Introduction to Semantic Web
Ontology Languages

Grigoris Antoniou', Enrico Franconi?, and Frank van Harmelen®

1 ICS-FORTH, Greece
antoniou@icsforth.gr
2 Faculty of Computer Science, Free University of Bozen-Bolzano, Italy
franconi@inf.unibz.it
3 Department of Computer Science, Vrije Universiteti Amsterdam, Netherlands
frankh@cs.vu.nl

Abstract. The aim of this chapter is to give a general introduction
to some of the ontology languages that play a prominent role on the
Semantic Web, and to discuss the formal foundations of these languages.
Web ontology languages will be the main carriers of the information that
we will want to share and integrate.

1 Organisation of This Chapter

In section 2 we discuss general issues and requirements for Web ontology lan-
guages, including the semantics issues. We then describe briefly the most impor-
tant ontology languages in the design of the Semantic Web, namely RDF Schema
in section 3 and OWL in section 4. Section 5 contains a brief comparison with
other ontology languages. A brief introduction to description logics and their
relation to the OWL family of web ontology languages is included. The chapter
is concluded by a discussion on the importance of having correct and complete
inference engines for web ontology languages.

2 On Web Ontology Languages

Even though ontologies have a long history in Artificial Intelligence (AI), the
meaning of this concept still generates a lot of controversy in discussions, both
within and outside of AI. We follow the classical Al definition: an ontology is
a formal specification of a conceptualisation, that is, an abstract and simplified
view of the world that we wish to represent, described in a language that is
equipped with a formal semantics. In knowledge representation, an ontology is a
description of the concepts and relationships in an application domain. Depend-
ing on the users of this ontology, such a description must be understandable by
humans and/or by software agents. In many other field — such as in informa-
tion systems and databases, and in software engineering — an ontology would
be called a conceptual schema. An ontology is formal, since its understanding

N. Eisinger and J. Maluszynski (Eds.): REWERSE 2005, LNCS 3564, pp. 1-21, 2005.
© Springer-Verlag Berlin Heidelberg 2005

2 G. Antoniou, E. Franconi, and F. van Harmelen

should be non ambiguous, both from the syntactic and the semantic point of
views.

Researchers in AT were the first to develop ontologies with the purpose of fa-
cilitating automated knowledge sharing. Since the beginning of the 90’s, ontolo-
gies have become a popular research topic, and several Al research communities,
including knowledge engineering, knowledge acquisition, natural language pro-
cessing, and knowledge representation, have investigated them. More recently,
the notion of an ontology is becoming widespread in fields such as intelligent
information integration, cooperative information systems, information retrieval,
digital libraries, e-commerce, and knowledge management. Ontologies are widely
regarded as one of the foundational technologies for the Semantic Web: when
annotating web documents with machine-interpretable information concerning
their content, the meaning of the terms used in such an annotation should be
fixed in a (shared) ontology. Research in the Semantic Web has led to the stan-
dardisation of specific web ontology languages.

An ontology language is a mean to specify at an abstract level — that is, at
a conceptual level — what is necessarily true in the domain of interest. More
precisely, we can say that an ontology language should be able to express con-
straints, which declare what should necessarily hold in any possible concrete
instantiation of the domain. In the following, we will introduce various ways
to impose constraints over domains, by means of statements expressed is some
suitable ontology language.

2.1 What Are Ontology Languages

How do we describe a particular domain? Let us consider the domain of courses
and lecturers at Griffith University. First we have to specify the “things” we
want to talk about. Here we will make a first, fundamental distinction. On one
hand we want to talk about particular lecturers, such as David Billington, and
particular courses, such as Discrete Mathematics. But we also want to talk about
courses, first year courses, lecturers, professors etc. What is the difference? In
the first case we talk about individual objects (resources), in the second we talk
about classes (also called concepts) which define types of objects.

A class can be thought of as a set of elements, called the extension of the
class. Individual objects that belong to a class are referred to as instances of
that class.

An important use of classes is to impose restrictions on what can be stated. In
programming languages, typing is used to prevent nonsense from being written
(such as A+ 1, where A is an array; we lay down that the arguments of + must
be numbers). The same is needed in RDF. After all, we would like to disallow
statements such as:

— Discrete Mathematics is taught by Concrete Mathematics.
— Room MZH5760 is taught by David Billington.

The first statement is non-sensical because we want courses to be taught by
lecturers only. This imposes a restriction on the values of the property “is taught
by”. In mathematical terms, we restrict the range of the property.

Introduction to Semantic Web Ontology Languages 3

The second statement is non-sensical because only courses can be taught.
This imposes a restriction on the objects to which the property can be applied.
In mathematical terms, we restrict the domain of the property.

Class Hierarchies. Once we have classes we would also like to establish rela-
tionships between them. For example, suppose that we have classes for

— staff members

— academic staff members

— professors

— associate professors

— assistant professors

— administrative staff members

— technical support staff members.

These classes are not unrelated to each other. For example, every professor is
an academic staff member. We say that professor is a subclass of academic staff
member, or equivalently, that academic staff member is a superclass of professor.
The subclass relationship is also called subsumption.

The subclass relationship defines a hierarchy of classes. In general, A is a
subclass of B if every instance of A is also an instance of B.

A hierarchical organisation of classes has a very important practical signifi-
cance, which we outline now. Consider the range restriction

Courses must be taught by academic staff members only.

Suppose Michael Maher was defined as a professor. Then, according to the
restriction above, he is not allowed to teach courses. The reason is that there
is no statement which specifies that Michael Maher is also an academic staff
member. Obviously it would be highly counterintuitive to overcome this difficulty
by adding that statement to our description. Instead we would like Michael
Maher to inherit the ability to teach from the class of academic staff members.

