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Abstract. In this paper, the notion of equivalence models for quantified Boolean formulas
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1 Introduction

The notion of models for formulas in QBF (i.e., the class of quantified Boolean formulas in prenex
normal form without free variables) has been introduced in [8, 9]. Generally speaking, an assignment
for a formula in QBF is a mapping which maps each existential variable to a propositional formula
over universal variables whose quantifiers precede the quantifier of the existential variable. An
assignment M is a model for a quantified formula Φ (with existential variables y = y1, · · · , ym) if
the resulting formula Φ[y/M ] after replacing each existential variable by its corresponding formula
(and removing existential quantifiers from the prefix) is true.

The notion of models for closed QBF can be easily extended to formulas in QBF ∗, the class
of quantified Boolean formulas with (or without) free variables, by just allowing free variables
occurring in the propositional formulas of assignments.

In this paper, we often write Φ = Qφ(x,y) and Φ(z) = Qφ(x,y,z) for formulas in QBF and
QBF ∗, respectively, with universal variables x = x1, · · · , xn, existential variables y = y1, · · · , ym,
and free variables z = z1, · · · , zr.

Please note that if M is a model for a formula Φ ∈ QBF then Φ and Φ[y/M ] are equivalent.
However, this is generally invalid for formulas in QBF ∗ and their models. For example, the formula
Φ(z1, z2) = ∃y(z1∨y)∧(¬y∨z2) is equivalent to the formula (z1∨z2). For fy(z1, z2) = 1, M = (fy)
is a model, since Φ[y/fy] = (z1 ∨ 1) ∧ (0 ∨ z) ≈ z is satisfiable. But the resulting formula is not
equivalent to the input formula Φ(z1, z2).

This motivates us to introduce and investigate equivalence models for formulas in QBF ∗, which
deserve attention because quantified Boolean formulas can be used to represent Boolean functions
with essentially small size. There are Boolean functions which can be represented by a formula in
QBF ∗ with quadratic size while every propositional formula representing the same function has
super-polynomial size [7]. An assignment M is an equivalence model for a formula Φ ∈ QBF ∗

if Φ and Φ[y/M ] are equivalent. We are interested in the equivalence model checking problem of
determining whether an assignment is an equivalence model of a formula Φ ∈ QBF ∗, and the
equivalent model problem of deciding whether a formula in QBF ∗ has an equivalence model. Since
the equivalence model checking problem involves testing the equivalence of two quantified formulas,
the problem is PSPACE–complete. Without any restriction we will see that any QBF ∗ formula
has an equivalence model. In this paper, we restrict the two problems to some subclasses of QBF ∗

and some models consisting of propositional formulas with special structures.



Equivalence Models for Quantified Boolean Formulas 231

We are also interested in discovering some connections between the structure of formulas in
QBF ∗ and that of models. We will show that Q2-CNF ∗ formulas always have an equivalence
model consisting of formulas in 1-CNF ∪ 1-DNF ∪ {0, 1}.

In the remaining of this section we will recall and introduce some notations and terminologies.
The classes of proposition formulas such as CNF, DNF, k-CNF, HORN and so on, are defined

as usual.
QBF is the class of closed quantified Boolean formula (i.e., without free variables). The formula

Φ is in prenex normal form, if Φ = Q1v1 · · ·Qnvnφ, where Qi ∈ {∀,∃} and φ is a propositional
formula over variables v1, · · · , vn. Q1v1 · · ·Qnvn is called the prefix and φ the matrix or kernel of
Φ. Usually, we simply write Φ = Qφ. A literal x or ¬x is called a universal resp. existential literal,
if the variable x is bounded by a universal quantifier resp. by an existential quantifier. A closed
formula Φ ∈ QBF with prenex form is called satisfiable or true, if there exists an assignment of
truth values to the existential variables depending on the preceding universal variables, for which
the propositional kernel of the formula is true. QCNF denotes the class of QBF formulas in prenex
normal form with matrix in CNF, likewise for Qk-CNF , QHORN .

