then be assigned to relevant concepts or concept-relations as e.g. explana-
tions, examples, motivations, discussions, or knowledgable people. It is possible
to assign content-components to a concept or concept-relation within the scope
of a context-map. These content-components will not be visible on that concept
in any other context-map.

Just like a concept or a concept-relation a content-component might have an
extent which goes beyond what is expressible in the information layer. Hence,
if a content-component is detectable as a retrievable digital resource, it can be
shown in a content browser. In most cases a regular web browser is suitable as

a content browser, at least as an intermediate step in order to launch a better
suited application.

Inspecting Further Information Presenting labels on concepts and concept-relations
is nice but in general just represents “a scratch on the surface”. For example,
imagine that we are using the RDF version of the metadata standard Dublin
Core [1] to express e.g. title, description, creator, creation date, subject, rela-
tions, and rights. The title is obviously suitable to use as a label and the rela-
tions can clearly be shown as conceptual relations. A context-map can, if needed,
present the other fields in a graph manner as well, e.g. the date as a relation to
a literal. However, in most cases it is more suitable to present metadata fields
with string values as pure text in a form.

A set of fixed forms, to cover all possible situations, is not flexible enough.
Instead we rely on the SHAME framework16[4] to generate forms from small
form-snippets called formlets. Much like how Conzilla separates information from
its presentation SHAME formlets uses queries to capture elements of the RDF-
graph and form templates to generate actual forms. Which formlets that should
be used in a certain setting might be specified statically in the context-map
or triggered via a type as specified in a stylesheet. Furthermore, by manually
switching among available forms and relevant RDF graphs a more full investiga-
tion is possible. Another approach, yet to be perfected, is to let relevant formlets
be automatically detected from the information itself.

In the editing mode of Conzilla, SHAME is also used as an metadata editor,
see figure 3.

4.3 Style Layer

A style describes the apperance of boxes and lines, typically their form, linetype,
linewith, text alignment etc. A local style is a style applied to a specific layout
of a given resource. A global class style is a style that is applied to an RDF
Class or an RDF Property. A global instance style is a style that is applied to
a specific resource, independently of context. More specifically, a global class
style applies to all concepts or concept-relations that are expressed as instances
of the RDF Class or RDF Property in this global class style. When detecting
instances, we also take into account RDF Schema information, i.e. subClassOf

and subPropertyOf. OWL ontologies are not yet taken into account because it
is still unclear to us how they relate to the scope of context-maps, which relies
heavily on an open-world assumption.

If a local style and a global style are simultaneously relevant, then the local
style takes precedence. Observe that we have to override all parts of a style
explicitly. As an example, if we provide a local style of a concept, which changes
the label alignment but not the form of the box, this form will be determined by
the global style - if one has been provided. Moreover, Conzilla offers a “fallback
style” that applies if there is no other style that does so.

16 Documentation for SHAME can be found at http://kmr.nada.kth.se/shame

http://kmr.nada.kth.se/shame

The present lack of an intermediate style level means that a context-maps
cannot be associated with a specific and reusable set of styles. Of course you
could force inline styles everywhere but that is not a recommended approach.
Instead we plan to introduce a style set which would be the equivalence of a
CSS style sheet. A style set would need to have a selector construction - similar
to the ones in CSS or preferrably GSS [14]. A style set would override a global
style, but be overridden by an local style.

Currently the style information makes use of a fixed set of hardcoded graph-
ical primitives.

5 Context-maps Expressed in RDF

In this section we will consider the RDF-expressions of the three layers in more
detail. This will also include some nitty-gritty details of how RDF represents
information in the information layer and how we can refer to that information
via referring to RDF-constructs. In order to avoid confusion, we will refer to the
RDF-expression of the information as information triples, to the RDF expression
of context-maps as the presentation triples and to the RDF expression of styles
as style triples.