Property Hierarchies. We saw that hierarchical relationships between classes
can be defined. The same can be done for properties. For example, “is taught by”
is a subproperty of “involves”. If a course c is taught by an academic staff member
a, then ¢ also involves a. The converse is not necessarily true. For example, a
may be the convenor of the course, or a tutor who marks student homework,
but does not teach c.

In general, P is a subproperty of @ if two objects are related by) whenever
they are related by P.

Summary. As a consequence of the discussion above, (Web) ontology languages
consist of:

4 G. Antoniou, E. Franconi, and F. van Harmelen

— the important concepts (classes) of a domain

— important relationships between these concepts. These can be hierarchical
(subclass relationships), other predefined relationships contained in the on-
tology language, or user defined (properties).

— further constraints on what can be expressed (e.g. domain and range restric-
tions, cardinality constraints etc.).

2.2 Formal Semantics

Ontology languages allow users to write explicit, formal conceptualisations of
domains models. The main requirements are:

1. a well-defined syntax

2. a well-defined semantics
3. efficient reasoning support
4. sufficient expressive power
5. convenience of expression.

The importance of a well-defined syntax is clear, and known from the area
of programming languages; it is a necessary condition for machine-processing of
information. Web ontology languages have a syntax based on XML, though they
may also have other kinds of syntaxes.

Of course it is questionable whether the XML-based syntax is very user-
friendly, there are alternatives better suitable for humans. However this drawback
is not very significant, because ultimately users will be developing their ontologies
using authoring tools, or more generally ontology development tools, instead of
writing them directly in the Web ontology language.

Formal semantics describes precisely the meaning of knowledge. “Precisely”
here means that the semantics does not refer to subjective intuitions, nor is
it open to different interpretations by different persons (or machines). The im-
portance of formal semantics is well-established in the domain of mathematical
logic. In the context of ontology languages, the semantics enforces the meaning
of the expressed knowledge as a set of constraints over the domain. Any pos-
sible instantiation of the domain should necessarily conform to the constraints
expressed by the ontology.

Given a statement in an ontology, the role of the semantics is to devise pre-
cisely which are the models of the statement, i.e., all the possible instantiations
of the domain that are compatible with the statement. We say that a statement
is true in an instantiation of the domain if this instantiation is compatible with
the statement; the instantiation of the domain in which a statement is true is of
course a model of the statement, and viceversa. So, an ontology will itself devise
a set of models, which is the intersection among all the models of each statement
in the ontology. The models of an ontology represent the only possible realisable
situations.

For example, if an ontology states that professor is a subclass of academic
staff member (i.e., in any possible situation, each professor is also an academic
staff member), and if it is known that Michael Maher is a professor (i.e., Michael

Introduction to Semantic Web Ontology Languages 5

Maher is an instance of the professor class), then in any possible situation it
is necessarily true that Michael Maher is an academic staff member, since the
situation in which he would not be an academic staff member is incompatible
with the constraints expressed in the ontology.

If we understand that an ontology language talks basically about classes,
properties and objects of a domain, then a model (i.e., a specific instantiation
of the domain) is nothing else than the precise characterisation for each objects
of the classes it is instance of, and of the properties it participates to. So, in
the above example, in any model of the ontology Michael Maher should be an
instance of the academic staff member class.

2.3 Reasoning

The fact that the formal semantics associates to an ontology a set of models,
allows us to define the notion of deduction. Given an ontology, we say that an
additional statement can be deduced from the ontology if it is true in all the
models of the ontology. This definition of deduction comes from logic and it is
very general but also very strict: if a statement is not true in all the models of an
ontology, then it is not a valid deduction from it. The process of deriving valid
deductions from an ontology is called reasoning.

If we consider the typical statements of web ontology languages, the following
deductions (“inferences”) can be introduced:

— Class membership. We want to deduce whether an object is instance of a
class. For example, if in the ontology it is stated that Michael Maher is an
instance of a class Professor, and that Professor is a subclass of the Academic
Staff Member class, then we can infer that Michael Maher is an instance of
Academic Staff Member, because this latter statement is true in all the models
of the ontology, as we have explained above.

— Classification: We want to deduce all the subclass relationships between the
existing classes in the ontology. For example, if in the ontology it is stated
that the class Teaching Assistant is a subclass of the Professor class, and
that Professor is a subclass of the Academic Staff Member class, then we can
infer that Teaching Assistant is a subclass of Academic Staff Member. This
deduction holds since in any model of the ontology the extension of Teaching
Assistant is a subset of the extension of Professor, and the extension of
Professor is a subset of the extension of Academic Staff Member. Therefore,
in any model the extension of Teaching Assistant is a subset of the extension
of Academic Staff Member, and in any model the statement that Teaching
Assistant is a subclass of Academic Staff Member is true.

— Fquivalence of classes. We want to deduce whether two classes are equiva-
lent, i.e., they have the same extension. For example, if class Professor is
equivalent to class Lecturer, and class Lecturer is equivalent to class Teacher,
then Professor is equivalent to Teacher, too.

— Consistency of a class. We want to check that some class does not have
necessarily an empty extension. For example, given an ontology in which
the class Working-Student is defined to be a subclass of two disjoint classes

6 G. Antoniou, E. Franconi, and F. van Harmelen

Student and Professor, it can be inferred that the class Working-Student is
inconsistent, since in every model of the ontology its extension is empty. In
fact, any instance of Working-Student would violate the constraints imposed
by the ontology (namely, that there is no common instance between the two
classes). In this case, it would be possible to remove the inconsistency for
the Working-Student class by removing from the ontology the disjointness
statement between Student and Professor.

