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Abstract. We present a certified algorithm for resource usage anaggpicable to languages
in the style of Java byte code. The algorithm verifies thabgam executes in bounded memory.
The algorithm is destined to be used in the development psogiapplets and for enhanced byte
code verification on embedded devices. We have thereforeda@tha low-complexity algorithm
derived from a loop detection algorithm for control flow gnapThe expression of the algorithm
as a constraint-based static analysis of the program oxggleilattices provides a link with
abstract interpretation that allows to state and prove &tlsnthe correctness of the analysis with
respect to an operational semantics of the program. Théicatibn is based on an abstract
interpretation framework implemented in the Coq proofstssit which has been used to provide
a complete formalisation and formal verification of all @mness proofs.

Keywords: Program analysis, certified memory analysis, theorem pggwionstraint
solving.

1 Introduction

This paper presents a certified algorithm for resource usagéysis, aimed at veri-
fying that a program executes in bounded memory. Contiplire way that software
consumes resources is a general concern to the softwarepexén particular for soft-
ware executing on embedded devices such as smart cardsnveerery is limited and
cannot easily be recovered. Indeed, for Java Card up toovePsi there is no garbage
collector and starting with version 2.2 the machine includearbage collector which
may be activated invoking an API function at the end of thecaken of the applet.
This has lead to a rather restrictive programming disciplar smart cards in which the
programmer must avoid memory allocation in parts of the dbdéare within loops.
We provide a certified analysis that automatically and effittiy can check that such a
programming discipline is respected on a Java Card. Thilysinaan be deployed in
two contexts:

1. As part of a software development environment for smanscdn that case, it will
play a role similar to other program analyses used in typeldhg and optimisa-
tion.

2. As part of an extendesh-cardbyte code verifier that checks applets and software
down-loaded on the card after it has been issued.

In both scenarios, there is a need for certification of thdyaig In the first case, the
analysis will be part of a software development processfyatg the requirements
of the certification criteria. In the second case, the amaldl be part of the card



protection mechanisms (the so-called Trusted Computirsg Bhat have to be certified.
The current implementation has a time complexity that ifc@ehtly low to integrate it
in a development tool. However, we have not yet paid attaritbdhe space complexity
of the algorithm and current memory consumption excludgsaaalysis to take place
on-device.

The analysis is a constraint-based static analysis thatsalmy generating a set of
constraints from the program byte code. These constragfiiseda number of sets that
describea) whether a given method is (mutually) recursive or can beeddtiom (mu-
tually) recursive methods, arj whether a method can be called from intra-procedural
cycles. This information is then combined to identify megnalfocations (or any other
type of resource-sensitive instructions) that could beeterl an unbounded number of
times. By casting the analysis as a constraint-based siailysis we are able to give a
precise semantic definition of each set and use the framevf@tistract interpretation
to prove that the analysis provide correct information fbpeograms. The paper offers
the following contributions:

— A constraint-based static analysis that formalises a lbetecting algorithm for
detecting methods and instructions that may be executedlaounded number of
times.

— A formalisation based on abstract interpretation of th& letween the analysis
result and the operational semantics for the underlying bgtle language.

— A certification of the analysis in the form of a complete foliseion of the analysis
and the correctness proof within the Coq theorem prover.

The paper is organised as follows. Section 2 briefly intredube byte code lan-
guage of study. Section 3 gives an informal presentationesétgorithm and its relation
to an operational trace semantics. In Section 4 we formideseorrectness relationship.
In Section 5 we give a general description of the structutd®fCoq proof. Section 6
exposes some complexity considerations and presents semslrbarks. Section 7 de-
scribes the background for this work and compares with iegjstesource analyses.
Section 8 concludes.