5.1 General Thoughts on the Context-map Construction in RDF

There are several reasons why we have chosen to express context-maps in RDF.
First, this enables good integration with the information triples using internal
referencing techniques such as URIs and the reification mechanism. Second, it
allows inference engines to easily make use of the combination of information and
presentation triples. Third, it allows context-maps to be extended and reused in
other contexts. Fourth, it allows flexible authoring and annotation of the context-
maps themselves, effectively allowing statements like,“I agree with what was said
about that information”.

An important feature of context-maps is that they are able to present in-
formation without changing it. There are several reasons for this. The simplest
reason is that you may have only read access to the information triples. Hence,
it is neccessary that the presentation triples can be located in other RDF-graphs
than the information triples. Equally important is that the presentation triples
of the context-maps do not express anything that would change the semantics
of the information triples. This is important if the two graphs are to be stored
together or managed by tools without prior knowledge of context-maps. Ob-
serve that if the intention of the user is to express information that adds to - or
changes - the semantics of existing information, he or she should of course be
allowed to do this. But the presentation triples of context-maps should not do
this automatically by their mere existence.

From this we clearly recognize the need for references to RDF-constructs
across the borders of RDF-graphs.

5.2 Referring To Resources and Triples

As pointed out above, the layouts of a context-map should refer to the informa-
tion triples. But we also need to reference the resources that are spoken about in
the triples. Lets first note that a resource is something that is in general outside
of RDF, it is merely referenced by a URI. You have to use a domain specific
interpretation function[7] to get from the URI to the actual resource. This is
quite natural since URIs can denote anything from e.g. a car to the idea of a
perfect circle.

Hence, a layout-resource references a resource simply via its URI just like how
the information triples references it. However, since we actually are interested
in information around a resource as well as the resource itself we have to add
a reference to the container where the information triples is stored. Currently
the reference to the container is calculated17 rather than explicitly stored on the
layout or context-map.

triples, by default, have no identifiers, instead a layout-triple refers to a reifi-
cation which in RDF is a standardized and identifiable representation for a spe-
cific triple18. Since a resource may be presented by several layout-resources, the
layout-triple must indicate which layout-resources it refers to. Obviously, the
layout-triples indicated layout-resources should match the ends of the reifica-
tion referred to by the layout-triple, see Figure 4. If they do not match, the
layout-triple is incorrectly constructed. For a layout-triple we need to apply the
interpretation function twice, since we first have to interpret the reification re-
source in order to get to the triple in the information triples, and then we must
interpret the triple in order to get to the information that it expresses.

5.3 Referring Literals and Anonymous Resources from Layouts

It is not enough that context-maps can present resources and their connecting
triples. Both literals and anonymous resources occur frequently and therefore we
should be able to present them individually. Hence we should try to find some
way to refer to them from layouts.

Unfortunately, there is no perfect solution in standard RDF unless we force
the presentation and information triples to be stored together. However, since
the requirement to be able to keep them separate is vital, we choose to live
with imperfect solutions and encourage people to use the integrated form based
approach based on SHAME for displaying anonymous nodes and literals in con-
nection with non anonymous resource. In appendix A we scetche an approach
which have been partially implemented in Conzilla as of when this paper was
published.

17 In some cases this is not possible, it remains to define an unambigous scheme for
when it has to be expressed and when it can be calculated.

18 In a given RDF graph there is only one triple with a given subject, predicate and
object.

Fig. 4. An overview of the three layers (information, presentation and style)
behind the fact that “Eric knows Stephen”.

5.4 Style expression

Figure 4 shows two different global class styles - one for the RDF Class foaf:Person
and one for the RDF Property foaf:knows. The RDF-expressions for a global in-
stance style and local style are almost identical. The only difference is that they
are connected via the styleInstance property to the corresponding resources and
layouts. The RDF-design of style sets remain to be developed.