— Consistency of the ontology. We want to check that the ontology admits at
least a model, i.e., there is at least a possibility to have an instantiation
of the domain compatible with the ontology. For example, suppose we have
declared in the ontology

1. that John is an instance of both the class Student and the class Professor,
and
2. that Student and Professor are two disjoint classes.

Then we have an inconsistency because the two constraints can not be satis-
fied simultaneously. Statement 2 says that the extensions of the two classes
can not have any element in common, since they are disjoint, but statement 1
says that John is an instance of both classes. This clearly indicates that there
is an error in the ontology, since it does not represent any possible situation.

In designing an ontology language one should be aware of the tradeoff between
expressive power and efficiency of reasoning. Generally speaking, the richer the
language is, the more inefficient the reasoning support becomes, often cross-
ing the border of non-computability. Thus we need a compromise, a language
that can be supported by reasonably efficient reasoners, while being sufficiently
expressive to express large classes of ontologies and knowledge.

Various methodologies are being developed on how to build a “good” on-
tology. These approaches may differ in many aspects, e.g., in the underlying
representation formalism, and whether they are equipped with an explicit no-
tion of quality, but most of them rely on reasoning mechanisms to support the
design of the ontology. Semantics is a prerequisite for reasoning support: deriva-
tions such as the above can be made mechanically, instead of being made by
hand. Logic-based reasoning is employed by the tools to verify the specification,
infer implicit statements and facts, and manifest any inconsistencies. Reasoning
support is important because it allows one to

— check the consistency of the ontology and the knowledge;

— check for unintended relationships between classes;

— derive explicitly all the statements that are true in the ontology, to better
understand its properties;

— reduce the redundancy of an ontology, discover equivalent descriptions, reuse
concept descriptions, and refine the definitions;

— automatically classify instances in classes.

In addition to the so called standard reasoning support listed above, non-
standard inference for ontologies are of great practical impact in ontology-based

Introduction to Semantic Web Ontology Languages 7

applications. In particular, tools for building and maintaining large knowledge
bases also requires system services that cannot be provided by the standard rea-
soning techniques. These non-standard reasoning problems encompass matching
and unification of concepts (useful, e.g., for browsing ontologies and detecting
redundancies), least-common-subsumer and most-specific-concept computation
(useful to support the definition of new concepts), and approximation of con-
cepts (useful for approximate reasoning and for a comprehensible presentation
of ontologies to non-expert users).

Automated reasoning support allows one to check many more cases than
what can be done manually. Checks like the above are valuable for

— designing large ontologies, where multiple authors are involved;
— integrating and sharing ontologies from various sources.

Formal semantics and reasoning support is usually provided by mapping an
ontology language to a known logical formalism, and by using automated rea-
soners that already exist for those formalisms.

3 The Key Semantic Web Ontology Languages

We now turn to a discussion of specific ontology languages that are based on the
abstract view from the previous version: RDF Schema and OWL. Quite a few
other sources already exist that give general introductions to these languages.
Some parts of the RDF and OWL specifications are intended as such introduc-
tions (in particular [13], [9] and [10]), and also didactic material such as [12] and
[11].

Our presentation is structured along the so-called layering of OWL: OWL
Lite, OWL DL and OWL Full. This layering is motivated by different require-
ments that different users have for a Web ontology language:

— RDF(S) is intended for those users primarily needing a classification hierar-
chy with typing of properties and meta-modelling facilities;

— OWL Lite adds the possibility to express definitions and axioms, together
with a limited use of properties to define classes;

— OWL DL supports those users who want the maximum expressiveness while
retaining good computational properties;

— OWL Full is meant for users who want maximum expressiveness with no
computational guarantees.

Before discussing the language primitives of OWL Lite, we first discuss language
elements from RDF and RDF Schema (RDF(S) for short). With the only purpose
to simplify the presentation in this tutorial by obtaining a strict layering between
RDF(S) and OWL Lite, we will restrict our discussion of RDF(S) to the case
where the vocabulary is strictly partitioned, the meta-modelling and reification
facilities are forbidden, as described in [12], also called “type separation” in [9]:

8 G. Antoniou, E. Franconi, and F. van Harmelen

“Any resource is allowed to be only a class, a data type, a data type
property, an object property, an individual, a data value, or part of the
built-in vocabulary, and not more than one of these. This means that,
for example, a class cannot at the same time be an individual, [...]”

Under this restriction, we have the following strict language inclusion relation-
ship:
RDF(S) ¢ OWL Lite ¢ OWL DL,

where C stands for both syntactic and semantic language inclusion, in other
words: every syntactically correct RDF(S) statement is also a correct OWL Lite
statement, and every model of a RDF(S) ontology is also a model for the same
ontology expressed in OWL Lite (and similarly for the other case). A similar
but less strong restriction was proposed with RDFS(FA) [7], which does allow
a class to be an instance of another class, as long as this is done in a stratified
fashion. When dropping the restriction of a partitioned or stratified vocabulary
for RDF(S), the first inclusion relationship no longer holds. In that case, RDF(S)
is only a sublanguage of OWL Full. However, note that even in the general case
when the inclusion does not hold RDF(S) and OWL Lite/DL can still easily
inter-operate. Also note that the inclusion between OWL DL and OWL Full
does not hold, intuitively due to the lack of reification in OWL DL and OWL
Lite.

Before we discuss the different language primitives that we encounter along
this set of inclusions, we first list some of our notational conventions.

We use the normative abstract syntax for OWL as defined in [15]. While this
syntax in only meant for OWL itself, we use the same syntax for introducing
RDF(S) in order to clarify the relation between the languages!. We will use
symbols ¢; for classes, e; for objects, p; for properties between objects, and o;
for ontologies. Whenever useful, we will prefix classes and instances with pseudo-
namespaces to indicate the ontology in which these symbols occur, e.g. 01 e; and
09 e1 are two different instances, the first occurring in ontology o1, the second in
ontology 0.

