Real-World Interaction with Camera-Phones

Michael Rohs
Institute for Pervasive Computing
Department of Computer Science
Swiss Federal Institute of Technology (ETH) Zurich, Switzerland
rohs@inf.ethz.ch

Abstract

With the integration of cameras, mobile phones have
evolved into networked personal image capture devices.
Camera-phones can perform image processing tasks on the
device itself and use the result as an additional means of
user input and a source of context data. In this paper we
present a system that turns such phones into mobile sen-
sors for 2-dimensional visual codes. The proposed sys-
tem induces a code coordinate system and visually detects
phone movements. It also provides the rotation angle and
the amount of tilting of the camera as additional input pa-
rameters. These features enable applications such as item
selection and interaction with large-scale displays. With
the code coordinate system, each point in the viewed image
— and therefore arbitrarily shaped areas — can be linked to
specific operations. A single image point can even be asso-
ciated with multiple information aspects by taking different
rotation and tilting angles into account.

1 Introduction

With the integration of CCD cameras, mobile phones
have become networked personal image capture devices. As
image resolution improves and computing power increases,
they can do more interesting things than just taking pictures
and sending them as multi media messages over the mo-
bile phone network. For example, programmable camera-
phones can perform image processing tasks on the device
itself and use the result as an additional means of input by
the user and a source of context data.

In this paper, we present a visual code system that turns
camera-phones into mobile sensors for 2-dimensional vi-
sual codes. For that, we elaborate on and extend our initial
ideas presented in [7]. We assume scenarios where camera-
phones are used to sense a scene that contains one or more
visual codes. By recognizing a code tag, the device can
determine the code value, the targeted object or image el-

ement (even if the object or image element itself is not
equipped with a code tag), as well as additional parame-
ters, such as the viewing angle of the camera. The system is
integrated with a visual phone movement detection scheme,
which provides three degrees of freedom and turns the mo-
bile phone into an optical mouse. Code recognition and mo-
tion detection are completely performed on the phone itself.
The phone’s wireless communication channel is used to re-
trieve online content related to the selected image area or
to trigger actions (either in the background infrastructure or
on a nearby larger display), based on the sensed code and
its parameters.

These features enable local interaction with physical ob-
jects, printed documents, as well as virtual objects displayed
on electronic screens in the user’s vicinity. Mobile phones
are in reach of their users most of the time and are thus avail-
able in many everyday situations. They are therefore ideal
bridging devices between items in the real world and associ-
ated entities in the virtual world. The visual codes provide
visible “entry points” into the virtual world, starting from
the local surroundings. This offers a natural way of local
interaction and strengthens the role of mobile phones in a
large number of usage scenarios. The visual code system
also provides the basis for superimposing textual or graphi-
cal information over the camera image in close real-time in
the sense of “augmented reality”. This entails a manifold of
application possibilities in situations where information is
to be closely linked to physical objects.

The novelty of the proposed system is its code coordi-
nate system, the visual detection of phone movement, and
the determination of the rotation angle and amount of tilt-
ing. These features enable interesting applications, beyond
simple item selection, such as interaction with nearby ac-
tive displays. The recognition algorithm precisely deter-
mines the coordinates of a targeted point in the code co-
ordinate system, which is independent of the orientation of
the camera relative to the code tag (distance, rotation, tilt-
ing) and also independent of the camera parameters (focal
distance, etc.). This enables the association of each point

in the viewed image — and therefore arbitrarily shaped areas
— with specific operations. A single visual code can be as-
sociated with multiple such areas and a single image point
can be associated with multiple information aspects using
different rotation and tilting angles.

2 Related Work

Sony’s CyberCode [6] is related to our approach, but
does not operate on mobile phone class devices and does
not use phone movement and other additional parameters
for interaction in the way we propose. CyberCodes encode
24 bits of data. In addition to the ID, the 3-D position of the
tagged objects is determined. The proposed applications for
CyberCodes are augmented reality systems, various direct
manipulation techniques involving physical objects, and in-
door guidance systems.

TRIP [2] is an indoor location tracking system based on
printable circular markers, also called “TRIPtags”. It em-
ploys CCD cameras plugged into standard PCs for code
recognition, 3-D location, and orientation detection. TRIP-
tags have an address space of just 19683 (= 3%) possible
codes, which makes them impracticable to encode univer-
sally unique IDs, like Bluetooth MAC addresses. In con-
trast to our system, TRIP is designed for use with station-
ary cameras which are distributed in a networked environ-
ment. It relies on a CORBA infrastructure and a centralized
recognition engine named “TRIPparser”. In our system,
code recognition is completely done on the mobile phones,
which enhances scalability, and code sightings are distrib-
uted wirelessly.