The classes QCNF∗, Q2-CNF ∗, QHORN ∗ are defined in the same way as QCNF, Q2-CNF ,
QHORN , respectively, except allowing free variables. A formula in QCNF∗ is satisfiable if and
only if there is a truth assignment for the free variables, such that for the truth assignment the
closed QBF is true. The class ∃∗CNF∗ is a subset of QCNF∗ in which any formula has a purely
existential prefix and a CNF kernel.

In our investigations we will make use of substitutions of existential variables by propositional
formulas. For a quantified Boolean formula Φ with or without free variables Φ[y1/f1, · · · , ym/fm]
denotes the formula obtained by simultaneously substituting the occurrences of each variables yi

by the formula fi and removing quantifiers of yi. For Φ[y1/f1, · · · , ym/fm], y = y1, · · · , ym, and
M = (f1, · · · , fm) we write Φ[y/M ].

2 Models

In this section we present two definitions of models for quantified Boolean formulas and prove some
basic results. The first definition is based on satisfiability and has been investigated in [8, 9] for
closed formulas.

Definition 1. (Satisfiability Model) [8]
Let Φ(z) = Qφ(x,y,z) be a formula in QCNF∗, where x = x1, · · · , xn are universal variables,
y = y1, · · · , ym existential variables, and z = z1, · · · , zr free variables. For propositional formulas
fyi

over z and universal variables whose quantifiers precede ∃yi, we say M = (fy1 , · · · , fym
) is a

(satisfiability) model for Φ(z) if and only if ∀x1 · · · ∀xn φ(x,y,z)[y/M ] is satisfiable.
If the propositional formulas fyi belong to a class K, then M is called a K–model for Φ(z).

For example, the formula Φ(z) = ∀x∃y(x∨y)∧ (¬x∨¬y)∧z is satisfiable and for fy(x, z) = ¬x,
M = (fy) is a model for Φ(z), because

∀x((x ∨ y) ∧ (¬x ∨ ¬y) ∧ z)[y/fy] = ∀x(x ∨ ¬x) ∧ (¬x ∨ x) ∧ z

is satisfiable (set z = 1).
The formula Φ(z1, z2) = ∃y(z1 ∨ y) ∧ (¬y ∨ z2) is logically equivalent to the formula (z1 ∨ z2).

For fy(z1, z2) = 1, M = (fy) is a model, since Φ(z1, z2)[y/fy] = (z1∨1)∧ (0∨z2) ≈ z2 is satisfiable.
But the formula Φ(z1, z2)[y/fy] is not equivalent to the input formula Φ(z1, z2). For gy(z1, z2) = z2,
however, we get the equivalence Φ(z1, z2)[y/gy] = (z1 ∨ z2) ∧ (¬z2 ∨ z2) ≈ (z1 ∨ z2) ≈ Φ(z1, z2).
That means, the substitution of the existential variable y by the associated propositional formula
gy preserves the image of the formula. This simple observation motivates a second definition of
models for quantified Boolean formulas.
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Definition 2. (Equivalence Model)
Let Φ(z) = Qφ(x,y,z) be a formula in QCNF∗, where x = x1, · · · , xn are universal variables,
y = y1, · · · , ym existential variables, and z = z1, · · · , zr free variables. For propositional formulas
fyi over z and universal variables whose quantifiers precede ∃yi, we say M = (fy1 , · · · , fym) is an
equivalence model for Φ(z) if and only if Φ(z) ≈ ∀x1 · · · ∀xnφ(x,y,z)[y/M ].
If the propositional formulas fyi

belong to a class K, then M is called a K–equivalence model
for Φ(z).

The formula Φ(z) = ∀x1∀x2∃y(x1∨y)∧ (x2∨¬y∨z) is equivalent to z. For fy(x1, x2, z) = ¬x1,
M = (fy) is an equivalence model, since Φ(z)[y/fy] = ∀x1∀x2(x1∨¬x1)∧(x2∨x1∨z) ≈ ∀x1∀x2(x2∨
x1 ∨ z) ≈ z.

Obviously, any unsatisfiable formula has an equivalence model. In that case any propositional
formula over the corresponding variables is an equivalence model.

Lemma 1. Any formula in QCNF∗ has an equivalence model.