2 Java Card byte code

Our work is based on the Carmel intermediate representafidava Card byte code
[11]. The Carmel language consists of byte codes for a staiekited machine whose
instructions include stack operations, numeric operatioanditionals, object creation
and modification, and method invocation and return. We dadeat with subroutines
(the Javajsr instruction) or with exceptions. These instructions carrbated in our
framework but complicates the control flow and may lead teriof analysis results.
The formal definition of the language is given as a small-siggrational seman-
tics with a state of the forn{h, (m, pc,l, s), sf)), whereh is the heap of objects,
{m, pc,l, s) is the currenframeand sf is the current call stack (a list of frames). A
frame(m, pc, [, s) contains a method name and a program poinjic within m, a set
of local variabled, and a local operand staslk(see [15] for details). Let Statebe the
set of all the states of a given progrdmmWe will write simply State ifP is understood



from the context. The transition relation; describes how the execution of instruc-
tion I changes the state. This is extended to a transition relatiam traces such that
tr 81 — tr o 81 i so if there exists an instructioh such that; —; 2.

The instructions concerned with control flow and memorycaton: if, goto,
invokevirtual, return andnew, need a special treatment in our analysis. The rest of
the instructions may have different effects on the operaameksand local variables but
behave similarly with respect to memory and control flow (etvthe next instruction
without doing any memory allocation). For clarity and in erdo focus on the essen-
tials, these instructions have been grouped into one geimstructioninstr with this
behaviour. Fig. 1 shows the rules describing the operdtsaraantics of Carmel.

The rule for the generic instructiomstr is formalised as a (hon-deterministic)
transition from stat& h, (m, pc, 1, s), sf)) to any state of forn{h, (m, pc + 1,1, s'), sf)).
Instructionsif andgoto affect the control flow by modifying thec component of the
state. Theif instruction produces a jump to an indicated program ppihif the top
of the operand stack i, otherwise it moves to the instructigre + 1. Thegoto pc’
unconditionally jumps tgc’. Thenew instruction modifies the heap/( creating an
object of classl on location/oc; loc is added to the stack and theis incremented.

The rule forinvokevirtual is slightly more complicated. Let/ be a method
name. The instructioinvokevirtual M at addres$m, pc) of statec = ((h, f, sf))
may only occur if the current framgof o has an operand stack of the fofoa :: V' :: s,

i.e., it starts with dneap locatiordenoted byoc, followed by a vector of valueg. The
actual method that will be called is to be found in the objetttat resides in the hedp
atthe addresk(loc), and the actual parameters of that method are contained irettx

tor V. Then, themethodLookup function searches the class hierarchy for the method
nameM in the objecto, and returns the actual method to which the control will be
transferred. The new method, together with its startingipai = 1, its vectorV of ac-
tual parameters, and an empty operand stacknstitute a new framg pushed on top

of the call stack of the resulting sta#® = ((h, f/, f" :: sf)), wheref” = (m, pc,l, s)

is the frame to be taken into account after the completiorhefrhethod invocation.
Finally, thereturn instruction pops the control stack and execution contiraigke
program point indicated in the frame that is now on top of thetml stack.

The partial trace semantic§P] of a Carmel progran® is defined as the set of
reachable partial traces:

50 € Sinit A

[P] = {80 sy s, € State” Vk <mn, 3i, sk —i Sk+1

} € p(State")

whereS;,,;; is the set of initial states.

4 Here and everywhere in the paper, “:::” denotes the “congtaiion for traces (appending an
element to the right of the trace). We will use “::” as the “sboperation of the operand stack
(the top of the stack being on the left).
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instructionAtp (m, pc) = instr
<<h’7 <m7 pc, l7 S>7 5f>> —instr <<h’7 <m7 pc + 17 ll7 S/>7 5f>>

instructionAt; (Q”prc) = if pc’ instructionAﬁ(mbPC) = if pc/
<<h’7 <m7 pc, l7 n: S>7 5f>> —if pc! . ) ,

<<h <m pc/ l S> Sf>> <<h7 (m,pc, l?” . S>7 8f>> —if pc

A (h, (m,pc+1,1,5), sf))

. ) _ instructionAtp (m, pc) = new cl
instructionAt (m, pc) = goto pc’ Je € classeéP) with nameClasg:) = cl
<<h7 <m7 pe, l7 5>7 8f>> T)goto pc’ (h/, lOC) = r]eWObjeC(Cl7 h)

{(h, (m, pc’,1,5), sf)) (h, (m, pc, 1, s), SFY) —rnew i

(r", (m, pc + 1,1, loc :: s), sf)

instructionAte (m, pc) = invokevirtual M
h(loc) = 0 m' = methodLookup(M, o) f={m,pc,l,loc::V ::s)

<<hv f7 8f>> —7invokevirtual M <<h, f,, f” o 8f>>

instructionAts (m, pc) = return ' = (m’/, pc’,l’,s’)
<<h’7 <m,pc, l7 v S>7 f/ n Sf» ~—return <<h’7 <m’,pc’ + 17 l,71) o S,>7 5f>>

Fig. 1. Carmel operational semantics.