The FieldMouse [9] is a combination of a barcode reader
and a pen-shaped mouse. The mouse detects relative (Az,
Ay) movement. If the location of a barcode on a flat surface
is known to the system, absolute locations can be computed
by first scanning the barcode and then moving the Field-
Mouse. This enables various kinds of paper-based GUIs.

A number of commercial efforts exist to recognize prod-
uct codes with mobile phones. An example is AirClic
(wwwe.airclic.com), which provides tiny barcode readers
that can be attached to mobile phones. The disadvantage of
this approach is the necessity of an additional device, which
increases the physical size and weight of the mobile phone
and consumes additional energy. Barcode readers also do
not provide the orientation and selection features of camera-
based approaches.

SpotCodes (www.highenergymagic.com) are a commer-
cialized derivative of the TRIP codes mentioned above for
use with camera-phone devices. They recognize the rota-
tion of the code tag in the image, but do not provide an
orientation-independent code coordinate system and do not
detect relative camera movement independent form codes
in the camera image. A number of interaction possibilities

are described on the Web page, such as rotation controls and
sliders.

In Japan, a number of companies offer mobile phones
with the ability to read QR Codes [4]. They implement
the core functionality of decoding QR Codes. They do not,
however, have the code coordinate system, rotation, tilting
and visual movement detection features that are integrated
in our system.

The same applies to Semacode (semacode.org), which
uses standard Data Matrix [3] codes to implement physical
hyperlinks and load Web pages in the phone’s browser. Ex-
ample applications are live urban information, such as the
position of GPS-equipped busses, information on nearby
shops and services, and semacodes on business cards and
conference badges.

3 Visual Code, Recognition Algorithm, and
Phone Movement Detection

The mobile phone devices we consider have severely
limited computing resources and often lack a floating point
unit. Hence, the use of floating point operations has to
be minimized. The typical phone camera generates low to
medium quality color images in VGA (640 x 480 pixels)
or lower resolution. The relatively poor image quality de-
termines the minimal size of code features that can be re-
liably recognized. The code features therefore have to be
more coarsely grained than those of most available visual
codes. In our evaluation it became clear that color should
not be used as a code feature, because of the large differ-
ences in color values, depending on varying lighting con-
ditions. Moreover, color codes are more expensive to print
and harder to reproduce than simple black-and-white codes.

Because of the mobility inherent to camera-phones,
scanned codes might appear at any orientation in the cam-
era image. They can be arbitrarily rotated and tilted, which
complicates image recognition. \We decided to construc-
tively use these characteristics by measuring the amount of
tilting and rotation of a code tag in the image and use them
as additional input parameters. Another feature we deemed
essential is the ability to map arbitrary points in the image
plane to corresponding points in the code plane, i.e. to com-
pute the code coordinates of arbitrary image pixels, and vice
versa. In particular, this enables the conversion of the pixel
coordinates of the camera focus — which is the point the user
aims at — into corresponding code coordinates and the selec-
tion of image elements located at these code coordinates.
This coordinate mapping can also be used for removing the
perspective distortion of image parts.

These characteristics mark out the design space for the
visual codes and form the basis for the further discussion.
The code layout is pictured in Fig. 1. It consists of the
following elements: a larger and a smaller guide bar for

determining the location and orientation of the code, three
cornerstones for detecting the distortion, and the data area
with the actual code bits. The combination of larger and
smaller guide bars is beneficial for detecting even strongly
tilted codes. In the bottom of Fig. 1 the code coordinate
system is shown. Each code defines its own local coordi-
nate system with its origin at the upper left edge of the code
and one unit corresponding to a single code bit element.
Depending on the code size, the mapping between points in
the image plane and points in the code plane is more precise
than a single coordinate unit. The x-axis extends in hori-
zontal direction to the left and to the right beyond the code
itself. Correspondingly, the y-axis extends in vertical direc-
tion beyond the top and bottom edges of the code. For each
code found in a particular input image, the code recognition
algorithm establishes a bijective mapping between arbitrary
points in the code plane and corresponding points in the im-
age plane.

distortion

correction] []

feature orientation
feature

code bit elements

(capacity: 83 bit) (quide bars)

origin of code
coordinate—
system (0,0)

(0,10) —

Figure 1. The layout of the visual code (top)
and the code coordinate system (bottom).