Proof. Suppose, we have a formula Φ(z) = Qφ(z,x,y) ∈ QCNF∗ equivalent to the Boolean func-
tion F (z) with free variables z = z1, · · · , zm, universal variables x = x1, · · · , xt, and existential
variables y = y1, · · · , yn. For fixed tuples of truth values a ∈ {0, 1}m the formula Φ(a) is a closed
formula.
If the formula is true, then there is a satisfiabilty model Ma = (fa

y1
, · · · , fa

yn
). That means

Φ(a)[y/Ma] is true.
If the formula is false, then for Ma = (0, · · · , 0) the formula Φ(a)[y/Ma] is false.
Now, we combine these 2m cases to an equivalence model as follows:
Let xi = x1, · · · , xri be the preceding universal variables for yi. We define a Boolean function
fyi

(z,xi) = fa
yi

(xi), if z = a. Since for any Boolean function there is an equivalent propositional
formula, for M = (fy1 , · · · , fyn

) we have Φ(z)[y/M ] ≈ F (z) ≈ Φ(z). Hence, M is an equivalence
model for Φ(z).

The next proposition states some simple observations for which we omit the proof.

Proposition 1. Let Φ(z) = Qφ(x,y,z) be an arbitrary formula in QCNF∗, M = (fy1 , · · · , fym
)

any sequence of propositional formulas.

1. Φ(z)[y/M ] |= Φ(z). Moreover, M is an equivalence model for Φ(z) if and only if Φ(z) |=
Φ(z)[y/M ]

2. If Φ is closed (i.e., z is empty) and true, then M is a (satisfiability) model for Φ if and only if
M is an equivalence model for Φ.

Let K be a class of propositional formulas and X ⊆ QCNF∗. We are mainly interested in the
following problems:

K–Equivalence Model Checking Problem for X:
Instance: A formula Φ ∈ X and M = (f1, · · · , fn) a sequence of propositional

formulas fi ∈ K.
Query: Is M a K–equivalence model for Φ?

K–Equivalence Model Problem for X:
Instance: A formula Φ ∈ X.
Query: Does there exist a K–equivalence model M for Φ?

A procedure for deciding whether M is an equivalence model for Φ(z) is as follows:
1. Substitute the existential variables by the associated propositional formulas and remove from
the prefix the existential quantifiers.
2. Test whether the resulting formula is equivalent to the input formula.

Because the equivalence problem between two quantified formulas is PSPACE-complete even if
one of them is very simple, we obtain the following lemma.

Lemma 2. The equivalence model checking problem for QCNF∗ is PSPACE–complete.
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Proof. Obviously, the equivalence model checking problem is in PSPACE, since the satisfiabil-
ity and the equivalence problem for quantified Boolean formulas are in PSPACE. We prove the
PSPACE–hardness from a reduction of the PSPACE–complete evaluation problem for QCNF [7].
We associate to a closed formula Φ = Qφ ∈ QCNF for a new variable y the formula Φ′ = ∃yQ(φ∧y).
Then, Φ is true if and only if Φ′ is true. Suppose, Φ has the existential variables y = y1, · · · , yn. For
M = (fy, fy1 , · · · fyn), where all Boolean functions are the constant 0, that means fy = 0, fyi = 0,
Φ′[y/M ] is false. Hence, M is an equivalence model for Φ′ if and only if Φ is false.

That means, equivalence model checking is much harder than satisfiability model checking
which has been shown in [8] to be coNP–complete for QCNF.

The next theorem states that the upper bound for the complexity of the equivalence checking
problem for classes X depends on the complexity of the satisfiability problem for X. We say a class
X ⊆ QCNF∗ is closed under constant–substitutions if and only if for every formula Φ(z) ∈ X and
for all combinations of constants a the formula Φ(z)[z/a] = Φ(a) is in X.

We recall the notion of the polynomial-time hierarchy. ΣP
2 is a class of problems defined as

(k ≥ 0): ΣP
0 = ΠP

0 = P the class of polynomial-time solvable problems, ΣP
k+1 = NPΣP

k ,ΠP
k+1 =

co − ΣP
k+1. Thus, NP = ΣP

1 and coNP = ΠP
1 . Relationships between prefix classes of QBF ∗ and

classes of the polynomial-time hierarchy has been shown for example in [15].