Specification of the analysis

The memory usage analysis detects inter- and intra-proatldops and checks if the
creation of new objects may occur inside such loops, leattinghbounded memory
consumption. Intuitively, the algorithm consists of thédwing steps:

1.
2.

3.

4,
5.

Compute the set of potential ancestors of a methad the call graph:Anc(m);
Determine the set of methods that are reachable from aathytecursive method:
MutRecR,

Compute the set of potential predecessors of a progrant poin a methodm:
Pred(m, pc);

Determine the set of methods that may be called from intogedural loopstoop Call;
Combining all these resultd/gbounded(P)): phases 1 to 4 are used to detect if
a new object creation may occur in a loop, leading to a pa#ntunbounded
memory usage.

Notice that step 3 is the only intra-procedural computatlarthe following, we de-
scribe the rules for obtaining each of the above-mentioaedand explain informally
how they are related to the operational semantics. Thisigakhip is formalised in
Section 4 which proves the correctness of the analysis.

3.1 Computing ancestors of a methodAnc)

Anc associates to each method name the set of potential arse$tihis method in
the call graph. The type afinc is thusmethodName — p(methodName). Fig. 2



(m, pc) : invokevirtual mp m' € implement$P, mip)
Anc(m) U {m} C Anc(m’)

Fig. 2. Rule for Anc.

m € Anc(m) Anc(m) N MutRecR # 0
{m} C MutRecR {m} C MutRecR

Fig. 3. Rules forMutRecR.

shows the rule corresponding to thevokevirtual instruction for computing the set
Anc(m'): for each methoar’ which may be called by a methed, it determines that
the set of ancestors ot’ must containn as well as all the ancestorssf The function
implements is a static over-approximation of the dynamic method loofunztion. It
returns all possible implementations of a given method w#lmem,p relative to a
programP. We do not specify it in further detail. No constraint is geated for any
other instruction different fromnvokevirtual since we are here interested only in
the method call graph.

Intuitively, given a trace, if the current method being axted ism, then Anc(m)
contains all the methods appearing in the current stackdram

3.2 Determining mutually recursive methods MutRecR)

MutRecR contains the mutually recursive methods as well as thoszhatde from a
mutually recursive method. Fig. 3 shows the rules used topetenthe setutRecR:
if m is in the list of its ancestors, then it is mutually recursized all the descendants
of a mutually recursive method are reachable from a mutuettyrsive method. The
result of the computation offutRecR can be seen as a marking of methods: methods
reachable from mutually recursive methods may be calledrdiounded number of
times within the execution of an inter-procedural loop tlastions in these methods
may be executed an unlimited number of times. For an exarep&Fig. 4: methods
are represented with rectangles, thin arrows represeat jomps goto), and thick
arrows represent method invocations. Shaded methodsase ith\/utRecR.

Intuitively, given a trace where the current method beingceted ism, if m ¢
MutRecR, thenm does not appear in the current stack frame, and all methotthésin
stack frame are distinct.

3.3 Computing predecessors of a program pointPred)

Given a methodn, Pred(m, pc) contains the set of predecessors of the program point
pc in the intra-procedural control flow graph of method The type ofPred is thus
methodName x progCount— p(progCouny. Fig. 5 shows the rules (one for each
instruction) used for definingred. For instructions that do not induce a jumimétr
stands for any instruction different fromf andgoto), the set of predecessors of a
program poinipc, augmented withc itself, is transferred to its direct succesgor- 1.
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Fig. 4. Example of mutually recursive reachable methods.