3.1 Recognition Algorithm

The recognition algorithm performs the following main
steps on the camera image and produces a code information
object for each detected code.

e Input: Camera image
e Output: Set of code information objects, comprising

— the code value,

— the image pixel coordinates of the corner stones
and guide bars,

— the rotation angle of the code in the image,
— the amount of horizontal and vertical tilting,
— the distance of the camera to the code,

— aprojective warper object for the code, which im-
plements a planar homography (see below) used
to transform image coordinates to code coordi-
nates and vice versa,

— the width and height of the originating image,
— aflag indicating the result of error checking.

Gray scaling and adaptive thresholding. To produce
a gray scaled version of the colored input image, we use
the formula gray = (red + green)/2, instead of the ITU-
standardized formula for luminance Y = 0.2126 x red +
0.7152 x green + 0.0722 x blue. The blue color com-
ponent is omitted, since it has the lowest quality in terms
of sharpness and contrast. Our simple formula is computa-
tionally efficient and produces an adequate starting point for
thresholding. Efficiency in this step is of utmost importance
for the performance of the whole recognition algorithm, be-
cause every single image pixel has to be gray scaled.

An adaptive thresholding method is taken to produce a
black-and-white version of the gray scaled image, because
the brightness of the camera image is not constant and the
visual code may be unevenly illuminated. We slightly mod-
ified the adaptive thresholding algorithm described in [12],
where the basic idea is to use a weighted moving average of
the gray values while running through the image in a snake-
like fashion (alternating left to right and right to left scan-
line traversal). Our adaptation takes the previous scanline of
each examined scanline into account in order to avoid arti-
facts in every other line, resulting from the zigzag traversal
of the scanlines. The average ¢,(n) is updated according to

go(n) = s (n = 1)+ (1=) +

with p,, denoting the gray value of the current pixel and
s = %w the width of the moving average (w is the image
width). g, is initialized with g,(0) = 1cs, where c is the
maximum possible gray value. The color of the thresholded
pixel T'(n) is then chosen as (¢ = 15)

| 1ifp, < gsin).m
T(n) = { 0 otherwise .

Gray scaling and adaptive thresholding turned out to be
the most time consuming phase of the recognition process.
Therefore, we replaced any floating point operations in this
part by shifted integer operations, which resulted in a sig-
nificant performance improvement.

Region identification and labeling. This step consists
of finding regions of neighboring black pixels, counting

them, and assigning a number to each. The algorithm we
use is a well known two-phase method: In the first phase,
the image is traversed row by row, assigning preliminary
labels to the regions found. During this process, it may hap-
pen that two regions with different labels turn out to be in
fact the same region. In this case, the equivalence of the
two temporary labels is stored in a table. The second phase
resolves the equivalencies by merging the corresponding re-
gions and assigns a final label to each region.

Calculation of region shapes and orientations. In
order to identify candidates for orientation bars among
the regions found, the notion of second-order moments is
used [11]. From these moments, the major and minor axis
of each region is determined. The ratio of the lengths of
these axes is a good measure for the “eccentricity” of a re-
gion: perfect circles and squares have a ratio equal to one
whereas line segments have a ratio close to zero. This is
very useful to identify regions with a bar-like shape.

The second-order moments of a region consisting of the
set of pixels R and having the center of gravity (z,) are
defined as follows:

1 -2
Hzz = 7557 (JJ—I),
>

(z,y)ER
1 —\2
Hyy = ‘ | Z (y - y))
(z,y)eR
1 _ _
T > (@-2)(y-9),
(z,y)ER
_ 1 i 1
(z,y)ER (z,y)ER

From these moments, an ellipsis £ = {(z,y)|dz? + 2exy +
fy? < 1} that has the same major and minor axis as the
region can be defined by setting

<de>:;<ﬂyy *sz)

Furthermore, the orientation vector of the major axis is cal-
culated as

—sin« 1
, Wwhere o = —arctan
COS ¥ 2

2e
d—f’