Theorem 1. For every class X ⊆ QCNF∗ which is closed under constant-substitutions we have

1. If X ∩ QSAT is polynomial-time solvable (i.e., in ΣP
0 = ΠP

0 ), then the equivalence model
checking problem for X is in coNP = ΠP

1 .
2. For k ≥ 1, if X ∩ QSAT is in ΣP

k , then the equivalence model checking problem for X is in
ΠP

k .
3. For k ≥ 1, if X ∩ QSAT is in ΠP

k , then the equivalence model checking problem for X is in
ΠP

k+1.

Here, QSAT is the class of all satisfiable formulas in QCNF∗.

Proof. For any Φ(z) = Qφ(x,y,z) and any sequenceM = (fy1 , · · · , fym
) of propositional formulas.

we have the following equivalence relations.

M is not an equivalence model for Φ(z)
⇔ Φ(z) 6≈ Φ(z)[y/M ] ⇔ Φ(z) 6|= Φ(z)[y/M ]
⇔ ∃z : (Φ(z) is true and Φ(z)[y/M ] is false)
⇔ ∃z : (Φ(z) is true and ∀x1 · · · ∀xnφ(x,z,y)[y/M ] is false )
⇔ ∃z : (Φ(z) is true and ∃x1 · · · ∃xn¬φ(x,y,z)[y/M ] is true )
⇔ ∃z∃x′ : (Φ(z) is true and ¬φ(x′,y,z)[y/M ′] is true ).

The propositional formula ¬φ(x′,y,z)[y/M ′] contains the variables x′ and z, where x′ := x′1, · · · , x′n
and M ′ is the result of renaming xi by x′i for every i. Whether for fixed values for x′ and z the
formula evaluates to true, can be decided in linear time. Please note that for fixed values for z the
formula Φ(z) is in X.

If the satisfiability of formulas in X is solvable in polynomial time, then the non-equivalence
model checking problem is in NP = ΣP

1 . Hence, the complementary problem — the equivalence
model checking problem — is in coNP = ΠP

1 .
If the satisfiability problem for formulas in X is in ΣP

k then the problem whether ∃xΦ(x) is
satisfiable remains in ΣP

k . Hence, the equivalence model checking problem is in ΠP
k .

If the satisfiability problem for formulas in X is in ΠP
k then the problem whether ∃xΦ(x) is

satisfiable is in ΣP
k+1. Hence, the equivalence model checking problem is in ΠP

k+1.

Please note, that Theorem 1 establishes only an upper bound for the complexities. Classes
with a tractable satisfiability problem are Q2-CNF ∗ and QHORN∗ [1, 4], whereas the satisfiability
problem for ∃ ∗ CNF∗ is obviuosly NP–complete. With respect to the completeness of the various
problems we can prove

Lemma 3. The equivalence model checking problems for ∃∗CNF∗, Q2-CNF ∗ and QHORN∗are
coNP–complete.
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Proof. The coNP–hardness of the eqivalence checking problem for ∃∗CNF∗ follows from a reduction
from the coNP–complete unsatisfiability problem for CNF. We associate to every propositional CNF
formula φ(x) the formula Φ(x) = ∃y(y∧φ(x)) and M = (fy(x)) with fy(x) = 0. The formula Φ(x)
is equivalent to φ(x). Substituting the existential variable y by the model function fy we obtain
Φ(x)[y/fy(x)] = 0 ∧ φ(x) ≈ 0. Hence, M is an equivalence model for Φ(x) if and only if φ(x) is
unsatisfiable.
That the problem is in coNP = ΠP

1 follows from Theorem 1, because ∃∗CNF is closed under
constant–substitutions and the satisfiability problem is in NP .

The other classes Q2-CNF ∗ and QHORN∗ are closed under constant-substitution and their
satisfiability problems are solvable in polynomial time [7]. Hence, by Theorem 1 the problems are
in coNP. The coNP–hardness follows from a reduction from the coNP–complete tautology problem
for DNF. We associate to a formula ψ ∈ DNF over the variables x1, · · · , xn the quantified Boolean
formula Φ = ∀x1 · · · ∀xn∃y : ¬y and M = (fy(x1, · · · , xn)), where fy(x1, · · · , xn) = ¬ψ. Then, M
is an equivalence model for Φ if and only if ¬fy(x1, · · · , xn) = ψ ∈ DNF is a tautology.