(m, pc) : instr (m, pc) : if pc’
Pred(m, pc) U{pc} C Pred(m, pc+ 1) Pred(m, pc) U{pc} C Pred(m, pc + 1)
Pred(m, pc) U{pc} C Pred(m,pc’)

(m, pc) : goto pc’
Pred(m, pc) U {pc} C Pred(m, pc’)

Fig. 5. Rules forPred.

For theif instruction, the two branches are taken into account. fgrta instruction,
the set of predecessors of the current program painaugmented withpc itself, is
transferred to the target of the jump.

To relate Pred to the execution traces, we need to define the notionuofent
executionof a method: the current execution of a methadn a tracetr’ = tr ::
{h, (m,pc, 1, s), sf) is the set of all program poin{sn, pc’) appearing in a maximal
suffix of ¢r’ that does not contain a program point where a calintas performed.
Intuitively, given a tracePred(m, pc) represents the set of all programs poiptSap-
pearing in the current execution of.

3.4 Determining method calls inside loopsKoop Call)

The LoopCall set contains the names of the methods susceptible to betesean
unbounded number of times due to intra-procedural loos.6-shows the rules used
for computingLoopCall. The first rule says that if a methed’ is possibly called by a
methodm at program poinpc, and if pc is within an intra-procedural loop of. (pc is

in the set of its predecessors), then may be called an unbounded number of times.
Furthermore, ifn. may be called an unbounded number of times andallsm’, then
this property is inherited by’



(m, pc) : invokevirtual myp m’' € implement$P,mip) pc € Pred(m, pc)
{m'} C LoopCall
(m, pc) : invokevirtual mpp m' € implement$P,mip) m € LoopCall
{m'} C LoopCall

Fig. 6. Rules forLoopCall.

Intuitively, given a tracér where the method currently being executedhisf m ¢
LoopCall then for each method’ at pointpc’ performing a call ton, (m’, pc’) appears
only once in the current executionaf . For an example of the result of this phase of the
algorithm, see Fig. 7. The newly shaded metheg@sandm~ are in LoopCall because
of the call from within the loop in methodhs.

Fig. 7. Marking methods called from inside an intra-proceduraploo

3.5 The Main predicate (Unbounded (P))

So far, the constraints we defined yield an algorithm thatatstnter- and intra-procedural
loops of a given progran®. We now can specialise this algorithm for determining if
the memory usage of our program is certainly bounded. Thé r@salt consists in a
predicateUnbounded(P) which is computed by the rule depicted in Fig. 8. This rule

(m,pc) :new, ¢l m € MutRecR NV m € LoopCall V pc € Pred(m,pc)
Unbounded (P)

Fig. 8. Rule for Unbounded (P).



sums up the previous results, by saying that if a new obj@ettmn may occur inside
a loop (directly or indirectly, as described by the sétsc, LoopCall, MutRecR and
Pred) then Unbounded(P) is true.

4 Correctness

The correctness proof follows a classic abstract inteagimet approach in which we
show that the information computed by the constraints isnaariant of the trace se-
mantics of a prograr®. For each previously defined function or 3&{Anc, MutRecR,
LoopCall, Pred and Unbounded(P)) we use the following schema:
1. Prove that all the domains are lattices and that they havmfimite, strictly increas-
ing chains (ascending chain condition).
2. Determine a set of constraints for definikg
3. Define a concretisation functiopy in order to relate concrete domains (sets of
traces) and abstract domains)
4. Prove that all partial traces of a given program are ctigrepproximated byX,
i.e., thatvt € [P], t € vx(X). This result is a consequence of the classical
characterisation dfP] as the least element of the following set:

Vty,ts € Trace,
S e p(TraC@ Sinit €S A if t; € Sandt; — to
thent, € S

We must prove the following two intermediary lemmas:

For any tracet; € [P], if t; € yx(X) andt; — to, thents € yx(X). (1)
For any tracet € Sinit, t € vx(X). (2)

5. Analyse a given apple?, which consists then of 1) constructing the set of con-
straints associated to the program 2) solving this systetim avclassic fixed point
iteration whose termination is ensured by the lattice adiognchain condition.
Steps 1 to 4 are proof-theoretical while step 5 is algorithraill these steps are

performed in the Coq proof assistant. Steps 1, 2 and 5 benefit the framework
proposed in [3] and thus no new proof is required. We only neguiove steps 3 and 4,
for which the property (1) represents the core of the work:

Lemma 1. For any tracet; € [P], if t; € vx(X) andt; — t, thents € vx(X).

