
Heuristic Scheduling

of Concurrent Data Mining Queries

Marek Wojciechowski, Maciej Zakrzewicz

Poznan University of Technology

Institute of Computing Science

ul. Piotrowo 3a, 60-965 Poznan, Poland

tel. +48 61 6652378, fax +48 61 8771525
{marek,mzakrz}@cs.put.poznan.pl

Abstract. Execution cost of batched data mining queries can be reduced by

integrating their I/O steps. Due to memory limitations, not all data mining queries in a

batch can be executed together. In this paper we introduce our heuristic algorithm

called CCFull, which suboptimally schedules the data mining queries into a number

of separate execution phases. The algorithm significantly outperforms the optimal

approach while providing a very good accuracy.

1 Introduction

Multiple Query Optimization (MQO) [16] is a database research area that focuses on

optimizing sets of queries together by executing their common expressions only once

in order to save query execution time. Many exhaustive and heuristic algorithms have

been proposed for traditional MQO [15][17]. A specific type of a database query is a

Data Mining Query (DMQ) [9], which describes a data mining task. It defines

constraints on the data to be mined and constraints on the patterns to be discovered.

DMQs are expressed using various declarative data mining query languages

[5][7][10][12]. DMQs are submitted for execution to a Knowledge Discovery

Management System KDDMS [9], which is a Database Management System (DBMS)

extended with data mining functionality. Traditional KDDMSs execute DMQs

serially and do not try to share any common expressions between different DMQs.

DMQs are often processed in batches of dozens queries, executed during low user

activity time. Such queries may show many similarities about their constraints. If they

were executed serially, then it would be likely that many I/O operations were wasted

because the same database blocks were possibly required by multiple DMQs. If I/O

steps of different DMQs were integrated and performed once, then it would be

possible to decrease the overall execution cost and time of the whole batch. One of

the methods to process batches of DMQs is Apriori Common Counting (ACC),

focused on frequent itemset discovery queries [1]. ACC is based on Apriori algorithm

[2] and it integrates the steps of candidate support counting – all candidate hash trees

for multiple DMQs are loaded into memory and the database is scanned only once.

Basic ACC [18] assumes that all DMQs fit in memory, which is not the common case,

at least for initial Apriori iterations. If the memory can hold only a subset of all

DMQs, then it is necessary to divide/schedule the DMQs into subsets called phases

[19]. The way such scheduling is done determines the overall cost of batched DMQs

execution. To solve the scheduling problem, in [19] we proposed an “initial” heuristic

algorithm, called CCRecursive.

In this paper we present our new, faster heuristic algorithm CCFull for scheduling

data mining queries to be executed by ACC. We compare its performance and

accuracy with the optimal solution. The structure of the paper is the following.

Section 2 describes the related work. In Section 3 we discuss the basic definitions and

we formally state the data mining query scheduling problem. Section 4 describes

CCFull algorithm. Section 5 contains experimental results.

2 Related Work

Multiple-query optimization has been extensively studied in the context of database

systems (see e.g. [3] [11][15][16][17]), however very little work has been done on

optimizing sets of data mining queries. To the best of our knowledge, apart from the

Common Counting method discussed in this paper, the only other multiple data

mining query processing scheme is Mine Merge, presented in one of our previous

papers [20].

3 Preliminaries and Problem Statement

Data mining query. A data mining query is a tuple DMQ = (R, a, Σ, Φ), where R is a

relation, a is an attribute of R, Σ is a condition involving the attributes of the

relation R, Φ is a condition involving discovered patterns. The result of the data

mining query is a set of patterns discovered in πaσΣ and satisfying Φ.