Note that the XML-based syntax is far better known, but arguably not as
readable. In fact, the XML-syntax is clearly geared towards machine processing,
while the abstract syntax is tailored to human reading, thus our choice in this
section. The reader should keep in mind that the characteristics of the ontology
languages are independent of the syntax used.

3.1 RDF Schema

The most elementary building block of RDF(S) is a class, which defines a group
of individuals that belong together because they share some properties. The
following states that an instance e belongs to a class c:

Individual(e type(c)) (“e is of type ¢”).

! Note that the semantics of the same constructs in RDF(S) and OWL can differ.

Introduction to Semantic Web Ontology Languages 9

The second elementary statement of RDF(S) is the subsumption relation be-
tween classes: subClass0f:

subClassO0f(c; c;)

In RDF, instances are related to other instances through properties:

Individual(e; value(p e;j))

Properties are characterised by their domain and range:

ObjectProperty(p domain(c;)range(c;))

Finally, just as with classes, properties are organised in a subsumption hierarchy:

SubProperty0f(o; : p; 02 : pj)

RDF and RDFS allow the representation of some ontological knowledge. The

main modelling primitives of RDF/RDFS concern the organisation of vocabu-
laries in typed hierarchies: subclass and subproperty relationships, domain and
range restrictions, and instances of classes. However a number of other features
are missing. Here we list a few:

Local scope of properties: rdfs:domain and fs:range define a unique do-
main/range of a property for all classes. Thus in RDF Schema we cannot
declare domain/range restrictions that apply to some classes only. For ex-
ample, for the property “father of”, the father of elephants are elephants,
while the fathers of mice are mice.

Disjointness of classes: Sometimes we wish to say that classes are disjoint.
For example, male and female are disjoint. But in RDF Schema we can only
state subclass relationships, e.g. female is a subclass of person.

Boolean combinations of classes: Sometimes we wish to build new classes
by combining other classes using union, intersection and complement. For
example, we may wish to define the class person to be the disjoint union of
the classes male and female. RDF Schema does not allow such definitions.
Cardinality restrictions: Sometimes we wish to place restrictions on how
many distinct values a property may take. For example, we would like to say
that a car has at most four wheels. Again such restrictions are impossible
to express in RDF Schema. Note that min cardinality restrictions can be
expressed for individuals in RDF(S) by making use of the b-nodes.

Special characteristics of properties: Sometimes it is useful to say that a
property is transitive (like “greater than”), unique (like “has mother”), or
the inverse of another property (like “eats” and “is eaten by”).

Summary of Basic Features of RDF Schema.

Classes and their instances

Binary properties between objects

Organisation of classes and properties in hierarchies
Types for properties: domain and range restrictions

10 G. Antoniou, E. Franconi, and F. van Harmelen

4 Web Ontology Language OWL

4.1 OWL Lite

One of the significant limitations of RDF Schema is the inability to make equality
claims between individuals. Such equality claims are possible in OWL Lite:

SameIndividual(e; e;j)

Besides equality between instances, OWL Lite also introduces constructions to
state equality between classes and between properties. Although such equalities
could already be expressed in an indirect way in RDF(S) (e.g., through a pair
of mutual Subclassof or SubPropertyOf statements), this can be done directly
in OWL Lite:

EquivalentClasses(c cj)

EquivalentProperties(p; p;)

Just as importantly, as making positive claims about equality or subsumption
relationships, is stating negative information about inequalities. A significant
limitation of RDF(S)? is the inability to state such inequalities. Since OWL
does not make the unique name assumption, two instances e; and e; are not
automatically regarded as different. Such an inequality must be explicitly stated,
as:

DifferentIndividuals(e; e;)

Because inequality between individuals is an often occurring and important
statement (in many ontologies, all differently named individuals are assumed
to be different, i.e. they embrace the unique name assumption), OWL Lite pro-
vides an abbreviated form:

DifferentIndividuals(e; ... e4)

abbreviates the six DifferentIndividuals statements that would have been re-
quired for this.

Whereas the above constructions are aimed at instances and classes, OWL
Lite also has constructs specifically aimed at properties. An often occurring
phenomenon is that a property can be modelled in two directions. Examples
are ownerOf vs. ownedBy, contains vs. isContainedIn, childOf vs. parentOf and
countless others. The relationship between such pairs of properties is established
by stating

ObjectProperty(p; inverse0f(p;))

Other vocabulary in OWL Lite (TransitiveProperty and SymmetricProperty are
modifying a single property, rather then establishing a relation between two
properties:

2 But motivated by a deliberate design decision concerning the computational and
conceptual complexity of the language.

Introduction to Semantic Web Ontology Languages 11

ObjectProperty(o; : p; Transitive)
ObjectProperty(o; : p; Symmetric)

The main limitation of RDF(S) to represent knowledge in terms of concepts and
their properties, is its inability to use properties in the local context of a class.
As we have already noted, a property has a unique definition for its domain
and for its range, and moreover the participation constraints of the instances of
the domain and range classes to the property are not specifiable in RDF(S). So,
in RDF(S) it is impossible to state whether a property is optional or required
for the instances of the class (in other words: should it have at least one value
or not), and whether it is single- or multi-valued (in other words: is it allowed
to have more than one value or not). Technically, these restrictions constitute
0/1-cardinality constraints on the property. The case where a property is al-
lowed to have at most one value for a given instance (i.e. a max-cardinality of 1)
has a special name: FunctionalProperty. The case where the value of a property
uniquely identifies the instance of which it is a value (i.e. the inverse property
has a max-cardinality of 1) is called InverseFunctionalProperty. These two con-
structions allow for some interesting derivations under the OWL semantics: If
an ontology models that any object can only have a single “age”:

(ObjectProperty age Functional)
then different age-values for two instances e; and e; allow us to infer that
DifferentIndividuals(e; e;)

(if two objects e; and e; have a different age, they must be different objects).
Similarly, if an ontology states that social security numbers uniquely identify
individuals, i.e.