We now define the concretisation functiepngs for Anc, MutRecR, Pred andLoopCall.

Anc. The concretisation function fotnc formalises the fact that’ callsm (directly
or indirectly) in a trace by examining the call stack of each element:in

Yane : (methodName — p(methodName)) — p(State")

for all {(h, (m,pc, 1, s),sf)int }

+
X {t € State for all m’ appearing insf, m’ € X (m)




MutRecR. Given a method name and a partial tracg we say that#n is ever executed
with a safe callstack in” (which is denoted by the SafeCallStdek, ¢) predicate) iff
for all {(h, {m,pc,l,s),sf) in t, m does not appear igf and all methods isf are
distinct.

The concretisation function faWutRecR is then defined by:

YMutreer © (methodName) — o(State")

for all m € methodName, if m € X,
X {t € State’ then SafeCallStackn, t) holds }

Pred. The associated concretisation function is

YPred : (methodName x progCount— p(progCount) — p(State")

for all prefixt’ ::: {(h, (m,pc,l, s), sf)) of ¢,
X {t € State’ if SafeCallStackm, t) thencurrent(t', m) C X (m, pc)

wherecurrent(t’', m) is the set of program points which appear in the current ei@tu
of m relative to the tracé'.
LoopCall. Given two method names andm/, and a partial trace we use the pred-
icate OneCall to state that is called at most once within each invocationmf. For-
mally, OneCall is defined by OneCat, m/, t) iff for all prefix ¢’ ::: {(h, (m, pc, 1, s), sf))
of ¢, and for all positiongm’, pc’) where a call ton is performedpc’ occurs only once
in the corresponding current executionvof.

The concretisation function fatoop Call is then defined by:

YLoopCall : (methodName) — o(State")

for all prefixt’ ::: {(h, (m,pc,l, s), sf)) of ¢,
if SafeCallStackm, t) andm ¢ X,

then for allm’ in methodName,
OneCal(m,m’,t) holds

X — { t € State"

To prove the correctness &fnbounded(P) we need to prove the following lemma:

Lemma 2. If for all program point(m, pc) where an instructiomew is found we have
m & MutRecR U LoopCall andpc ¢ Pred(m, pc), then there exists a boundaz e,
so that

Vi € [P], [tlnew < Mazyey

where|t|,e; counts the number afew instructions which appear in the states of the
tracet.

To establish the above result we first prove an inequalitich between the num-
ber of executions of the different methods. We wrEeec(m, t) for the number of
executions of a methogh found in a tracet. Similarly, Mazinyoxe(m) is the maxi-
mum number ofinvokevirtual instructions which appear in a method Letm €
Call(m') denote thatn’ callsm.

Lemma 3. For all methodsn, if m ¢ MutRecR U LoopCall then for allt € [P],

Exec(m,t) < Z Exec(m/,t) - Maz snyoxe(m’).
mée Call(m')



Using this lemma we prove that the number of executions ofrtathodm in the trace
t is bounded, as expressed in the following lemma.

Lemma 4. There exists a bound/azexec Such that for all methods: which verify
m ¢ LoopCall U MutRecR, we have

vVt € [P], Exec(m,t) < Matexeo

To conclude the proof of Lemma 2 we need to prove the followesylt, establish-
ing that if a method is not (mutually) recursive, nor readbdtmm a mutually recursive
one and itis notin a intra-method cycle, then the numbeeefinstructions is bounded.

Lemma 5. Given a methodn which verifiesm ¢ MutRecR U LoopCall, if for all
program points(m, pc) in m where an instructiomew is found,pc ¢ Pred(m, pc)
holds then

vt € [P], |tIr, < Ezec(m,t)

new —

where|t|l counts the number of instructionsew which appears in the states of the
tracet in the methodn.

