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Abstract. Execution cost of batched data mining queries can be reduced by 

integrating their I/O steps. Due to memory limitations, not all data mining queries in a 

batch can be executed together. In this paper we introduce our heuristic algorithm 

called CCFull, which suboptimally schedules the data mining queries into a number 

of separate execution phases. The algorithm significantly outperforms the optimal 

approach while providing a very good accuracy. 

1   Introduction 

Multiple Query Optimization (MQO) [16] is a database research area that focuses on 

optimizing sets of queries together by executing their common expressions only once 

in order to save query execution time. Many exhaustive and heuristic algorithms have 

been proposed for traditional MQO [15][17]. A specific type of a database query is a 

Data Mining Query (DMQ) [9], which describes a data mining task. It defines 

constraints on the data to be mined and constraints on the patterns to be discovered. 

DMQs are expressed using various declarative data mining query languages 

[5][7][10][12]. DMQs are submitted for execution to a Knowledge Discovery 

Management System KDDMS [9], which is a Database Management System (DBMS) 

extended with data mining functionality. Traditional KDDMSs execute DMQs 

serially and do not try to share any common expressions between different DMQs. 

DMQs are often processed in batches of dozens queries, executed during low user 

activity time. Such queries may show many similarities about their constraints. If they 

were executed serially, then it would be likely that many I/O operations were wasted 

because the same database blocks were possibly required by multiple DMQs. If I/O 

steps of different DMQs were integrated and performed once, then it would be 

possible to decrease the overall execution cost and time of the whole batch. One of 

the methods to process batches of DMQs is Apriori Common Counting (ACC), 

focused on frequent itemset discovery queries [1]. ACC is based on Apriori algorithm 

[2] and it integrates the steps of candidate support counting – all candidate hash trees 

for multiple DMQs are loaded into memory and the database is scanned only once. 

Basic ACC [18] assumes that all DMQs fit in memory, which is not the common case, 

at least for initial Apriori iterations. If the memory can hold only a subset of all 

DMQs, then it is necessary to divide/schedule the DMQs into subsets called phases 



[19]. The way such scheduling is done determines the overall cost of batched DMQs 

execution. To solve the scheduling problem, in [19] we proposed an “initial” heuristic 

algorithm, called CCRecursive.  

In this paper we present our new, faster heuristic algorithm CCFull for scheduling 

data mining queries to be executed by ACC. We compare its performance and 

accuracy with the optimal solution. The structure of the paper is the following. 

Section 2 describes the related work. In Section 3 we discuss the basic definitions and 

we formally state the data mining query scheduling problem. Section 4 describes 

CCFull  algorithm. Section 5 contains experimental results. 

2   Related Work 

Multiple-query optimization has been extensively studied in the context of database 

systems (see e.g. [3] [11][15][16][17]), however very little work has been done on 

optimizing sets of data mining queries. To the best of our knowledge, apart from the 

Common Counting method discussed in this paper, the only other multiple data 

mining query processing scheme is Mine Merge, presented in one of our previous 

papers [20].  

3   Preliminaries and Problem Statement 

Data mining query. A data mining query is a tuple DMQ = (R, a, Σ, Φ), where R is a 

relation, a is an attribute of R, Σ is a condition involving the attributes of the 

relation R, Φ is a condition involving discovered patterns. The result of the data 

mining query is a set of patterns discovered in πaσΣ and satisfying Φ. 

 

Problem statement. Given is a set of data mining queries DMQ = {dmq1, dmq2, ..., 

dmqn}, where dmqi = (R, a, Σi, Φi, βi), Σi has the form “(l
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* ∈ dom(a) and there exist at least two data mining 

queries dmqi = (R, a, Σi, Φi, βi) and dmqj = (R, a, Σj, Φj, βj) such that σΣiR  ∩ 

∩ σΣjR ≠ ∅. The problem of multiple query optimization of DMQ consists in 

generating such an algorithm to execute DMQ which has the lowest I/O cost. 

 

Data sharing graph. Let S = {s1 , s2 ,..., sk} be a set of distinct data selection formulas 

for DMQ, ie. a set of selection formulas on the attribute a of the relation R such that for 

each i,j we have σsiR  ∩ σsjR  = ∅, and for each i there exist integers a, b, ..., m, such 

that σΣiR  = σsaR  ∪ σsbR  ∪...∪ σsmR. We refer to the graph DSG = (V,E) as to a data 

sharing graph for the set of data mining queries DMQ if and only if V = DMQ ∪ S, E = 

{(dmqi,sj) | dmqj ∈ DMQ, sj ∈ S, σΣiR  ∩ σsjR ≠ ∅}. Each data selection formula is 

additionally weighted with the I/O cost of its execution in a database. 