Locating and evaluating the codes. Locating codes in
the image is done by looking for guide bar candidates and
by finding corresponding cornerstones. Guide bar candi-
dates are found by simply selecting those regions whose
axis ratio lies in a certain range around the expected ideal
axis ratio. The range has to be large enough to allow for

tilted codes. For each of these candidates, the size and ori-
entation of the region is used to estimate the expected posi-
tions of the second guide bar and the three cornerstones. It
is then checked whether these features are actually present
at the estimated positions. Cornerstone candidates found
are only accepted if their axis ratio is above a certain limit.
Computing the projective mapping from code coor-
dinates to image coordinates. Since the code elements
are coplanar, there exists a unique homography (projective
transformation matrix) between the code plane and the
image plane. The projective mapping can be calculated
once four corresponding points are known [1]. In our
algorithm, the correspondences are the centers of the three
cornerstones plus the center of the second guide bar:

Code element
upper left cornerstone

Image coordinate Code coordinate
(0, ¥0) (0,0)

upper right cornerstone (z1,91) (10,0)
second guide bar (z2,y2) (8,10)
lower left cornerstone (z3,y3) (0,10)

Code coordinate (u,v) is mapped to image coordinate
(z,y) with

_au+bv+10c

du+ev+ 10f
g o e _
gu+ hv+10"

T gut+hv+10°

The parameters a to h are calculated from the four refer-

ence points (x;,y;), i € {0,..., 3}, as follows:
Ary =21 — 22, Ay =y1 — Y2,
Azg =x3 — T2, Ays =y3 — Y2

Yx =0.8x9 — 0.821 + x2 — x3,
Xy =0.8yo —0.8y1 +y2 — Y3
g= YrxAys—XyAzs h = YyAz; —SzAy;
Axy Ayz—Ay1 Aza Axy Ayz—Ay1 Axa
a =11 —To+ gr d=y1 — Yo+ gy
b=1x3—x0+ ha3 e=y3—yo+ hys
C= T =%

Computing the projective mapping from image coor-
dinates to code coordinates. The inverse mapping to the
one described above is important for applications which se-
lect items visible in the image. Given a pixel coordinate, its
corresponding code coordinate can thus be obtained. An
image coordinate (z,y) is mapped to a code coordinate
(u,v) as follows:

Az + By+C o Dr+Ey+F

—10. =10—"—"——-7 - ith
“ Gt Hy+1' ° GerHy+1 "
A=e—fh D=fg—d G=dh—eg
B=ch—-b FEF=a—cg H =bg—ah
C=bf—ce F=cd—af I[I=ae—0bd

Rotation angle. The rotation angle gives the rotation of
the visual code in the image in degrees counterclockwise

(0-359°). A code that has the same orientation as the image
has rotation angle 0° (like the ones in Fig. 1). The rotation
is determined by mapping the points (0,0) and (100,0) from
the code coordinate system to the image coordinate system,
resulting in the image points (a,a,), and (b;,b,). The
rotation angle is then determined as the arc tangent of the
difference quotient of a and b.

Horizontal and vertical tilting. The term tilting denotes
the amount of inclination of the image plane relative to the
code plane. Horizontal tilting is the amount of inclination
of the image plane relative to the horizontal axis of the code.
Analogously, vertical tilting denotes the amount of inclina-
tion of the image plane relative to the vertical axis of the
code. Tilting values of 1 mean no tilting, a value less than 1
means tilting towards the left/top, and a value greater than 1
means tilting towards the right/bottom.

The tilting parameters are computed as follows: Four im-
age points with constant distance A (image height) from the
image center point in the axis directions of the code coordi-
nate system are computed. They are mapped to correspond-
ing code coordinates and their distances to the center point
are computed. The ratios of these distances determine the
tilting parameters ¢, and t,. They are independent of the
size of the code in the image. From these ratios the tilting
angles ¢t$ and ty can be determined, if a constant r is known
that depends on the camera parameters. It can be obtained
experimentally. For the Nokia 6600, e.g., this parameter has
the value » = 1.64177.