ObjectProperty(hasSSN InverseFunctional)
then the two facts

Individual(e; value(hasSSN 12345))
Individual(e; value(hasSSN 12345))

sanction the derivation of the fact
SameIndividuals(e; ;)

Although RDF(S) already allows to state domain and range restrictions, these
are very limited. OWL Lite allows more refined version of these, local to the
definition of a class:

Class(c; restriction(p; allValuesFrom(c;)))

says that all p;-values (if any) for each member of ¢; must be members of c;.
This differs from the RDF(S) range restriction

ObjectProperty(p range(c;))

12 G. Antoniou, E. Franconi, and F. van Harmelen

which says that all p;-values must be members of c;, irrespective of whether they
are members of ¢; or not. This allows us to use the same property-name p; with
different range restrictions c; depending on the class ¢; to which p; is applied.
For example, take for p; the property Parent. Then Parents of cats are cats,
while Parents of dogs are dogs. An RDF(S) range restriction would not be able
to capture this.

Similarly, although in RDF(S) we can define the range of a property, we
cannot enforce that properties actually do have a value: we can state the authors
write books:

ObjectProperty(write domain(author) range(book))

but we cannot enforce in RDF(S) that every author must have written at least
one book. This is possible in OWL Lite:

Class(author restriction(write someValuesFrom(book)))

Technically speaking, these are just special cases of the general cardinality con-
straints allowed in OWL DL. The someValuesFrom corresponds to a min-cardinality
constraint with value 1, and the functional property constraint mentioned above
can be rewritten in this context with a max-cardinality constraint with value 1.
These can also be stated directly:

Class(author restriction(write minCardinality(1)))

Class(object restriction(age maxCardinality(1)))

When a property has a minCardinality and maxCardinality constraints with
the same value, these can be summarised by a single exact Cardinality con-
straint.

4.2 OWL DL

With the step from OWL Lite to OWL DL, we obtain a number of additional
language constructs, which simplify the writing of an ontology, even if most of
them could be written anyway in OWL Lite as macros. It is often useful to say
that two classes are disjoint (which is much stronger than saying they are merely
not equal):

DisjointClasses(c; c;)

OWL DL allows arbitrary Boolean algebraic expressions on either side of an
equality of subsumption relation. For example

SubClass0f(c; union0f(c; cx))

In other words: ¢; is not subsumed by either ¢; or ¢, but is subsumed by their
union. Similarly

EquivalentClasses(c; intersection0Of(cjcy))

Introduction to Semantic Web Ontology Languages 13

in other words: although ¢; is subsumed by ¢; and ¢ (a statement already
expressible in RDF(S)), stating that ¢; is equivalent to their intersection is much
stronger. An obvious example to think of here is “old men”: “old men” are
not just both old and men, but they are ezxactly the intersection of these two
properties.

Of course, the union0f and intersection0f may be taken over more than two
classes, and may occur in arbitrary Boolean combinations.

Besides disjunction (union0f) and conjunction (intersection0f), OWL DL
completes the Boolean algebra by providing a construct for negation: complement0z:

complement0f(c; cj)

In fact, arbitrary class expressions can be used on either side of subsumption or
equivalence axioms.

Note that all the additional OWL DL constructs introduced so far, are also in-
directly expressible already in OWL Lite. For example, the disjointness between
two classes c; and cjcan be expressed by means of the following two statements
in OWL Lite, for some fresh new property p:

SubClass0f(c; restriction(p minCardinality(1)))
SubClass0f(c; restriction(p maxCardinality(0)))

There are cases where it is not possible to define a class in terms of such alge-
braic expressions. This can be either impossible in principle. In such cases it is
sometimes useful to simply enumerate sets of individuals to define a class. This
is done in OWL DL with the one0f construct:

EquivalentClasses(c; oneOf(e; ... ey))

Similar to defining a class by enumeration, we can define a property to have a
specific value by stating the value:

Class(c; restriction(p; hasValue ey)

The extension from OWL Lite to OWL DL also lifts the restriction on cardinality
constraints to have only 0/1 values.

4.3 OWL Full

OWL Lite and DL are based on a strict segmentation of the vocabulary: no term
can be both an instance and a class, or a class and a property, etc. Full RDF(S)
is much more liberal: a class ¢; can have both a type and a subClass0f relation
to a class ¢o, and a class can even be an instance of itself. In fact, the class Class
is a member of itself. OWL Full inherits from RDF(S) this liberal approach. This
feature is crucial for using OWL as a meta-modelling language.

Schreiber [14] argues that this is exactly what is needed in many cases of
practical ontology integration. When integrating two ontologies, opposite com-
mitments have often been made in the two ontologies on whether something is

14 G. Antoniou, E. Franconi, and F. van Harmelen

modelled as a class or an instance. This is less unlikely than it may sound: is
“747” an instance of the class of all airplane-types made by Boeing or is “747”
a subclass of the class of all airplanes made by Boeing, and are particular jet
planes instances of this subclass? Both points of view are defensible. In OWL
Full, it is possible to have equality statements between a class and an instance.