Problem statement. Given is a set of data mining queries DMQ = {dmq1, dmq2, ...,

dmqn}, where dmqi = (R, a, Σi, Φi, βi), Σi has the form “(l
i
1min < a < l

i
1max) ∨ (l

i
2min < a <

l
i
2max) ∨..∨ (l

i
kmin < a < l

i
kmax)”, l

i
* ∈ dom(a) and there exist at least two data mining

queries dmqi = (R, a, Σi, Φi, βi) and dmqj = (R, a, Σj, Φj, βj) such that σΣiR ∩

∩ σΣjR ≠ ∅. The problem of multiple query optimization of DMQ consists in

generating such an algorithm to execute DMQ which has the lowest I/O cost.

Data sharing graph. Let S = {s1 , s2 ,..., sk} be a set of distinct data selection formulas

for DMQ, ie. a set of selection formulas on the attribute a of the relation R such that for

each i,j we have σsiR ∩ σsjR = ∅, and for each i there exist integers a, b, ..., m, such

that σΣiR = σsaR ∪ σsbR ∪...∪ σsmR. We refer to the graph DSG = (V,E) as to a data

sharing graph for the set of data mining queries DMQ if and only if V = DMQ ∪ S, E =

{(dmqi,sj) | dmqj ∈ DMQ, sj ∈ S, σΣiR ∩ σsjR ≠ ∅}. Each data selection formula is

additionally weighted with the I/O cost of its execution in a database.

Example. Consider the following example of a data sharing graph. Given is a

database relation R1 = (attr1, attr2) and three data mining queries: dmq1 = (R1, “attr2”,

“5 < attr1 < 20”, ∅, 3), dmq2 = (R1, “attr2”, “10 < attr1 < 30”, ∅, 5), dmq3 = (R1,

“attr2”, “15 < attr1 < 40”, ∅, 4). The set of distinct data selection formulas is: S = {s1

= “5 < attr1 < 10”, s2 = “10 < attr1 < 15”, s3 = “15 < attr1 < 20”, s4 = “20 < attr1 < 30”,

s5 = “30 < attr1 < 40”}. The data sharing graph for {dmq1, dmq2, dmq3} is shown in

Fig. 1. Ovals represent data mining queries and boxes represent distinct selection

formulas. The bracketed numbers in formula nodes are their sample I/O costs, eg. to

retrieve database records that satisfy the data selection formula “5 < attr1 < 10”, 120

database blocks must be read.

dmq1

dmq2

dmq3

5<attr1<10

(120)

10<attr1<15

(90)

20<attr1<30

(400)

30<attr1<40

(50)

15<attr1<20

(110)

Fig. 1. Sample data sharing graph for a set of data mining queries

Apriori Common Counting (ACC). If the set of data mining queries was executed

serially, i.e. one data mining query at a time, then the total execution cost would be

the sum of execution costs of data selection formulas for each data mining query

separately. ACC executes a set of data mining queries by integrating their I/O

operations. It is based on the traditional Apriori approach to discover frequent

itemsets. In the first step, for each data mining query we build a separate hash tree for

1-candidates. Next, for each distinct data selection formula we scan its corresponding

database partition and we count candidates for all the data mining queries that contain

the formula. Such a step is performed for 2-candidates, 3-candidates, etc. Notice that

if a given distinct data selection formula is shared by many data mining queries, then

its corresponding database partition is read only once. An overview of ACC is shown

in Fig. 2.

for (i=1; i<=n; i++) /* n = number of data mining queries */

 C1
i
 = {all 1-itemsets from σs1∪s2∪..∪skR, ∀sj∈S: (dmqi,sj)∈E} /* generate 1-candidates */

for (k=1; Ck
1
 ∪ Ck

2 ∪..∪ Ck
n
 ≠ ∅; k++) do begin

 for each sj∈S do begin

 CC= UCk
l
: (dmql,sj)∈E; /* select the candidates to count now */

 if CC≠ ∅ then count(CC, σsjR);

 end

 for (i=1; i<=n; i++) do begin

 Fk
i
 = {C ∈ Ck

i
 | C.count ≥ minsup

i
}; /* identify frequent itemsets */

 Ck+1
i
 = generate_candidates(Fk

i
);