1 = image coordinates of the image center point
¢ = CodeCoordinates(7)

x = ImageCoordinates(c + (1,0)) —
y = ImageCoordinates(c + (0,1)) —
u = o/l

vo= y/lyl

Il = |CodeCoordinates(i — hu) — ¢|

r = |CodeCoordinates(i + hu) — |

t = |CodeCoordinates(i — hv) — ¢|

b = |CodeCoordinates(i + hv) — |
t. = l/r
t, = t/b
to = arctan (7’ fe = 1>

’ t: +1
ty = arctan (r ty = 1)
ty +1

Code distance. If the real code size s,¢q; (the real dis-
tance between the centers of the upper left and the upper
right cornerstones) and the camera’s focal distance f are
known, the metric distance from the camera to the untilted
visual code can be computed from s;,,q4e (the pixel dis-
tance between the centers of the upper cornerstones in the
camera image) using the pinhole model as (wimage is the
pixel width of the image)

Sreal X f

Dcamera,code = .
Simage /wi'magc

Since s,..q; and f are typically not known and we want
to use the code distance for interaction purposes rather
than measuring its exact value, we define the distance in
terms of the size of the visual code in the image. We set
deamera,code = 100 for the farthest distance at which a
code is recognized in view finder mode. For the Nokia 6600
this is the case when s;;,q4e = 25 pixels, which amounts to
15.625% of the image width. Hence the distance is com-
puted as

15.625

dcamera,code = .
Simage /wimage

Should s,..; and f be known, the metric distance can
still be computed from deamera,code- FOr the Nokia 6600,
the range of distances at which codes are recognized in view
finder mode are: 11—46 cmfor s,..q; = 69 mm, 3.5—14cm
for s,eq; = 21 mm, 2.3 — 9 cm for s,.cq; = 13.6 mm.

Reading the encoded bits. Once the positions of the
guide bars and corner stones have been identified and a suit-
able projective mapping has been computed, reading the en-
coded bits is simply a matter of testing the appropriate pix-
els of the black-and-white image.

Error detection. In order to detect pixel errors and
false orientation features, the code bits are protected by an
(83,76,3) linear code that generates an 83-bit code word
from a 76-bit value and has a Hamming distance of 3.

3.2 Phone Movement Detection

The code recognition algorithm is combined with a
phone movement detection algorithm that solely relies on
image data obtained from the camera. It does not require
any additional hardware components, such as accelerome-
ters. It is integrated with the visual code recognition algo-
rithm in such a way that the latter only examines images
for visual codes when the detected phone movement is be-
low a certain threshold. If the phone is quickly moved, it is
very unlikely that the user aims at a specific code. Trying
to locate codes in the image in such a case would not be
sensible.

The algorithm provides the relative x, y, and rotational
motion of the phone, representing three degrees of freedom.

MeteoSchweiz

BEREE e aeae P i3 [
f H +5°77
} Edinburge 1005
— 1035 %

o

| e

"—- 1030 — Dubline

Montag Dienstag ~ Mittwoch Donnerstag Freitag

=

R T Y
2 @ 2D ¥ H:
e - —

Alpennordseite

0
O

S Lo TS T

‘

Alpensidseite

Sonne und Mond

Aufgang “Héchststand ~Untergang
Sonne 7.20 1239 1759
1425 2029

ir Sonntag, 22. Februar 2004, in Zrich

eebericht

___________________ ~Tal __ Berg
-m_ | Hoch-Ybrig 80cm 150cm

1| Klosters 70cm 230cm

1| Le Noirmont 5cm 50cm

1~ | Lenzerheide 60cm 200cm
1| LesDiablerets 80cm __ 300cm
| Obertoggenburg 60cm _150cm

[Engelberg 20 cm 150 Saas Fee 90cm 3

[Fi " Schuls __85cm _220em
[" StMoritz _ 70cm _ 250cm
| Grindeiwald 60 cm 150cm | Zermatt 50cm 2/0cm

Figure 2. Example of a weather forecast newspaper page containing visual codes. The 17 regions on
the map and all entries in the table are individually mapped to different URLs and thus hyperlinked

to specific online content.

With the movement detection, the camera-phone thus be-
comes an optical mouse. The algorithm works as follows:
Successive images from the camera are dispatched to the
view finder to render them on the device display. Every n-
th frame (depending on the performance of the phone) is
used for phone movement detection. The image is divided
in 16 x 16 pixel blocks. For each block, 16 pixels are sam-
pled (out of the 256 available pixels in each block) and their
average gray value is computed. Then, the blocks of the
current image are compared to the blocks of the previously
sampled frame. The block arrays are displaced against each
other in x and y direction using values for Az and Ay from
{-3,...,3}. The difference values are computed and nor-
malized with the number of compared blocks (which de-
pends on the amount of displacement) and the minimal dif-
ference is chosen as the most likely amount of (Ax, Ay)
movement relative to the image before. Rotational motion
is computed in a similar fashion, but rotating the block im-
ages against each other. The current block image is rotated
by A« values between —24° and 24°, with a step width
of 6°. The rotational coordinate mappings are precomputed
and stored in tables for performance reasons. Again, the dif-
ferences of the resulting block images are compared to the
previous block image and the minimal difference is chosen
as the most likely amount of relative rotation.