3 Special Classes of Models

In this section we investigate the problems for various classes of model formulas and input formulas.
Some of the results are depicted in figure 1. Two classes K0, the set of constants 0 and 1, and K2,
the set of monomials, are defined as K0 := {f | f is 0 or 1} and K2 := {f | ∃I ⊆ {1, · · · , n} :
f(x1, ..., xn) =

∧
i∈I xi, n ∈ N} ∪K0

Boolean functions QCNF∗–class equivalence model checking
K0 = {0, 1} QCNF PSPACE-complete
1-CNF ∪ 1-DNF ∪ {0, 1} Q2-CNF ∗ polytime
1-DNF QHORN∗ coNP-complete
K2 QHORN∗ polytime

Figure 1

For a formula Φ = ∃∗φ ∈ ∃∗CNF∗, if the kernel φ is satisfiable then Φ has a K0-model. However,
this is not true for equivalence models. The formula Φ(z1, z2) = ∃y(z1 ∨ y)∧ (¬y ∨ z2)(≈ (z1 ∨ z2))
has no K0-equivalence model, since

Φ(z1, z2)[y/0] = (z1 ∨ 0) ∧ (1 ∨ z2) ≈ (z1) 6≈ (z1 ∨ z2)
Φ(z1, z2)[y/1] = (z1 ∨ 1) ∧ (0 ∨ z2) ≈ (z2) 6≈ (z1 ∨ z2)

Since the equivalence problem for QCNFformulas is PSPACE-complete even if one of the for-
mulas is very simple, we have the following lemma.

Lemma 4.
1. The K0–equivalence model checking problem for QCNF is PSPACE–complete.
2. The K0–equivalence model problem for QCNF is PSPACE–complete.

Proof. Ad 1: (see proof of Lemma 2)
Ad 2: Obviously, the problem is in PSPACE. For the PSPACE–hardness, we associate to QCNF

formulas Φ = Qφ(x,y) for new variables x0 and y0 the QCNF formula Φ′ := ∀x0∃y0Q(φ(x,y) ∧
(x0∨y0)∧(¬x0∨¬y0)). Φ is true if and only if Φ′ is true, since Ψ := ∀x0∃y0((x0∨y0)∧(¬x0∨¬y0))
is true for example with fy0(x0) = ¬x0. But Ψ has no K0–equivalence model. That can be seen
by a case distinction y0 = 0 and y0 = 1. Therefore, if Φ is true, then Φ′ has no K0–equivalence
model. Suppose Φ is false, then Φ′ is false. Thus, Φ′ has a K0–equivalence model. Altogether, Φ
is false if and only if Φ′ has a K0–equivalence model. Since the evaluation problem for QCNF is
PSPACE–complete, we have shown our desired result.

Satisfiable Q2-CNF formulas have always a satisfiability model consisting of formulas of the
form fy(x) = (¬)xi for some i, fy(x) = 0, or fy(x) = 1. For Q2-CNF ∗ these model formulas are
not sufficient as the following example shows Φ(z1, z2) = ∃y(z1∨y)∧ (z2∨y)∧ (¬y∨z3)∧ (¬y∨z4).
The proof is straight forward by a case distinction. We will see that the class of models defined as
B= 1-CNF ∪ 1-DNF ∪ {0, 1} characterizes in a certain sense equivalence models for Q2-CNF ∗.
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Theorem 2.
1. Any formula in Q2-CNF ∗ has a B–equivalence model.
2. The B–equivalence model checking for Q2-CNF ∗ is solvable in polynomial time.