end

 end

for (i=1; i<=n; i++) do

 Answer
i
 = UkFk

i
; /* generate responses */

Fig. 2. Apriori Common Counting

4 Heuristic Scheduling of Concurrent Data Mining Queries

4.1 Data Mining Query Scheduling

The basic ACC assumes unlimited memory and therefore the candidate hash trees for

all DMQs can completely fit in memory. If, however, the memory is limited, then

ACC execution must be divided into multiple phases, so that in each phase only a

subset of DMQs is processed. In such a case, the key question to answer is: which

data mining queries from the set should be executed together in one phase and which

data mining queries can be executed in different phases? We refer to the task of data

mining queries partitioning as to data mining query scheduling.

The problem of data mining query scheduling is a combinatorial problem which

can be solved by generating all possible schedules and then choosing the best one.

Such approach can be easily used for a small number of data mining queries,

however, for a realistic case it is infeasible. The number of all possible schedules is

determined by the Bell number, e.g. for 13 queries we get over four million schedules.

Therefore, we propose a heuristic algorithm, called CCFull, which quickly finds a

suboptimal schedule.

4.2 Algorithm CCFull

In the first step we generate a gain graph for the set of data mining queries. The gain

graph is a full hypergraph, in which vertices represent the data mining queries while

edges are described with weights which represent the amount of I/O cost reduction to

be achieved if data mining queries connected with the edge were executed together (in

the same phase). If common execution of given data mining queries results in no

reduction of I/O cost, the weight of the connecting edge is zero. A sample gain graph

and its original data sharing graph are shown in Fig. 3. For example, it can be noticed

that common execution of the data mining queries dmq0, dmq2, and dmq3 would

reduce the total I/O cost by 16 units (the weight of the connecting hyperedge)

compared with the sequential execution, since for dmq0 and dmq2 the cost of

redundant I/O operations is 5 units, for dmq2 and dmq3 the cost of redundant I/O

operations is 8 units, and for dmq0 and dmq3 the cost of redundant I/O operations is 3

units. Using the same example, it can be also noticed, that common execution of only

the data mining queries dmq1 and dmq2 provides no cost reduction (the weight of the

connecting hyperedge is zero).

s0

(3)

s1

(5)

s3
(4)

s2
(8)

dmq0

dmq1

dmq2

dmq3

e0

23

e1

8 e3

15

e2

10

e4

16

e6

3

e5

5

e7

7

e8

8

e9

0

e10

3

dmq0

dmq1

dmq2

dmq3

Fig. 3. Sample data sharing graph and corresponding gain graph

The gain graph can be generated using the algorithm GenerateGainGraph shown

in Fig. 4. The algorithm takes two arguments: the set of all distinct data selection

formulas and the set of all data mining queries. First, the algorithm builds a full

hypergraph whose nodes are the data mining queries (line 1). Each hyperedge

receives the weight of zero, initially (line 3). Then, for each hyperedge e, we create a

set P of distinct data selection formulas involved in all data mining queries connected

with the hyperedge e (line 4). I/O costs for executing the distinct data selection

formulas from P are then summarized and the result is assigned to the hyperedge e

weight (line 5 and 6).

1.

2.

3.

4.

5.

6.

7.