This simple algorithm works quite reliably and detects
the relative motion even if the sampled backgrounds only
have a limited number of features, like a wall or a floor.
Because only a few pixels are sampled, the algorithm per-
forms quickly and leaves enough time for doing the actual

code recognition. On a Nokia 6600, it produces about five
(x,y,rotation) triples per second.

The code recognition and motion detection algorithms
were implemented in C++ for Symbian OS (v6.1 and v7.0s).
Replacing floating point operations by shifted integer op-
erations reduced the time consumption of the thresholding
phase from 2000 ms to less than 400 ms on a Nokia 7650 for
a 640x480 pixel camera image. The total execution time of
the recognition algorithm on the same device amounts to
about 700 ms if less than 5 codes are present, and up to
1500 ms if 30 codes are present — which is rather uncom-
mon in typical applications. The picture-taking process for
640x480 pixel images takes about 850 ms, resulting in an
overall average delay of about 2000 ms. Low resolution
160x120 pixel images that are generated during the view
finding process are recognized much faster, i.e. in close real
time as the device moves relative to the detected code(s).

4 Item Selection using Relative Focus Posi-
tion, Rotation Angle, and Tilting Determi-
nation

In this section we show how the additional input para-
meters that the code recognition algorithm provides can be
combined to realize novel interaction patterns.

When aiming the phone camera at the target item, the
image of this target item appears on the display. It is con-
tinuously updated as the phone is moved. The center of the
display contains a crosshair to facilitate precise selection,

| Sehnesbericht

Adriadea
dbwls

u. I]riantatiun

Figure 3. Selection from a table: the code coordinates determine the table row, the camera rotation
specifies the concrete information aspect to display.

as can be seen in the left part of Fig. 3. To further facilitate
item selection, the display contains a magnified portion of
the area around the display center. The level of magnifica-
tion can be adjusted with the joystick. The mapping from
image coordinate system to code coordinate system enables
the precise selection of items in the image, requiring just a
single code element for multiple items. Image items may be
menu entries, arbitrarily shaped regions in a picture, or the
cells of a table.

Further input parameters comprise the rotation of the
code tag in the image and the amount of tilting of the im-
age plane relative to the code plane. The tilting parameter
identifies the viewing position (from left, from right, from
top, from bottom). Both parameters can be used to associate
multiple information aspects with a single point in the code
coordinate system.

For an effective interaction, the user has to be provided
with indications about the possible interactions. This can be
achieved by superimposing visual cues on the display image
that indicate at what rotation angles and viewing positions
what kind of information is to be expected. We currently
investigate different kinds of symbols that guide the user in
his or her interactions with visual codes. An indication of
user interaction normally consists of a symbol denoting the
kinds of physical interaction — like movement, rotation, or
tilting — and a set of symbols for the associated actions that
are triggered as a consequence of the interaction. The latter
comprise symbols for typical functions of a mobile phone,
such as placing a phone call or starting the WAP browser.
Another possibility is to print interaction cues next to the
code. This was realized with a visual code dialer applica-
tion. The printed code contains a phone number and is sur-
rounded by words indicating the function that is triggered
when the phone is tilted in that direction: Just below the

code it says “Call”, to the left it says “SMS”, and to the
right the word “Store” is printed. Scanning from a central
position immediately places a call, scanning from the left
opens the phone’s SMS editor with the number already en-
tered into the appropriate field, and scanning from the right
looks up the contact information on a server and stores it in
the phone.