6 Conclusions and future work

In this paper we have shown how context-maps can be designed and imple-
mented (in Conzilla2) in order to effectively present information expressed on
the semantic web. The context-maps have been designed and implemented in a
manner that allows WYSIWYG editing. Moreover, the context-maps have been
expressed via a three-layered solution, where the lowest layer - the information
layer - has been allowed to remain independent of the other two layers - the pre-
sentation layer and the style layer. In the presentation layer, the author is allowed
to combine several sources into one or several maps, as well as to customize the
layout and to specify the navigation through hyperlinks or contextual neighbour-
hoods. The style layer provides the final touch - together with the form-based
metadata displays that are leveraged by the SHAME framework.

Future work will include the investigation of a better design for styles that are
bound to maps, which we presently think of in terms of style sets. We will also

think more about how to reference anonymous resources and literals. We also
want to provide integration with RDF-based storage-and-access solutions like
SCAM and Sesame. Also, in order to support inference-type business rules, the
relations to OWL will be worked out, and in order to enable process management,
a workflow engine will be interfaced. And of course, the interface of Conzilla2
needs improvements, which will be achieved through user-testing and feedback.
We also plan to develop thin clients for use in browsers or mobiles. In fact,
preparatory work in this direction is already under way.

References

1. The Dublin Core Metadata Initiative. http://dublincore.org.
2. D. Brickley and R.V. Guha. RDF Vocabulary Description Language 1.0: RDF

Schema. http://www.w3.org/TR/2004/REC-rdf-schema-20040210/ .
3. J. Broekstra, A. Kampman, and F. van Harmelen. Sesame: A Generic Architecture

for Storing and Querying RDF.
4. H. Eriksson. Query Management For The Semantic Web.

http://kmr.nada.kth.se/papers/SemanticWeb/CID-216.pdf .
5. K. Graham and J. J. Carroll. Resource Descrip-

tion Framework (RDF): Concepts and Abstract Syntax.
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/ .

6. T. Gruber. Every Ontology is a treaty - a social agreement - among people with
some common motive in sharing. AIS Sigsemis Bullenting 1(3), October 2004.

7. Patrick Hayes. RDF Semantics. http://www.w3.org/TR/2004/REC-rdf-mt-20040210/ .
8. Ambjörn Naeve. The concept browser a new form of knowledge management

tool. In Proceedings of the 2 nd European Web-based Learning Environments
Conference (WBLE 2001).

9. W. Nejdl, B. Wolf, C. Qu, S. Decker, M. Sintek, A. Naeve, M. Nilsson, M. Palmér,
and T. Risch. EDUTELLA: A P2P Networking Infrastructure Based on RDF. In
Proceedings of the 11th World Wide Web Conference, 2002.

10. Mikael Nilsson. The conzilla design - the definitive reference.
http://kmr.nada.kth.se/papers/ConceptualBrowsing/conzilla-design.pdf,2000 .

11. Matthias Palmér, Ambjörn Naeve, and Fredrik Paulsson. The scam framework:
Helping semantic web applications to store and access metadata. In ESWS, pages
167–181, 2004.

12. F. P. Patel-Schneider, P. Hayes, and I. Horrocks. OWL
Web Ontology Language Semantics and Abstract Syntax.
http://www.w3.org/TR/2004/REC-owl-semantics-20040210/ .

13. S. Pepper. The TAO of Topic Maps. http://www.ontopia.net/topicmaps/materials/tao.html .
14. E. Pietriga. Graph Stylesheets (GSS) in IsaViz.

http://www.w3.org/2001/11/IsaViz/gss/gssmanual.html .
15. A. Sheth. The Informations Systems Perspective on Semantic Web Research. AIS

Sigsemis Bullenting 1(1), April 2004.