 



Example. Consider the following example of a data sharing graph. Given is a 

database relation R1 = (attr1, attr2) and three data mining queries: dmq1 = (R1, “attr2”, 

“5 < attr1 < 20”, ∅, 3), dmq2 = (R1, “attr2”, “10 < attr1 < 30”, ∅, 5), dmq3 = (R1, 

“attr2”, “15 < attr1 < 40”, ∅, 4). The set of distinct data selection formulas is: S = {s1 

= “5 < attr1 < 10”, s2 = “10 < attr1 < 15”, s3 = “15 < attr1 < 20”, s4 = “20 < attr1 < 30”, 

s5 = “30 < attr1 < 40”}. The data sharing graph for {dmq1, dmq2, dmq3} is shown in 

Fig. 1. Ovals represent data mining queries and boxes represent distinct selection 

formulas. The bracketed numbers in formula nodes are their sample I/O costs, eg. to 

retrieve database records that satisfy the data selection formula “5 < attr1 < 10”, 120 

database blocks must be read. 
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Fig. 1. Sample data sharing graph for a set of data mining queries 

 

 
Apriori Common Counting (ACC). If the set of data mining queries was executed 

serially, i.e. one data mining query at a time, then the total execution cost would be 

the sum of execution costs of data selection formulas for each data mining query 

separately. ACC executes a set of data mining queries by integrating their I/O 

operations. It is based on the traditional Apriori approach to discover frequent 

itemsets. In the first step, for each data mining query we build a separate hash tree for 

1-candidates. Next, for each distinct data selection formula we scan its corresponding 

database partition and we count candidates for all the data mining queries that contain 

the formula. Such a step is performed for 2-candidates, 3-candidates, etc. Notice that 

if a given distinct data selection formula is shared by  many data mining queries, then 

its corresponding database partition is read only once. An overview of ACC is shown 

in Fig. 2. 

 

 
for (i=1; i<=n; i++)   /* n = number of data mining queries */ 

  C1
i
 = {all 1-itemsets from σs1∪s2∪..∪skR, ∀sj∈S: (dmqi,sj)∈E}  /* generate 1-candidates */ 

for (k=1; Ck
1
 ∪ Ck

2 ∪..∪ Ck
n
 ≠ ∅; k++) do begin 

   for each sj∈S do begin       

      CC= UCk
l
: (dmql,sj)∈E; /* select the candidates to count now */ 



      if CC≠ ∅ then count(CC, σsjR); 

   end 

   for (i=1; i<=n; i++) do begin 

     Fk
i
 = {C ∈ Ck

i
 | C.count ≥ minsup

i
};  /* identify frequent itemsets */ 

     Ck+1
i
 = generate_candidates(Fk

i
);  

end 

    end 

for (i=1; i<=n; i++) do 

   Answer
i
 = UkFk

i
;  /* generate responses */ 

Fig. 2. Apriori Common Counting 

 

4   Heuristic Scheduling of Concurrent Data Mining Queries 

4.1 Data Mining Query Scheduling 

The basic ACC assumes unlimited memory and therefore the candidate hash trees for 

all DMQs can completely fit in memory. If, however, the memory is limited, then 

ACC execution must be divided into multiple phases, so that in each phase only a 

subset of DMQs is processed. In such a case, the key question to answer is: which 

data mining queries from the set should be executed together in one phase and which 

data mining queries can be executed in different phases? We refer to the task of data 

mining queries partitioning as to data mining query scheduling. 

The problem of data mining query scheduling is a combinatorial problem which 

can be solved by generating all possible schedules and then choosing the best one. 

Such approach can be easily used for a small number of data mining queries, 

however, for a realistic case it is infeasible. The number of all possible schedules is 

determined by the Bell number, e.g. for 13 queries we get over four million schedules. 

Therefore, we propose a heuristic algorithm, called CCFull, which quickly finds a 

suboptimal schedule. 