Lemma 2 follows then from the following inequality:

Vt € [P], |thhew = Z [t]gee < MethodMaz p - Maz inyoxe

where MethodMaz p is the number of methods in prografh
The correctness of our analysis is a corollary of Lemma 2:

Theorem 1. = Unbounded(P) = IMazney, Yt € [P], |tlnew < MaZpey-

5 Coq development

The following section gives an overview of the structure lué Coq development. It
is meant to give an intuition for how the development of aified analyser can be
done methodologically [3] and to serve as a first guide to iiee[$3] from which the
analyser and the Coq specification and proofs can be dowadbadmpiled and tested.
The formalisation of Java Card syntax and semantics is thkeman existing data
flow analyser formalised in Coq [3]. The analysis consistsaltulating the setdnc,
MutRecR, Pred and LoopCall that are indexed by program methods and program
points. This naturally leads to a representation as arresets, defined in the following
way using Cog modules:

Module MAnc := Arraylattice(FiniteSetLattice).

Module MVut Rec : = FiniteSetlLattice.

Module MPred : = ArraylLattice(ArraylLattice(FiniteSetLattice))
Module M_oopCal |l := FiniteSetlLattice.

Module MJnbounded : = Bool Latti ce.



This leads to a type foeg. Pred that is dependent on the actual progr&no analyse.
Once the progran® is supplied, we construct the actual $&td, properly indexed by
the methods and program pointsef

Each of the four type of sets gives rise to a specific kind obt@ints. For example,
the constraints defining the sBied are given the following definition

Inductive ConstraintPred : Set :=
C4: Met hodName -> progCount -> progCount ->
(FiniteSetLattice.Pos.set -> FiniteSetLattice. Pos. set)
-> Constrai nt Pred.

Thus, each constraint is constructed as an element of aygegt#itat for a given method
mand two instructions at program poimts andpc’ provides the transfer function that
links information at one program point to the other. The abgieneration of constraints
is done via a function that recurses over the program, magabéch instruction to see
if it gives rise to the generation of a constraint. The follogvdefinition corresponds to
the Coq formalisation of the constraint rules depicted on Figure 5.

Definition genPred (P: Program (m Met hodNane) (pc: progCount)
(i:Instruction) : list ConstraintPred :=
match i  with
return_v => nil
| goto pc’ => (C4 mpc pc’ (fun s => (add_set pc s)))::nil
| If pcc => (C4 mpc pc’ (fun s => (add_set pc s)))::
(C4 mpc (next Address P pc)
(fun s => (add_set pc s)))::nil
| _ = (C4 mpc (nextAddress P pc)
(fun s => (add_set pc s)))::nil

The result of the constraint generation is a list of constsaihat together specify
the setsAnec, Pred, MutRecR and LoopCall. When calculating the solution of the
constraint system, we use the technique that the resolafiarconstraint system can
be done by interpreting each constraint darectionthat computes information to add
to each state and then increment the information assocwithdthe state with this
information. Formally, for each constraint of the forfidX (m,pc1)) T X (m, pea)
over an indexed seX (such asPred), we return a function for updating the indexed set
by replacing the value oX at (m, pc2) by the valuef (X (m, pc1)).

Definition F_Pred (c: Constrai nt Pred)
MPr ed. Pos. set -> MPred. Pos. set : =
match ¢ with
(C4 mpcl pc2 f) => fun s => update s mpc2 (f (s mpcl))

The resolution of the constraints can now be done usingdatite fix-point solver, as
explained in [3]. The fix-point solver is a function of type

(l: (L —-1L) list) — (vf €1, (nmonotone L f)) —
Ix: A (v €|, (order L (f x) x)) A
(Vy:A(vf €I, (order L (f y) y)) = (order L x vy))



that will take a list of monotone functions over a latticeand iterate these until sta-
bilisation. The proof of this propositiorig, the inhabitant of the type) is a variant
of the standard Knaster-Tarski fix-point theorem on finitéidas that constructs (and
hence guarantees the existence of) a least fix-point asntliteoli the ascending chain

L, f(L), f2(L),....