In fact, just as in RDF Schema, OWL Full allows us even to apply the con-
structions of the language to themselves. It is perfectly legal to (say) apply a
max-cardinality constraint of 2 on the subClassOf relationship. For this reason,
OWL Full does not include OWL DL, in which the constructions of the language
are not semantic objects. Of course, building any complete and terminating rea-
soning tools that support this very liberal self-application of the language is out
of the question. In fact, the theory shows that it is impossible to build a correct
and complete inference engine for OWL Full.

5 Other Web-Based Ontology Languages

Besides the two standards RDF Schema and OWL discussed above, a number
of other approaches for encoding ontologies on the World Wide Web have been
proposed in the past. A comparison of these older languages is reported in [16].
We will now briefly review the results of this comparison and discuss implications
for our work.

Besides RDF Schema and OWL?, which have been introduced above, the
comparison reported in [16] includes the following languages that have been
selected on the basis of their aim of supporting knowledge representation on the
Web and their compatibility to the Web standards XML or RDF.

— XOL (XML-based ontology language). XOL [4] has been proposed as a
language for exchanging formal knowledge models in the domain of bio-
informatics. The development of XOL has been guided by the representa-
tional needs of the domain and by existing frame-based knowledge represen-
tation languages.

— SHOE (simple HTML ontology extension). SHOE[6] was created as an ex-
tension of HTML for the purpose of defining machine-readable semantic
knowledge. The aim of SHOE is to enable intelligent Web agents to retrieve
and gather knowledge more precisely than it is possible in the presence of
plain HTML documents.

— OML: (ontology markup language). OML [5] is an ontology language that
has initially been developed as an XML serialisation of SHOE. Meanwhile,
the language consists of different layers with increasing expressiveness. The
semantics especially of the higher levels is largely based on the notion of
conceptual graphs. In the comparison, however, only a less expressive subset
of OML (simple OML) is considered.

3 Actually, [16] discuss DAMLAOIL instead of OWL. DAML4-OIL [8] is the direct
precursor of OWL, and all of the conclusions from [16] about DAML+OIL are also
valid for OWL.

Introduction to Semantic Web Ontology Languages 15

Table 1. Comparison of web ontology languages with respect to concepts and tax-
onomies (taken from [16])

XOL SHOE OML RDF/S OIL DAML+OIL

Partitions - — + — + i
Attributes

Instance attr. + + + + + +

Class attr. + - + - 4 +

Local scope + + + + + +

Global scope + - + + + +

Facets

Default values + — — _ _ —

Type constr. + + + + + +

Cardinalities + — - - + +
Taxonomies

Subclass of + + + + T ¥

Exhaustive comp. — - + - + +

Disjoint comp. - - + — + +

Not subclass of - — - - + +

— OIL (ontology inference layer). OIL [3] is an attempt to develop an ontology
language for the Web that has a well defined semantics and sophisticated
reasoning support for ontology development and use. The language is con-
structed in a layered way starting with core-OIL, providing a formal seman-
tics for RDF Schema, standard-OIL, which is equivalent to an expressive
description logic with reasoning support, and Instance OIL that adds the
possibility of defining instances.

We have to mention that there is a strong relationship between the OIL language
and RDF Schema as well as DAML4OIL. OIL extends RDF Schema and has
been the main influence in the development if DAML4OIL. The main difference
between OIL and DAMLAOIL is an extended expressiveness of DAML~+OIL
in terms of complex definitions of individuals and data types. DAML4OIL in
turn has been the basis for the development of OWL, which carries the stamp
of an official W3C recommendation. All observations on DAML+OIL in this
comparison also apply to OWL.

6 Description Logics

We briefly now introduce description logics, which is the logic-based formalism
which is behind the OWL family of web ontology languages. From this brief
Section the parallel with the OWL family of web ontology languages will appear
clear. An extensive treatment of description logics, from friendly introductory
chapters, to the theoretical results, up to the description of applications and
systems, can be found in the Handbook of Description Logics [1]. Consistently

16 G. Antoniou, E. Franconi, and F. van Harmelen

with the informal notion of semantics introduced above for the web ontology
languages, description logics are considered as a structured fragment of predi-
cate logic. ALC is the minimal description language including full negation and
disjunction—i.e., propositional calculus.

The basic types of a DL language are concepts, roles, and features. A concept
is a description gathering the common properties among a collection of individ-
uals; from a logical point of view it is a unary predicate ranging over the domain
of individuals. A concept corresponds to a class in the web ontology languages.
Inter-relationships between these individuals are represented either by means of
roles (which are interpreted as binary relations over the domain of individuals)
or by means of features (which are interpreted as partial functions over the do-
main of individuals). Roles correspond to properties of RDF and OWL, while
features correspond to functional properties. In this Section, we will consider the
Description Logic ALCQZ, extending ALC with qualified cardinality restrictions
and inverse roles.

According to the syntax rules of Figure 1, ALCQOT concepts (denoted by the
letters C' and D) are built out of primitive concepts (denoted by the letter A),
roles (denoted by the letter R), and primitive features (denoted by the letter
f); roles are built out of primitive roles (denoted by the letter P) and primitive
features. The top part of Figure 1 defines the ALC sublanguage. Please also
note that features are introduced as shortcuts; in fact, they can be expressed by
means of axioms using cardinality restrictions, as we already noticed for OWL
DL.