4.2 Algorithm CCFull 

In the first step we generate a gain graph for the set of data mining queries. The gain 

graph is a full hypergraph, in which vertices represent the data mining queries while 

edges are described with weights which represent the amount of I/O cost reduction to 

be achieved if data mining queries connected with the edge were executed together (in 

the same phase). If common execution of given data mining queries results in no 

reduction of I/O cost, the weight of the connecting edge is zero. A sample gain graph 

and its original data sharing graph are shown in Fig. 3. For example, it can be noticed 

that common execution of the data mining queries dmq0, dmq2, and dmq3 would 

reduce the total I/O cost by 16 units (the weight of the connecting hyperedge) 



compared with the sequential execution, since for dmq0 and dmq2 the cost of 

redundant I/O operations is 5 units, for dmq2 and dmq3 the cost of redundant I/O 

operations is 8 units, and for dmq0 and dmq3 the cost of redundant I/O operations is 3 

units. Using the same example, it can be also noticed, that common execution of only 

the data mining queries dmq1 and dmq2 provides no cost reduction (the weight of the 

connecting hyperedge is zero). 
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Fig. 3. Sample data sharing graph and corresponding gain graph 



 

The gain graph can be generated using the algorithm GenerateGainGraph shown 

in Fig. 4. The algorithm takes two arguments: the set of all distinct data selection 

formulas and the set of all data mining queries. First, the algorithm builds a full 

hypergraph whose nodes are the data mining queries (line 1). Each hyperedge 

receives the weight of zero, initially (line 3). Then, for each hyperedge e, we create a 

set P of distinct data selection formulas involved in all data mining queries connected 

with the hyperedge e (line 4). I/O costs for executing the distinct data selection 

formulas from P are then summarized and the result is assigned to the hyperedge e 

weight (line 5 and 6). 
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GenerateGainGraph(S, DMQ): 

   begin 

generate a full hypergraph G={V,E}, V=DMQ 

for each e ∈ E do begin 

   e.gain = 0; 

   P = {si ∈ S | ∃ dmqj∈ e, dmqj =(R, a, Σj, Φ j, βj), si ⊆Σj } 

   for each s ∈ P do begin 

      e.gain += cost(s)*(|{ dmqj: dmqj∈ e, dmqj =(R, a, Σj, Φj, βj), si ⊆Σj }| - 1) 

    end 

 end 

 return G 

   end 

 

Fig. 4. Gain graph generation algorithm 

 

After having created the gain graph, CCFull performs the following steps. All 

hyperedges are sorted in descending order according to their weights. Next, CCFull 

iterates over the hyperedges and checks if data mining queries connected with the 

current hyperedge have been already scheduled. If none of the data mining queries 

has been scheduled so far, and if their hash trees fit in memory, then a new phase is 

generated and the data mining queries are assigned to it. Otherwise, if only some of 

the data mining queries have been already scheduled to different phases, then CCFull 

tries to combine all those phases together with the unscheduled data mining queries. If 

such combined phase does not fit in memory, then the current hyperedge is ignored 

and CCFull continues with the next one. The algorithm ends when all hyperedges are 

processed. The algorithm CCFull is shown in Fig. 5. 
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CCFull(G=(V,E)): 

  begin 

   Phases ← {∅}  

   sort E = <ei , e2 ,..., ek> in desc. order w.r. to ei.gain, ignore edges with zero gains 

   for each ei in E do begin 

      tmpV ← {v∈ V | v ∈ ei } 

      if  (|{p ∈ Phases | p ∩ tmpV  ≠ ∅}| = 0)  then 
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13. 

14. 

         commonPhases ← ∅ 

         newPhase ← tmpV 

      else 

         commonPhases ← {p ∈ Phases | p∩ tmpV ≠ ∅}  

         newPhase ← tmpV ∪ U p| p∈ commonPhases  

      end if 

      if (treesize(newPhase) ≤ MEMSIZE) then  

         Phases ← Phases - commonPhases  

         Phases ← Phases ∪ newPhase 

      end if 

    end 

    add phase for each unscheduled query 

 return Phases 

   end 

 

 

Fig. 5. CCFull algorithm 

 

 

The detailed steps of the algorithm from Fig. 5 are the following. In line (1) we 

initialize the set of scheduled phases – we start with the empty set. In line (2) we sort 

the list E of  hyperedges from the gain graph. Hyperedges with weights equal to zero 

are removed from the list. In line (3) a loop starts, which iterates over the list of 

hyperedges. In line (4) we select all data mining queries which are connected with the 

current hyperedge (tmpV).  In line (5) we test if any of the selected data mining 

queries belongs to any of the phases scheduled so far. If not, then in line (7) we create 

a new candidate phase containing all the data mining queries from tmpV. Otherwise, 

in line (9) we create a new candidate phase containing both all the data mining queries 

from tmpV and data mining queries from earlier scheduled phases, to which any of the 

tmpV data mining queries was also scheduled. In line (10) we check if hash trees of all 

the data mining queries from the new candidate phase fit in memory (MEMSIZE is the 

available memory size). If this condition is satisfied, then in lines (11) and (12) we 

append the new candidate phase to the current set of scheduled phases Phases, 

possibly replacing some of the existing phases (when multiple phases are combined). 