5.1 Correctness proofin Coq

The remaining parts of the proof effort are dedicated to tireectness of the memory
usage analysis. Two particular points connected with threectness proof are worth
mentioning:

— The correctness dfinbounded (P) requires much more work than the proof of the
various partial analyses. This is not surprising becaugaemathematical diffi-
culties of the corresponding property: counting proofsvee#-known examples of
where big gaps can appear between informal and formal proofs

— In many of the proofs involved in the construction of the gsal, there is one case
for each byte code instruction. Most of the cases are deditiwithe same way.
For the methodology to scale well, the proof effort shoultdgrow proportional to
the size of the instruction set. This is true already for #latively small Carmel
instruction set (15 instructions) and in particular for teal Java Card byte code
language (180 instructions).

For the latter point, it was essential to use the Coq taatigdage of proof scripts (called
tacticsin Coq) which allows to apply the same sequence of proof sepkfferent
subgoals, looking in the context for adequate hypothesiis way, most of our proofs
are only divided in three parts: one case farvokevirtual, one case foketurn
and one case (using an appropriate tactics applied on $eudrgoals) for the other
instructions. With such a methodology, we can quickly addpdé instructions (like
operand stack manipulations) without modifying any prawfgs.

The extracted analyser is about 1000 lines of OCaml codeevitnd total develop-
ment is about 9000 lines of Cog. The following table giveshireakdown of the proof
effort measured in lines of proof scriptsig. 5.1 summarises the proof effort for each
part of the certified development of the analyser.

6 Complexity and benchmarks

The computation of the final result of the algorithm from tleastraints defined above
is performed through well-known iteration strategies. Nedenote the number of meth-
ods and/,,, the number of instructions in methed. The computation of the setsnc,
MutRecR andLoopCall consists in a fix-point iteration on the method call grapét ik
at most quadratic itV . The computation oPred for a given methodn requires at most
I, x (] number of jumps inn | +1) operations. The computation éfnbounded(P)

5 Note that the size of a Cog development can change signifjciaim one proof script style
to another. The same proofs could have consumed two or times more script lines if the
capabilities of the proof tactics language were not exptbiT hus, it is the relative size of the
proofs that is more important here.



| Subject | number of lines|

syntax + semantics 1000
lattices + solver 3000
Anc, MutRecR, Pred, LoopCall correctness 1300
Unbounded (P)correctness 2500
constraint collecting, monotonicity 1200
| total | 9000)

Fig. 9. Proof effort for the development.

requiresy . I,, < N x max{I,,} operations and in the worst case to sdygline
numbers for each instruction (i.2). The algorithm may be further optimised by us-
ing a more compact representation with intervals but we metdmplemented this.
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Fig. 10. Performance measures. The first row corresponds to a varaiphber of methods with
a fixed number of lines per method, while the second corredgptma fixed number of methods
with a variable number of lines per method.

Fig. 10 gives benchmarks for the performance of the extdgmtegram. These mea-
sure have been performed with a randomly byte code progrararger. Given two
parametersV andl, this program generates a well formed Carmel program with



methods, each of them containifig [ lines of byte code. Each group 6flines han-
dles a call to a randomly chosen methogoao and aif instruction with an appari-
tion probability of1/5. Hence we can easily measure the performance of our exdracte
program on big Carmel programs. The first row of Fig. 10 cqroesls to a variable
number of methods with a fixed number of lines per method,emhie second corre-
sponds to a fixed number of methods with a variable numbene$iper method. These
benchmarks show a linear performance in the first case (hatbmputation time and
memory requirements), and a quadratic performance in ttez.la

As the benchmarks show, the extracted program performswelly in particular
when taking into account that no modification on the extrdictale was necessary.

7 Related work

Hofmann [7] has devised a type system for bounded space aetidoal in-place up-
date. In this system, a specifietype is used to indicate heap cells that can be over-
written. A type system for a first-order functional languatgdines when the reuse
of heap cells due to such type annotations is guaranteea radtetr the behaviour of
the program. Inspired by this work and by Typed Assembly e of Morrisett et
al. [12], Aspinall and Campagnoni [1] have defined heap-bedrassembly language, a
byte code language equipped with spegiseudo-instructionfor passing information
about the heap structure to the type system. The type syseringarity constraints
to guarantee absence of aliasing. Together, this allowsoteeghe sound reuse of heap
space in the presence of kinds of heap cells (integersglilst, etd).