Appendix - An Approach to Referencing Literals and

Anonymous nodes

By definition, anonymous resources have no identifiers outside of the RDF-graph
where they occur. Therefore an anonymous resource cannot be referenced di-

http://dublincore.org
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/
http://kmr.nada.kth.se/papers/SemanticWeb/CID-216.pdf
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
http://www.w3.org/TR/2004/REC-rdf-mt-20040210/
http://kmr.nada.kth.se/papers/ConceptualBrowsing/conzilla-design.pdf, 2000
http://www.w3.org/TR/2004/REC-owl-semantics-20040210/
http://www.ontopia.net/topicmaps/materials/tao.html
http://www.w3.org/2001/11/IsaViz/gss/gssmanual.html

rectly - except from triples in the same RDF-graph. If we want to refer to an
anonymous resource, we need to invent an indirect referencing technique. Be-
low we describe an approach called graph-patterns that captures anonymous
resources and literals as a special case.

Referencing Anonymous Resources We will here define and state some findings
without proof, a more formal treatment remains to be done.

Def: The marked-graph of a anonymous resources A consists of the RDF-
graph where A occurs, and an extra marker-triple wherein A is the subject19.
It follows that two anonymous resources are indistinguishable if their marked-
graphs are isomorphic (defined in [7]). Even though it is not always possible,
it is nevertheless interesting to consider the graph-pattern20 that provides the
most detailed matching of an anonymous resource.

Def: for an anonymous resource A, we say that a graph-pattern is complete

relative to A, if the graph pattern captures the anonymous closure21 of A. It
can be shown that a complete graph pattern for A matches A - as well as each
of its indistinguishable anonymous resources - which is the best you can expect
under these circumstances.

Moreover, small independent changes to the surrounding RDF-graph should
not invalidate the graph-pattern and break the references to its anonymous re-
sources. From this perspecitve we can identify two inherently conflicting require-
ments on graph-patterns:

1. If we want to reference anonymous resources uniquely, the best we can do is
use complete graph-patterns.

2. If we want to minimize the risk of broken references, a smaller graph-pattern
reduces this risk.

It should be noted that in most practical situations complete graph-patterns are
quite small and hence the conflict between the two requirements is neglible. A
second somewhat weaker approach, which in most practical situations coincides
with complete graph-patterns, is to use graph-patterns that capture all incoming
and outgoing triples. A third - and even weaker - approach, is to use graph-
patterns that only capture the incoming and outgoing triples that are shown
in the context-map from where the anonymous resource is being referenced. In
the last approach, the context-map itself can function as the graph-pattern, no
secondary expression is neccessary. Whenever it is not enough to reuse context-
maps as graph-patterns, an external query language is needed. The Edutella
Query Language (QEL) [9] is a good alternative. In fact, the RDF-expression
of QEL uses reifications that refer to variables instead of fixed resources, which
is precisely how we will reference anonymous nodes in the triple- and resource-
layouts described in section 5.2.

19 the predicate and object should not have been introduced in the RDF-graph already.
20 a graph-pattern is a query where the required anonymous resource is captured in a

specific variable
21 i.e. reachable graph from a node where only anonymous nodes may be traversed.

Referencing Literals Referencing literals constitutes a special case of referencing
anonymous resources. In the case where you do not have an anonymous resource
as the subject of the triple where the literal is expressed as object, the graph-
pattern will be comparable to a reification. Moreover, if literals change often
compared to resource URIs it is a bad idea to rely on exact string matching of
the literal in the graph-pattern. The simplest solution is to replace the literal
with a variable. However, this does not work when there are several triples that
differ only in their literals. In such cases a constraint could be added on the
variable in order to distinguish the literal in question. However, this approach
would have to rely on heuristics and further investigation is needed to investigate
whether it would be worth the effort.

	Introduction
	State of the art
	Short Conzilla Interface Overview
	Basic browsing and editing
	Advanced usage

	Context-map design
	Information Layer
	Presentation Layer
	Style Layer

	Context-maps Expressed in RDF
	General Thoughts on the Context-map Construction in RDF
	Referring To Resources and Triples
	Referring Literals and Anonymous Resources from Layouts
	Style expression

	Conclusions and future work