GenerateGainGraph(S, DMQ):

 begin

generate a full hypergraph G={V,E}, V=DMQ

for each e ∈ E do begin

 e.gain = 0;

 P = {si ∈ S | ∃ dmqj∈ e, dmqj =(R, a, Σj, Φ j, βj), si ⊆Σj }

 for each s ∈ P do begin

 e.gain += cost(s)*(|{ dmqj: dmqj∈ e, dmqj =(R, a, Σj, Φj, βj), si ⊆Σj }| - 1)

 end

 end

 return G

 end

Fig. 4. Gain graph generation algorithm

After having created the gain graph, CCFull performs the following steps. All

hyperedges are sorted in descending order according to their weights. Next, CCFull

iterates over the hyperedges and checks if data mining queries connected with the

current hyperedge have been already scheduled. If none of the data mining queries

has been scheduled so far, and if their hash trees fit in memory, then a new phase is

generated and the data mining queries are assigned to it. Otherwise, if only some of

the data mining queries have been already scheduled to different phases, then CCFull

tries to combine all those phases together with the unscheduled data mining queries. If

such combined phase does not fit in memory, then the current hyperedge is ignored

and CCFull continues with the next one. The algorithm ends when all hyperedges are

processed. The algorithm CCFull is shown in Fig. 5.

1.

2.

3.

4.

5.

CCFull(G=(V,E)):

 begin

 Phases ← {∅}

 sort E = <ei , e2 ,..., ek> in desc. order w.r. to ei.gain, ignore edges with zero gains

 for each ei in E do begin

 tmpV ← {v∈ V | v ∈ ei }

 if (|{p ∈ Phases | p ∩ tmpV ≠ ∅}| = 0) then

6.

7.

8.

9.

10.

11.

12.

13.

14.

 commonPhases ← ∅

 newPhase ← tmpV

 else

 commonPhases ← {p ∈ Phases | p∩ tmpV ≠ ∅}

 newPhase ← tmpV ∪ U p| p∈ commonPhases

 end if

 if (treesize(newPhase) ≤ MEMSIZE) then

 Phases ← Phases - commonPhases

 Phases ← Phases ∪ newPhase

 end if

 end

 add phase for each unscheduled query

 return Phases

 end

Fig. 5. CCFull algorithm

The detailed steps of the algorithm from Fig. 5 are the following. In line (1) we

initialize the set of scheduled phases – we start with the empty set. In line (2) we sort

the list E of hyperedges from the gain graph. Hyperedges with weights equal to zero

are removed from the list. In line (3) a loop starts, which iterates over the list of

hyperedges. In line (4) we select all data mining queries which are connected with the

current hyperedge (tmpV). In line (5) we test if any of the selected data mining

queries belongs to any of the phases scheduled so far. If not, then in line (7) we create

a new candidate phase containing all the data mining queries from tmpV. Otherwise,

in line (9) we create a new candidate phase containing both all the data mining queries

from tmpV and data mining queries from earlier scheduled phases, to which any of the

tmpV data mining queries was also scheduled. In line (10) we check if hash trees of all

the data mining queries from the new candidate phase fit in memory (MEMSIZE is the

available memory size). If this condition is satisfied, then in lines (11) and (12) we

append the new candidate phase to the current set of scheduled phases Phases,

possibly replacing some of the existing phases (when multiple phases are combined).

In line (13), for each data mining query which has not been scheduled we create a

new phase. In step (14) we return the generated phases.

Example

Consider scheduling of data mining queries from Fig. 3. For the sake of simplicity,

assume that hash tree sizes are 10MB for each data mining query and the available

memory is 20MB.

Hyperedges of the gain graph are sorted according to their weights (skipping zero-

weighted hyperedges): <e0, e4, e3, e2, e1, e8, e7, e5, e6, e10>. In the first iteration we

select the hyperedge e0, which is connecting the data mining queries dmq0, dmq1,

dmq2 and dmq3. None of the data mining queries has been scheduled so far, and total

size of their hash trees is 40MB, exceeding the available memory. Therefore, the

algorithm ignores the hyperedge and starts another iteration. In the second iteration

we select the hyperedge e4, which is connecting the data mining queries dmq0, dmq2

and dmq3. None of the data mining queries has been scheduled so far, and total size of

their hash trees is 30MB, exceeding the available memory again. Therefore, the

algorithm ignores the hyperedge and starts another iteration. In a similar way the

iterations over the hyperedges e3, e2 and e1 are performed – total sizes of hash trees

exceed the available memory. Yet in the sixth iteration the algorithm will behave in a

different way. We select the hyperedge e8, which is connecting the data mining

queries dmq2 and dmq3. The total size of their hash trees is 20MB, so a new phase is

created: {dmq2, dmq3}. In the next iteration we select the hyperedge e7, which is

connecting the data mining queries dmq1 and dmq3. Since dmq3 already belongs to a

scheduled phase, we try to replace the existing phase {dmq2, dmq3} with a new one:

{dmq1, dmq2, dmq3}. We are unsuccessfull because the total size of hash trees for the

data mining queries is 30MB, what exceeds the available memory. In the next

iteration we select the hyperedge e5, and again we are unsuccessfull when trying to

replace the existing phase {dmq2, dmq3} with a new phase {dmq0, dmq2, dmq3}. The

next iteration operates on the hyperedge e6, which is connecting the data mining

queries dmq0 and dmq1. These data mining queries do not belong to any of the

existing phases and total size of their hash trees is 20MB. Therefore, a new phase is

created: {dmq0, dmq1}. In the last iteration we select the hyperedge e10, which is

connecting the data mining queries dmq0 and dmq3. Since both data mining queries

have been already scheduled to some phases, the algorithm tries to combine the

existing phases {dmq2, dmq3} and {dmq0, dmq1}. However, the phases are not merged

since the total size of hash trees of their data mining queries is 40MB and exceeds the

available memory. The algorithm has completed. The constructed scheduling of the

four data mining queries is shown in Fig. 6.

�

s0

(3)

s1

(5)

s3

(4)

s2

(8)

dmq0

dmq1

dmq2

dmq3

Fig. 6. Data mining queries scheduled with CCFullalgorithm

5 Experimental Evaluation

In order to evaluate performance and accuracy of the CCFull heuristic scheduling

algorithm we performed several experiments using the real dataset of MSWeb

(Microsoft Anonymous Web Data) dataset from the UCI KDD Archive [8],

describing web user visits from February 1998: 285 different URLs, contained in

32710 transactions of three elements each. The experiments were conducted on a PC

with AMD Duron 1.2 GHz processor and 256 MB of main memory. The datasets

used in all experiments resided in flat files on a local disk. Memory was intentionally

restricted to 10kB-50kB. Each experiment was repeated 100 times.

Fig. 7 shows disk I/O costs of schedules generated by the optimal scheduling

algorithm, by the CCFull algorithm, and by a random algorithm (which randomly

builds phases from queries). For example, for the set of 10 data mining queries, the

CCFull algorithm misses the optimal solution by only 6%.

Fig. 8 illustrates execution times for the optimal scheduling algorithm and for

CCFull. Notice that the optimal algorithm needs ca. 1000s to schedule 12 data mining

queries while CCFull executes in 30s.

0,98

1,03

1,08

1,13

1,18

1,23

2 3 4 5 6 7 8 9 10 11

num. queries

n
u

m
.
b

lo
c
k
s
 (

re
la

ti
v
e

)

CCFull

Optimal

Random

Fig. 7. Accuracy of data mining query scheduling algorithms.

0,00001

0,0001

0,001

0,01

0,1

1

10

100

1000

3 4 5 6 7 8 9 10 11 12 13 14 15

num. queries

e
x
e

c
u

ti
o

n
 t
im

e
 [
s
]

CCFull

Optimal

Fig. 8. Execution time of data mining query scheduling algorithms.

7 Conclusions and Future Work

In this paper we have introduced a new heuristic algorithm to schedule data mining

queries for Apriori Common Counting. The algorithm offers a significant reduction of

execution time over the optimal algorithm while providing a very good accuracy.

CCFull assumes that the set of data mining queries is static. However, in a real

system, new queries may arrive while the other queries are being executed. In the

future we plan to extend the algorithm to allow for dynamic scheduling of the arriving

queries.