Proof. Ad 1: Idea of the proof. Suppose, we have a formula Φ(z) = Qφ(x,y,z) ∈ Q2-CNF ∗. If
Φ(z) is unsatisfiable, then there is a {0, 1}–equivalence model, and therefore a B–equivalence model.
Now, we assume the satisfiability of the input formula. In a first step we apply the Q–resolution
as long as possible with Φ(z) [7]. The resulting formula, called Ψ(z), is again in Q2-CNF ∗ and
for any truth assignment for z, Φ(z) is true if and only if Ψ(z) is true. Next we will define fyj

for
each yj by means of the derived unit clauses.

case 1. yj or ¬yj occurs in Ψ(z) as a unit clause. Then define fyj
= 1 or fyj

= 0 accordingly.
case 2. yj occurs in a ∃-unit clause (i.e., a clause with one existential literal and the other

literal is universal), but ¬yi does not occur in any ∃-unit clause. Let w1 ∨ yj , · · · , wk ∨ yj be all the
∃-unit clause containing yj . Then define fyj = ¬w1 ∨ · · · ∨ ¬wk.

case 3. ¬yj occurs in a ∃-unit clause, but yi does not occur in any ∃-unit clause. Let w1 ∨
¬yj , · · · , wk ∨ ¬yj be all the ∃-unit clause containing ¬yj . Then define fyj

= w1 ∧ · · · ∧ wk.
case 4. Both yj and ¬yj occur in some ∃-unit clauses. Since Ψ is satisfiable, there are exactly

two clauses containing yj or ¬yj , and they must be of the form w ∨ yj and ¬w ∨ ¬yj . Then define
fyj

= ¬w.
case 5. yj or ¬yj is derivable from free-unit clauses (by a free-unit clause we mean a clause

with at most one existential literal and the other literals are literals over free variables). Then
define fyj = 1 or fyj = 0 accordingly.

case 6. yj or ¬yj is a pure literal. Then define fyj
= 1 or fyj

= 0 accordingly.
case 7. Note cases 1–6. Let yj ∨ v1, · · · , yj ∨ vk and ¬yj ∨u1, ·,¬yj ∨ur. Then define fyj

either
to be ¬v1 ∨ · · · ∨ ¬vk or to be u1 ∧ · · · ∧ ur.

case 8. There are no free–unit clauses containing yj or ¬yj . That is, yj has nothing to do with
free variables and existential variables. Thus, in this case fyj

is either 0 or 1.
It is not hard to see that in any case Ψ(z)[yj/fyj ] is true if and only if Ψ(z) is true for any

truth assignment for z. Consequently, (fy1 , · · · , fym) is an equivalence model for Φ(z).

Ad 2: Let Φ(z) = Qφ(x,y,z) be in Q2-CNF ∗. For a sequence of propositional formulas M =
(fy1 , · · · , fym

), where fyi
∈B, we want to decide whether M is an equivalence model for Φ(z).

At first we can calculate by applying a polytime algorithm to Φ(z) a logically equivalent propo-
sitional formula F (z) ∈ 2-CNF. The length of F (z) is bound by O(|φ|2) (see Theorem 7.4.6 and
Theorem 7.6.1 in[7]). In the next step we substitute in the initial formula the existential variables yi

by the model–functions fyi . That means, we have Φ(z)[y/M ] = ∀x1 · · · ∀xnφ(x,y,z)[y/M ]. Please
note that Φ(z)[y/M ] may not in QCNF∗. However, it can be transformed in polynomial time into
an equivalent formula with CNFkernel by applying the distributivity law. The result is denoted as
Ψ(z) (which still contains only universal quantifiers). Further, we can calculate in polynomial time
an equivalent propositional formula G(z) of length less or equal than the length of Ψ(z). If Ψ(z)
contains a ∀-clause then G(z) is false. Otherwise, G(z) is obtained by deleting all universal literals
and removing the quantifiers. It is not difficult to see that G(z) and Ψ(z) are equivalent. Finally
it remains to decide whether F (z) |= G(z). Since F (z) is a propositional 2-CNF formula that can
be done in polynomial time.

Altogether, we have an polytime procedure for the B–equivalence model checking problem for
2-CNF∗.

For QHORN∗ the regular equivalence problem — whether two quantified Horn formulas are
equivalent — is coNP–complete. Further, any QHORN∗ formula is equivalent to a HORN formula,
but sometimes of length essentially different [7]. The next lemma shows that for very simple model
formulas the coNP–completeness persist.

Lemma 5. The 1-DNF–equivalence model checking problem for QHORN∗ is coNP–complete.