Crary and Weirich [5] define a logic for reasoning about reselconsumption
certificates of higher-order functions. The certificate dtiaction provides an over-
approximation of the execution time of a call to the functidhe logic only defines
what is a correct deduction of a certificate and has no interegorithm associated
with it. The logic is about computation time but could be exded to measure memory
consumption.

The most accurate automatic, static analysis of heap spsgEUs probably the
analysis proposed by Hofmann and Jost [8] that operatesgirofider functional pro-
grams. The analysis both determines the amount of freermisssary before execution
as well as a safe (under)-estimate of the sizefadexlistafter successful execution of a
function. These numbers are obtained as solutions to a §iaeaf programming (LP)
constraints derived from the program text. Automatic iafere is obtained by using
standard polynomial-time algorithms for solving LP coasits. The correctness of the
analysis is proved with respect to an operational semathigtexplicitly keeps track of
the memory structure and the number of free cells.

The Hofmann-Jost analysis is more precise than the angyssented here but is
too costly to be executed on most embedded devices, in plartiemart cards. Rather,
its use lies in the generation of certificates that can theaheeked on-card. A simi-
lar distinction can been observed in on-card byte code watifin where the on-card
verifier of Casset et al. [4] relies on certificates generafédard, whereas the veri-
fier described by Leroy [10] imposes slight language ret#tris so that the verifier can
execute on-card.



A similar (but less precise) analysis to ours is presenteld4h. The analysis is
shown to be correct and complete w.r.t. an abstraction obtfexational semantics.
One difference with our work is the computation Bfed, which keeps track only of
the program pointgc of the branching commands instead of all the visited method
program points, decreasing the space complexity. Howavesich work the proofs
are done manually and the semantics being considetethisn contrast with thepar-
tial semantics used in our work; this could make the formal prod@@dgq much more
difficult.

The certification of our analysis was done by formalising¢berectness proof in
the proof assistant Cog. Mechanical verification of Javdyaeas have so far mainly
dealt with the Java byte code verifier [2, 9, 4]. The first exicepis the work reported
in [3] on formalising an interprocedural data flow analyser Java Card, on which
part of the formalisation of the present analysis is basée. ffamework proposed in
[3] allows us to concentrate on the specification of the agialgs a set of constraints
and on the correctness of this system with respect to therg@saf the language (see
Section 4). The lattice library and the generic solver off@fe reuseas isto extract
the certified analyser.

8 Conclusion

We have presented a constraint-based analysis for degaatimounded memory con-
sumption on embedded devices such as Java Card smart chedandlysis has been
proved correct with respect to an operational semanticawa Byte code and the proof
has been entirely formalised in the theorem prover Coq, igioy the first certified
memory usage analysis. The analysis can be used in progaegsing tools for ver-
ifying that certain resource-aware programming stylesehseen followed. An impor-
tant contribution of the paper is to demonstrate how suchalyais can be formalised
entirely inside a theorem prover. To the best of our knowdeduis is the first time
that a resource usage analysis has undergone a complet@igation with machine-
checkable correctness proof. Still, several aspects @rhé/sis merit further develop-
ment:

— By using the formula established in Lemma 3, we could in ppileccompute an
over-approximation of the numbernéw instructions performed during any execu-
tion of the program and thereby produce an estimation of theary usage. How-
ever, it is unclear whether this algorithm can be expressede constraint-based
formalism used here; a specific proof effort would be regufoz this extension.

— From a programming language perspective, it would be ist@rg to investigate
how additional restrictions on the programming disciplooeild be used to lower
the complexity of the analysis, in the style of what was ugefd 0]. For example,
knowing that the byte code is a result of a compilation of Jsuarce code imme-
diately gives additional information about the structuréhe control flow graph.

— A challenge in the smart card setting would be to refine therélgm to an im-
plementation of a certified on-device analyser that coulthfpart of an enhanced
byte code verifier for protecting the device against resswwansumption attacks.
The main challenge here is to optimise the memory usage @rthbysis which is



currently too high. Recent work on verification of C code ingg6] could be of
essential use here. Techniques for an actual implementedio be gleaned from
[10] as well as from [14] in order to optimise the computatidriPred.
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