References

1. Agrawal R., Imielinski T., Swami A: Mining Association Rules Between Sets of Items in

Large Databases. Proc. of the 1993 ACM SIGMOD Conf. on Management of Data, 1993.

2. Agrawal R., Srikant R.: Fast Algorithms for Mining Association Rules. Proc. of the 20th

Int’l Conf. on Very Large Data Bases (1994)

3. Alsabbagh J.R., Raghavan V.V.: Analysis of common subexpression exploitation models in

multiple-query processing. Proc. of the 10th ICDE Conference (1994)

4. Baralis E., Psaila G.: Incremental Refinement of Mining Queries. Proceedings of the 1st

DaWaK Conference (1999)

5. Ceri S., Meo R., Psaila G.: A New SQL-like Operator for Mining Association Rules. Proc.

of the 22nd Int’l Conference on Very Large Data Bases (1996)

6. Cheung D.W., Han J., Ng V., Wong C.Y.: Maintenance of Discovered Association Rules in

Large Databases: An Incremental Updating Technique. Proc. of the 12th ICDE (1996)

7. Han J., Fu Y., Wang W., Chiang J., Gong W., Koperski K., Li D., Lu Y., Rajan A.,

Stefanovic N., Xia B., Zaiane O.R.: DBMiner: A System for Mining Knowledge in Large

Relational Databases. Proc. of the 2nd KDD Conference (1996)

8. Hettich S., Bay S. D.: The UCI KDD Archive [http://kdd.ics.uci.edu]. Irvine, CA:

University of California, Department of Information and Computer Science (1999)

9. Imielinski T., Mannila H.: A Database Perspective on Knowledge Discovery.

Communications of the ACM, Vol. 39, No. 11 (1996)

10.Imielinski T., Virmani A., Abdulghani A.: Datamine: Application programming interface

and query language for data mining. Proc. of the 2nd KDD Conference (1996)

11.Jarke M.: Common subexpression isolation in multiple query optimization. Query

Processing in Database Systems, Kim W., Reiner D.S. (Eds.), Springer (1985)

12.Morzy T., Wojciechowski M., Zakrzewicz M.: Data Mining Support in Database

Management Systems. Proc. of the 2nd DaWaK Conference (2000)

13.Morzy T., Wojciechowski M., Zakrzewicz M.: Materialized Data Mining Views.

Proceedings of the 4th PKDD Conference (2000)

14.Nag B., Deshpande P.M., DeWitt D.J.: Using a Knowledge Cache for Interactive Discovery

of Association Rules. Proc. of the 5th KDD Conference (1999)

15.Roy P., Seshadri S., Sundarshan S., Bhobe S.: Efficient and Extensible Algorithms for Multi

Query Optimization. ACM SIGMOD Intl. Conference on Management of Data (2000)

16.Sellis T.: Multiple query optimization. ACM Transactions on Database Systems, Vol. 13,

No. 1 (1988)

17.Sellis T., Ghosh S.: On the Multi-Query Optimization Problem. IEEE Transactions on

Knowledge and Data Engineering, Vol. 2, No. 2 (1990)

18.Wojciechowski M., Zakrzewicz M.: Evaluation of Common Counting Method for

Concurrent Data Mining Queries. Proc. of the 7th ADBIS Conference (2003)

19.Wojciechowski M., Zakrzewicz M.: Data Mining Query Scheduling for Apriori Common

Counting. Proc. of the 6th Int’l Baltic Conf. on Databases and Information Systems (2004)

20.Wojciechowski M., Zakrzewicz M.: Evaluation of the Mine Merge Method for Data Mining

Query Processing. Proc. of the 8th ADBIS Conference (2004)

21.Zheng Z., Kohavi R., Mason L.: Real World Performance of Association Rule Algorithms.

Proc. of the 7th KDD Conference (2001)