Proof. By Theorem 1 the problem is in coNP. We show the coNP–hardness by a reduction from
the coNP–complete tautology problem for 3-DNF formulas. We associate to the DNF formula
ψ =

∨
1≤i≤m(Li,1 ∧ Li,2 ∧ Li,3) with literals Li,j over the variables z1 · · · , zr the quantified Horn
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formula Φ(z) = ∃y∃y1 · · · ∃ym(¬y1∨· · ·∨¬ym)∧ (¬z1∨· · ·∨¬zr ∨¬y) and M = (fy, fy1 , · · · , fym
),

where fy(z) = (¬z1 ∨ · · · ∨ ¬zr), fyi
(z) = (¬Li,1 ∨ ¬Li,2 ∨ ¬Li,3) ∈ 1-DNF. Φ(z) is always true,

that means equivalent to the constant 1.
We have Φ(z)[y/M ] = (¬fy1(z)∨· · ·∨¬fym(z))∧ (¬z1∨· · ·∨¬zr∨ (z1∧· · ·∧zn)) ≈ (¬fy1(z)∨

· · · ∨ ¬fym
(z)) and this formula is equivalent to Φ(z) if and only if the propositional DNF formula

ψ = (¬fy1(z) ∨ · · · ∨ ¬fym
(z)) is a tautology.

Hence, our 1-DNF–equivalence model checking problem is coNP–complete.

With respect to the satisfiability models, we know that every satisfiable QHORN has a K2–
model [8]. That does not hold for the equivalence model and QHORN∗. The formula

Φn(z1,1, · · · , zn,n) := ∃y1 · · · ∃yn(¬y1 ∨ · · · ∨ ¬yn) ∧
∧

1≤i,j≤n

(yi ∨ ¬zi,j)

is equivalent to
∨

1≤i≤n(¬zi,1 ∧ · · · ∧ ¬zi,n). M = (fy1 , · · · , fyn) is an equivalence model for Φn if
fyi

(z1,1,, · · · , zn,n) = (zi,1 ∨ · · · ∨ zi,n). But Φn(z1,1, · · · , zn,n) has no K2–equiv–model.

Lemma 6. The K2–equivalence model checking for QHORN∗ is solvable in polynomial time.

Proof. Suppose Φ(z) = Qφ(x,y,z) ∈ QHORN∗ and M = (fy1 , · · · , fym
), where fyi

∈ K2. That
means, if xi = x1, · · · , xri

are the preceding universal variables for yi, then we have fyi
(z,xi) =∧

j∈Ji
vj , vj ∈ {x1, · · · , xn, z1, · · · , zr} for some Ji, fyi

= 0, or fyi
= 1.

If the formula Φ(z) ∈ QHORN∗ is unsatisfiable, which can be decided in polynomial time, then
M is an equivalence model for the formula. We continue assuming the formula is satisfiable.
The substitution Φ(z)[y/M ] can lead to a non-Horn kernel. Since every clause in the kernel of the
input formula Φ(z) contains at most one positive literal, by the distributivity law we can transform
in polynomial time the formula Φ(z)[y/M ] into a universally quantified QHORN∗ formula, say
Ψ(z) = ∀x

∧
ψj(x,z). We can simplify the formula to obtain an equivalent propositional Horn

formula
∧
ψ′j(z) by removing the universal variables and all quantifiers. To test whether M is

an equivalence model, it suffices to decide whether Φ(z) |= ψ′j(z), that means Φ(z) ∧ ¬ψ′j(z) is
unsatisfiable. But that is the problem of deciding whether a QHORN∗ formula is satisfiable and
this problem is solvable in polynomial time.

4 Conclusion and Outlook

The results presented in the paper are a first step in understanding the structure of equivalence
models and the complexity of the problems. There are various open problems. Take QHORN∗ as an
example, try to establish a class of propositional formulas K ⊆ CNF with the following properties:

1. Any formula in QHORN∗ has a K–equivalence model.
2. An K–equivalence model for Φ(z) ∈ QHORN∗ can be constructed in polynomial time.
3. The K–equivalence model checking problem for QHORN∗ is solvable in polynomial time.
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