In line (13), for each data mining query which has not been scheduled we create a 

new phase. In step (14) we return the generated phases. 

 

Example 

Consider scheduling of data mining queries from Fig. 3. For the sake of simplicity, 

assume that hash tree sizes are 10MB for each data mining query and the available 

memory is 20MB.  

Hyperedges of the gain graph are sorted according to their weights (skipping zero-

weighted hyperedges): <e0, e4, e3, e2, e1, e8, e7, e5, e6, e10>. In the first iteration we 

select the hyperedge e0, which is connecting the data mining queries dmq0, dmq1, 

dmq2 and dmq3. None of the data mining queries has been scheduled so far, and total 

size of their hash trees is 40MB, exceeding the available memory. Therefore, the 



algorithm ignores the hyperedge and starts another iteration. In the second iteration 

we select the hyperedge e4, which is connecting the data mining queries dmq0, dmq2 

and dmq3. None of the data mining queries has been scheduled so far, and total size of 

their hash trees is 30MB, exceeding the available memory again. Therefore, the 

algorithm ignores the hyperedge and starts another iteration. In a similar way the 

iterations over the hyperedges e3, e2 and e1 are performed – total sizes of hash trees 

exceed the available memory. Yet in the sixth iteration the algorithm will behave in a 

different way. We select the hyperedge e8, which is connecting the data mining 

queries dmq2 and dmq3. The total size of their hash trees is 20MB, so a new phase is 

created: {dmq2, dmq3}. In the next iteration we select the hyperedge e7, which is 

connecting the data mining queries dmq1 and dmq3. Since dmq3 already belongs to a 

scheduled phase, we try to replace the existing phase {dmq2, dmq3} with a new one: 

{dmq1, dmq2, dmq3}. We are unsuccessfull because the total size of hash trees for the 

data mining queries is 30MB, what exceeds the available memory. In the next 

iteration we select the hyperedge e5, and again we are unsuccessfull when trying to 

replace the existing phase {dmq2, dmq3} with a new phase {dmq0, dmq2, dmq3}. The 

next iteration operates on the hyperedge e6, which is connecting the data mining 

queries dmq0 and dmq1. These data mining queries do not belong to any of the 

existing phases and total size of their hash trees is 20MB. Therefore, a new phase is 

created: {dmq0, dmq1}. In the last iteration we select the hyperedge e10, which is 

connecting the data mining queries dmq0 and dmq3. Since both data mining queries 

have been already scheduled to some phases, the algorithm tries to combine the 

existing phases {dmq2, dmq3} and {dmq0, dmq1}. However, the phases are not merged 

since the total size of hash trees of their data mining queries is 40MB and exceeds the 

available memory. The algorithm has completed. The constructed scheduling of the 

four data mining queries is shown in Fig. 6. 
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Fig. 6. Data mining queries scheduled with CCFullalgorithm 

 



 

 

5   Experimental Evaluation 

In order to evaluate performance and accuracy of the CCFull heuristic scheduling 

algorithm we performed several experiments using the real dataset of MSWeb 

(Microsoft Anonymous Web Data) dataset from the UCI KDD Archive [8], 

describing web user visits from February 1998: 285 different URLs, contained in 

32710 transactions of three elements each. The experiments were conducted on a PC 

with AMD Duron 1.2 GHz processor and 256 MB of main memory. The datasets 

used in all experiments resided in flat files on a local disk. Memory was intentionally 

restricted to 10kB-50kB. Each experiment was repeated 100 times. 

Fig. 7 shows disk I/O costs of schedules generated by the optimal scheduling 

algorithm, by the CCFull algorithm, and by a random algorithm (which randomly 

builds phases from queries). For example, for the set of 10 data mining queries, the 

CCFull algorithm misses the optimal solution by only 6%. 

Fig. 8 illustrates execution times for the optimal scheduling algorithm and for 

CCFull. Notice that the optimal algorithm needs ca. 1000s to schedule 12 data mining 

queries while CCFull executes in 30s. 
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Fig. 7. Accuracy of data mining query scheduling algorithms. 
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Fig. 8. Execution time of data mining query scheduling algorithms. 

7   Conclusions and Future Work 

In this paper we have introduced a new heuristic algorithm to schedule data mining 

queries for Apriori Common Counting. The algorithm offers a significant reduction of 

execution time over the optimal algorithm while providing a very good accuracy. 

CCFull assumes that the set of data mining queries is static. However, in a real 

system, new queries may arrive while the other queries are being executed. In the 

future we plan to extend the algorithm to allow for dynamic scheduling of the arriving 

queries. 
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