In newspapers, online background information to arti-
cles, advertisements, or information which quickly gets ob-
solete, like weather forecasts or stock quotes, can be linked
via visual codes. Fig. 2 shows a cut-out of a newspaper
page containing a geographic map with the current weather
data and a table containing the snow conditions for various
regions. The dotted lines drawn on the newspaper page in-
dicate sensitive areas that are individually linked to online
content. Such a mapping can be easily created with suitable
content creation software. As a prototype, we developed a
mapping tool for drawing the areas in the image and spec-
ifying the associated URL for each region. The tool com-
putes the coordinates of these areas in the coordinate sys-
tems of the codes present in the image, and stores this data
as an XML file. Multiple URLSs can be specified for each re-
gion by taking into account rotation and tilting. As shown in
Fig. 2, asingle code suffices to select any one of the multiple
areas and table entries, respectively. By rotating the mobile
device, different aspects of the online information can be
chosen: In the example, vertical orientation shows the snow
depth for the selected area, while a slight rotation shows the
current temperature. Other conceivable operations include
showing the currently open skiing trails, calling the local
tourist information office, and booking rail and lift tickets.
The current weather data is retrieved from a server and the
display of the phone is updated in real time as the crosshair
is moved across the table entries and geographic regions and

Aiming at a visual
code shown on
the wall display

Content related to
menu item appears
on phone screen

Selecting a menu
item (uses code
coordinate system)

Figure 4. Phone movement detection and item selection for interaction with a projected wall display.

as the phone is rotated clockwise and counterclockwise. A
video that demonstrates this type of interaction is available
at visualcodes.sourceforge.net.

The ability to link multiple items to a single code based
on their code coordinates and to associate multiple infor-
mation aspects to a single point depending on rotation and
tilting has a number of usability advantages. In the exam-
ple above, it would of course be possible to present a table
of the current snow conditions of all regions on the map to
the user once the code has been recognized. But it is diffi-
cult to effectively show a table containing all the attributes
on the small amount of available display space. It also re-
quires the user to scroll through the — possibly lengthy —
table and locate the data of interest in a second step. The
presented approach avoids both of these problems. It gives
direct and immediate feedback to the user and presents ex-
actly the scanned item and selected information aspect.

5 Visual Codes and Large-Scale Displays

A compelling class of applications for visual codes, the
code coordinate system feature, and the relative movement
detection involves the interaction with large-scale wall dis-
plays, as they are increasingly found in public or semi-
public places. Today’s wall displays are mostly limited to
the passive reception of information. At public places, key-
boards and other input devices are often not installed, be-
cause of potential problems with vandalism. If passers-by
carry their own interaction devices in the form of a camera-
phone, this problem is eliminated. Example locations for
interactive public wall displays are train stations, airports,
bus stops, shopping malls, or museums.

To investigate the interaction possibilities, we set up a

projected display that contains a 3D model of a number of
visual codes arranged on an invisible sphere as shown in
Fig. 4. The model is implemented using Java 3D [5]. The
screen model is controlled by the motion of the camera-
phone. The phone and the screen are connected via Blue-
tooth. Motion updates are sent as (X,y,rotation) triples to the
active display. Phone movement in horizontal direction re-
sults in a rotation of the sphere around the y-axis, vertical
motion results in a rotation around the x-axis, and rotating
the phone results in sphere rotation around the z-axis. Be-
cause of the relatively low update rate, the movement of
the sphere is interpolated between motion updates from the
phone, in order to obtain a smooth visually pleasing move-
ment. The updates are frequent enough to be able to effec-
tively control the display contents.

In addition to rotating the sphere containing the codes,
aiming at a visual code shown on the wall display brings
up an associated menu. Individual menu items can now be
selected, whereupon the related content is transferred to the
phone and shown on the device screen. In the demo ap-
plication, the visual codes are permanently visible. They
could also be superimposed over the large-scale display im-
age just before scanning them. This could be synchronized
by the Bluetooth connection between the phone and the dis-
play.

The motion detection was informally tested by a num-
ber of subjects and worked very well. We provided the test
subjects with a number of tasks, such as rotating a certain
menu to the foreground and selecting a specific menu item.
After a short period of practice, the subjects quickly became
familiar with this type of interaction. This application was
shown as a demonstration at [8].

We are currently investigating the idea of a “Photo Wall”,

which uses a large-scale display to organize photos taken
with the camera-phone, because this is difficult to do on the
device itself. The large-scale display is also used as an ac-
cess point to a photo printing service or one’s online photo
collection. The interaction mechanisms described above are
investigated to perform interaction tasks such as navigating
through, selecting, deleting, rotating, and manipulating the
photos.