C,D— A| A (primitive conc.)
T top (top)
L] bottom (bottom)
-C | (not C) (complement)
CcnD| (and C D ...) (conjunction)
CubD| (orC D ..)) (disjunction)
VR.C | (11 R C) (univ. quantifier)
IR.C | (some R C) (exist. quantifier)
1 (undefined f) (undefinedness)
f:C| (in f C) (selection)
>nR.C| (atleast n R C) (min cardinality)
<nR.C (atmost n R C) (max cardinality)

R— P| P (primitive role)

I f (primitive feature)
R™! (inverse R) (inverse role)

Fig.1l. Syntax rules for ALCQT

Introduction to Semantic Web Ontology Languages 17

AI
1T=9
()I — AI \ CI
(cnbDyf=c*nD*
(cubD)yf =c*tubp*
(VR.CO)t = {i € AT | V5. R%(4,7) = C*(j)}
(3R.C)* = {i € AT | 3. R¥(i,5) ACT(j)}
(f1)* = A%\ dom f*
(f: C)F = {i e dom f* | C*(f* (i)}
(>nR.C)" ={ie A" | t{j € A" | R*(i,5) AC*(j)} > n}
(SnR.C)" ={ie A" | t{j € AT | R*(i,j) AC*(j)} < n}
(R™H* ={(i,j) € AT x AT | R*(j,1)}

Fig. 2. Extensional semantics of ALCQT

Let us now consider the formal semantics of ALCQZ. We define the meaning
of concepts as sets of individuals—as for unary predicates—and the meaning of
roles as sets of pairs of individuals—as for binary predicates. This is the for-
malised notion of instantiation of the domain we introduced at the beginning
of this chapter. Formally, an interpretation is a pair Z = (AZ,-T) consisting of
a set AT of individuals (the domain of Z) and a function - (the interpretation
function of T) mapping every concept to a subset of A%, every role to a sub-
set of AT x AT, and every feature to a partial function from AZ to AZ, such
that the equations in Figure 2 are satisfied. The semantics of the language can
also be given by stating equivalences among expressions of the language and
First Order Logic formulae. An atomic concept A, an atomic role P, and an
atomic feature f, are mapped respectively to the open formuleA(vy), P(a, 8),
and f(«, 8) — with f a functional relation, also written f(«a) = (. Figure 3 gives
the transformational semantics of ALCQZ expressions in terms of equivalent
FOL well-formed formulae. A concept C' and a role R correspond to the FOL
open formulae Fo(v) and Fr(a, 8) respectively. It is worth noting that, using
the standard model-theoretic semantics, the extensional semantics of Figure 2
can be derived from the transformational semantics of Figure 3.

For example, we can consider the concept of HAPPY FATHERS, defined us-
ing the primitive concepts Man, Doctor, Rich, Famous and the roles CHILD,
FRIEND. The concept HAPPY FATHERS can be expressed in ALCQT as

Man 1 (3CHILD. T)M
VCHILD. (Doctor M IFRIEND. (Rich L Famous)),

i.e., those men having some child and all of whose children are doctors having
some friend who is rich or famous.

An ontology is called in DL a knowledge base, and formally it is a finite set
X of terminological axioms — these are the ontology statements; it can also be
called a terminology or TBox. For a concept name A, and (possibly complex)

18 G. Antoniou, E. Franconi, and F. van Harmelen

TT ~ true
17T ~ false

T~ Fo(y) AFp(v)
T~ Fc(y)V Fp(v)
T ~ 3. Fr(y,2) A Fo(z)
T ~Vz. Fr(y,z) = Fo(x)

Fig. 3. FOL semantics of ALCOT

concepts C, D, terminological axioms are of the form A = C (concept definition),
A C C (primitive concept definition), C' = D (general inclusion statement). An
interpretation Z satisfies C' C D if and only if the interpretation of C' is included
in the interpretation of D, i.e., CT C D*. It is clear that the last kind of axiom
is a generalisation of the first two: concept definitions of the type A = C' — where
A is an atomic concept — can be reduced to the pair of axioms (A C (') and
(C C A). Another class of terminological axioms — pertaining to roles R, S —
are of the form R C S. Again, an interpretation Z satisfies R C S if and only if
the interpretation of R — which is now a set of pairs of individuals — is included
in the interpretation of S, i.e., RT C SZ. An interpretation Z is a model of a
knowledge base X iff every terminological axiom of X' is satisfied by Z. If X
has a model, then it is satisfiable; thus, checking for KB satisfiability is deciding
whether there is at least one model for the knowledge base. X' logically implies
an axiom a (written ¥ = «) if « is satisfied by every model of X. We say
that a concept C' is subsumed by a concept D in a knowledge base X (written
Y | CC D) if CT C D7 for every model Z of X. For example, the concept

Person M (3CHILD. Person)

denoting the class of PARENTS—i.e., the persons having at least a child which is
a person—subsumes the concept

Man M (3CHILD. T)r
VCHILD. (Doctor M JFRIEND. (Rich LI Famous))

denoting the class of HAPPY FATHERS — with respect to the following knowledge
base X

Doctor = Person 1 IDEGREE. Phd,
Man = Person [1sex : Male,

i.e., every happy father is also a person having at least one child, given the
background knowledge that men are male persons, and that doctors are persons.

Introduction to Semantic Web Ontology Languages 19

A concept C' is satisfiable, given a knowledge base X, if there is at least one
model Z of X such that CF # (), i.e. ¥ [~ C = L. For example, the concept

(3CHILD. Man) M (VCHILD. (sex : —Male))

is unsatisfiable with respect to the above knowledge base Y. In fact, an individual
whose children are not male cannot have a child being a man.

7 The Importance of Correct Inference

An ontology inference engine based on description logics (such as iFaCT or
Racer) can offer a reasoning service to applications willing to properly use an
ontology. As we have already noticed, the inferential process’s complexity de-
pends strictly on the adopted ontology language’s expressivity: the inference
engine becomes increasingly complex as the ontology language becomes more
expressive. In fact, theoreticians have proved that you can’t build a complete
inference engine for OWL Full, although it’s possible to use existing description
logic systems as inference engines for OWL Lite and OWL DL.