6 Conclusion

In this paper we have presented extended features of a
visual code system for camera-equipped mobile phones. It
performs well on resource constrained phone devices with
low to medium resolution cameras. Besides detecting vi-
sual codes in the user’s vicinity and thus linking physical
objects to online content, it has a number of supplementary
features. It provides the code coordinates, the code rota-
tion angle, and the tilting of the image plane relative to the
code plane as additional input parameters. These parame-
ters can be determined without knowing the camera para-
meters. Phone movement detection is integrated with the
visual code system. It provides (x,y,rotation) motion para-
meters and turns the mobile phone into an optical mouse.

We have shown how these input parameters can be used
and combined to provide novel interaction patterns with ob-
jects in the user’s local environment. The user can pick up
multiple information items which are located at known code
coordinate positions relative to a single code tag, by aim-
ing the camera focus at the appropriate location. It does
not matter where the item appears in the camera image.
By slightly rotating or tilting the phone, the user has the
ability to select between different information aspects. We
have also shown how phone movement detection and visual
code recognition can be combined to interact with individ-
ual items on a large-scale wall display.

In the future, camera-phones might play a prominent role
as ubiquitous personal image recognition devices and for
local interaction with physical objects that their users en-
counter in everyday settings. New services can be associ-
ated with printed documents, wall displays, TV programs,
or general consumer products when they are made interac-
tive by techniques as described in this paper.

Appendix

We have explored the integrated phone movement de-
tection features in a number of ways. As the cam-
era detects phone movement relative to the background,
the content of the phone display is continuously updated.
No visual code needs to be present in the view of the
camera. With this technique we have built a camera-
controlled wireframe model of a house, a pong game whose

slider can be controlled by tilting the wrist left and right,
and an application showing a large subway map that is
scrolled in response to phone movement. These applica-
tions are shown in Fig. 5 and are available for download at
visualcodes.sourceforge.net.

Tram Map_

Back

Options Back|

Figure 5. Wireframe model (left), pong game
(middle), and subway map (right), all con-
trolled by the visual detection of phone move-
ment.

References

[1] Paul S. Heckbert: Fundamentals of Texture Mapping
and Image Warping. Master’s Thesis, Department of
Electrical Engineering and Computer Science, Univer-
sity of California, Berkeley, 1989.

[2] Diego Lo6pez de Ipifia, Paulo R. S. Mendonga, and
Andy Hopper: TRIP: a Low-Cost Vision-Based Loca-
tion System for Ubiquitous Computing. Personal and
Ubiquitous Computing Journal, Springer, vol. 6, no. 3,
pp. 206-219, May 2002.

[3] International Organization for Standardization: Infor-
mation Technology — International Symbology Speci-
fication — Data Matrix. ISO/IEC 16022, 2000.

[4] International Organization for Standardization: In-
formation Technology — Automatic Identification and
Data Capture Techniques — Bar Code Symbology —
QR Code. ISO/IEC 18004, 2000.

[5] Java 3D API. Available at:
java.sun.com/products/java-media/3D.

[6] Jun Rekimoto and Yuji Ayatsuka: CyberCode: De-
signing Augmented Reality Environments with Visual
Tags. Proceedings of DARE, Designing Augmented
Reality Environments, 2000.

[7] Michael Rohs and Beat Gfeller: Using Camera-
Equipped Mobile Phones for Interacting with Real-
World Objects. In: Alois Ferscha, Horst Hoertner,

(8]

(9]

Gabriele Kotsis (Eds.): Advances in Pervasive Com-
puting, Austrian Computer Society (OCG), pp. 265-
271, Vienna, Austria, April 2004.

Michael Rohs and Beat Gfeller: Visual
Code Recognition for Camera-Equipped Mo-
bile Phones. Pervasive 2004 Demonstrations,
D06. Demonstration description available at:
www.pervasive2004.org/program_demonstrations.php

Itiro Siio, Toshiyuki Masui, and Kentaro Fukuchi:
Real-world Interaction using the FieldMouse. In: Pro-
ceedings of UIST’99, pp.113-119, 1999.

[10] Symbian OS — The Mobile Operating System. Sym-

bian Ltd., London, UK. Web Site: www.symbian.com.

[11] R. C. Veltkamp and M. Hagedoorn: State of the Art

in Shape Matching. Principles of Visual Information
Retrieval, Michael S. Lew (Ed.), Series in Advances
in Pattern Recognition, Springer, 2001.

[12] Pierre D. Wellner: Adaptive Thresholding for the Dig-

italDesk. Technical Report EPC-93-110, Rank Xerox
Research Centre, Cambridge, UK, 1993.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