Designing and implementing complete inference engines for expressive ontol-
ogy languages isn’t easy. As a prerequisite, you must have formal proof that
the algorithms are complete with respect to the ontology language’s declared
semantics. The description logics community — which provides the theoretical
foundations to the OWL family of web ontology languages — has 20-plus years of
experience to help provide theoretical results, algorithms, and efficient inference
systems for all but the most expressive OWL languages. We can understand
how important it is for an inference engine to be complete with the following
example.

Suppose a military agency asks you to write an ontology to recognise whether
a particular individual description indicates some sort of “enemy” concept so that
an application can take appropriate automatic action (such as shooting) given
the inference engine’s answer. If the inference engine is sound but incomplete, it
will recognise most but not all enemies because it isn’t a complete reasoner. Be-
cause it is sound, however, it won’t confuse a friendly soldier with an enemy. So,
the application will start the automatic shooting procedure only when the sys-
tem recognises without doubt that someone is an enemy. The application could
fail to shoot an enemy, but field soldiers can take traditional backup (nonau-
tomatic) action. Soundness is more important because you don’t want to shoot
your own soldiers. So far, so good.

The agency has another application strictly related to the first one. The task
is now to recognise an individual description as an allied soldier to activate auto-
matic procedures that will alert the soldier to the headquarters’ secret position.
Again, the system must have a sound inference engine because the agency doesn’t
want to disclose secret information to enemies. Moreover, incompleteness is not
a major problem because the defence system can still be valid even if a soldier
doesn’t know where the headquarters is located.

The agency decides, of course, to use the same shared ontology for both
applications. After all, the task in one case is to decide whether a soldier is

20 G. Antoniou, E. Franconi, and F. van Harmelen

an enemy and in the other case decide whether he or she isn’t. So the second
application can use the same ontology as the first, but it exploits the outcome
in a dual way. Unfortunately, it turns out that the agency can’t use the same
ontology for both tasks if the ontology language’s inference engine is sound but
incomplete. If a sound but incomplete reasoning system exists for solving, say,
the first problem (recognising enemies), you can’t use the same reasoning system
as a sound (and possibly incomplete) procedure for solving the second problem
(recognising allies). In fact, using the same procedure for solving the second
problem would be unsound — it will say an individual isn’t an enemy when he
or she actually is. Although this is harmless for the first problem, it is bad for
the second, dual one. It would disclose valuable military secrets to enemies.

To solve this problem, one must have both a sound and complete inference
engine for the ontology language. This rules out using OWL Full for the above
application because having a complete inference engine with this language is
impossible. The same of course holds for OWL DL inference engines without
guaranteed completeness properties.

It is important that Semantic Web application developers consider properly
whether such completeness properties are required for their applications.

References

1. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider,
editors. Description Logic Handbook: Theory, Implementation and Applications.
Cambridge University Press, 2003.

2. F. van Harmelen and D. Fensel. Practical Knowledge Representation for the Web.
In Proc. IJCAI’99 Workshop on Intelligent Information Integration, 1999

3. D. Fensel, 1. Horrocks, F. van Harmelen, D.L.. McGuinness and Peter F. Patel-
Schneider. OIL: An Ontology Infrastructure for the Semantic Web. IEEE Intelli-
gent Systems 16,2 (2001): 38-44

4. P. Karp, V. Chaudri and J. Thomere. An XML-Based Ontology Exchange Lan-
guage. Available at http://www.ai.sri.com/~ pkarp/xol

5. R. Kent. Conceptual Knowledge Modelling Language. Available at
http://www.ontologos.org/CKML/

6. S. Luke and J. Hefflin. SHOE 1.01 Proposal Specification. Available at
http://www.cs.umd.edu/projects/plus/SHOE

7. J. Pan and I. Horrocks. (FA) and RDF MT: Two Semantics for RDFS. In Proc.
2003 International Semantic Web Conference (ISWC 2008), LNCS 2870, Springer
2003,30-46

8. P. Patel-Schneider, I. Horrocks and F. van Harmelen. Reviewing the Design of
DAML+OIL: An Ontology Language for the Semantic Web. In Proc. Eighteenth
National Conference on Artificial Intelligence, AAAI Pres 2002

9. D.L. McGuinness and F. van Harmelen. OWL Web Ontology Language Overview.
Available at http://www.w3.org/TR/owl-features/

10. M.K. Smith, Chris Welty and D.L. McGuinness. OWL Web Ontology Language
Guide. Available at http://www.w3.org/TR/owl-guide/

11. G. Antoniou and F. van Harmelen. Web Ontology Language: OWL. In S. Staab
and R. Studer (Eds), Handbook on Ontologies in Information Systems, Springer
2003

Introduction to Semantic Web Ontology Languages 21

12. G. Antoniou and F. van Harmelen. A Semantic Web Primer, MIT Press 2004

13. F. Manola and E. Miller. RDF Primer. Available at http://www.w3c.or.kr/
Translation/PR-rdf-primer-20031215/

14. G. Schreiber. The Web is not well-formed. IEEE Intelligent Systems 17,2 (2002)

15. P.F. Patel-Schneider, P. Hayes and I. Horrocks. OWL Web Ontology Lan-
guage Semantics and Abstract Syntax. Available at http://www.w3.org/TR/owl-
semantics/

16. A. Gomez-Perez and O. Corcho. Ontology Languages for the Semantic Web. IEEE
Intelligent Systems 2002, 54-60

	Organisation of This Chapter
	On Web Ontology Languages
	What Are Ontology Languages
	Formal Semantics
	Reasoning

	The Key Semantic Web Ontology Languages
	RDF Schema

	Web Ontology Language OWL
	OWL Lite
	OWL DL
	OWL Full

	Other Web-Based Ontology Languages
	Description Logics
	The Importance of Correct Inference

