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Abstract. We consider the satisfiability phase transition in skewed random k-SAT distri-
butions. It is known that the random k-SAT model, in which the instance is a set of m
k-clauses selected uniformly from the set of all k-clauses over n variables, has a satisfiability
phase transition at a certain clause density. The essential feature of the random k-SAT is
that positive and negative literals occur with equal probability in a random formula. How
does the phase transition behavior change as the relative probability of positive and negative
literals changes?
In this paper we focus on a distribution in which positive and negative literals occur with
different probability. We present empirical evidence for the satisfiability phase transition for
this distribution. We also prove an upper bound on the satisfiability threshold and a linear
lower bound on the number of literals in satisfying partial assignments of skewed random
k-SAT formulas.

1 Introduction

The problem to decide whether a given propositional formula has a satisfying truth assignment
(SAT) is one of the first for which NP -completeness was proven. Nowadays it attracts much
attention, since many hard combinatorial problems in areas including planning [11, 12] and finite
mathematics [17] can be naturally encoded and studied as SAT instances.

While the SAT hardness is determined by the difficulty of solving an instance of the problem in
the worst case, the scientific interest is also focused on randomly chosen SAT instances in attempt
to determine the typical-case complexity. The choice of the probabilistic distribution is critical for
the significance of such a study. In particular, it was proven that in some probabilistic spaces a
random formula is easy-to-decide with high probability [6, 8, 14]. To date, most of the research
in the field is concentrated on the random k-SAT model RD(n, k,m), which appears to be more
robust in this respect.

Let X be a set of n boolean variables; a proper k-clause is a disjunction of k distinct and
non-contradictory literals corresponding to variables in X. Under the random k-SAT distribution
RD(n, k,m), a random formula Fk(n,m) is built by selecting uniformly, independently and with
replacement m clauses from the set of all proper k-clauses over n variables.

Numerous empirical results suggested that RD(n, k,m) exhibits a phase transition behavior
as the clause density δ = m/n changes [2, 13, 15, 16]. When the number of variables tends to
infinity and the clause density remains constant, the random formula Fk(n, δn) is almost surely
satisfiable for low clause densities while for higher clause densities it is almost surely unsatisfiable.
The satisfiability threshold conjecture asserts that for every k ≥ 2 there exists δk such that

δk = sup{δ| lim
n→∞

P (Fk(n, δn) is satisfiable) = 1} =

= inf{δ| lim
n→∞

P (Fk(n, δn) is satisfiable) = 0} .
(1)

This conjecture was settled for k = 2 with δ2 = 1 by Chvátal and Reed [3], Goerdt [7] and Fernandez
de la Vega [4]. More recently the asymptotic form of the conjecture with δk = 2k ln 2(1+ o(1)) was
established by Achlioptas and Peres [1].

The essential feature of the random k-SAT is that positive and negative literals occur in a
formula with equal probability. In this paper we consider satisfiability of random formulas from
the skewed random k-SAT distribution, in which positive and negative literals occur with different
probability. To the best of our knowledge, there has not been much work on this generalization



336 Danila A. Sinopalnikov

of random k-SAT. The paper answers the question whether the satisfiability phase transition
manifests in the skewed distributions and presents a proof of an upper bound on the threshold
location for skewed random k-SAT. We expect that this study will provide further insight into the
nature of the phase transition phenomenon in the boolean satisfiability problem.

We also investigate the minimal number of literals in a satisfying partial assignment of a random
formula. This study is motivated by the fact that if a random k-CNF formula is satisfiable then
it has an exponential number of satisfying assignments with high probability [10]. On the other
hand, it is known that k-CNF formulas with many satisfying assignments have short satisfying
partial assignments [9]. This might imply that a random formula with clause density far below
the satisfiability threshold is likely to have short satisfying partial assignments. In this paper we
elaborate on this intuition and prove a linear lower bound on the number of literals in a satisfying
partial assignment of a random formula for skewed and plain random k-SAT distributions.

The paper is organized as follows. Section 2 contains basic definitions. In Section 3 we present
the results of our empirical evaluation of the phase transition behavior of the skewed distribution.
We formulate and prove the main results in Section 4. Section 5 concludes the paper.

2 Basic Definitions

Let X be a set of n boolean variables. A literal is a variable (positive literal) or its negation
(negative literal). A variable and its negation are contradictory literals. A k-clause is an ordered
collection of k literals. A clause density of a formula F is the ratio of number of clauses in F to the
number of variables. A complementary formula for F is a formula obtained from F by replacing
all literals with their negations.

A partial assignment σ is an arbitrary set of non-contradictory literals. The size of a partial
assignment is the number of literals in it. A complete assignment on n variables is an assignment
of size n. A complementary partial assignment for σ is an assignment obtained from σ by replacing
of all literals with their negations. A partial assignment σ is satisfying for a formula F if in each
clause of F there is at least one literal from σ.

Let n, k,m ∈ N , p ∈ (0, 1). SD(n, k,m, p) denotes the skewed random k-SAT distribution,
where a random formula is obtained by building m k-clauses as follows: for each clause we select
independently, uniformly and with replacement k variables from the set of n boolean variables;
then for each selected variable we take a positive literal with probability p and a negative literal
otherwise and add it to the clause. A(n,m) denotes the set of all partial assignments of size m over
n variables.

For a propositional formula F and a partial assignment σ we use the following notations:
F ∈ SAT means F is satisfiable,
F̄ , σ̄ denote the complementary formula and assignment respectively,
σ ∈ S(F ) means σ satisfies F ,
pl(σ) denotes the number of positive literals in σ,
minsat(F ) denotes the minimum size of a satisfying partial assignment of F .
We omit floors and ceilings when it doesn’t result in confusion.
For λ ∈ [0, 1] denote H(λ) = λλ(1 − λ)1−λ. In the paper we will use the following standard

bounds
(

n

λn

)

≤ H(λ)−n, (2)

(1 + x)α ≥ 1 + αx for α > 1, x > 0, (3)

(1 − α)β ≤ e−αβ for α ∈ [0, 1], β > 0. (4)

3 The Phase Transition Behavior of the Skewed Random k-SAT

In this section we present empirical evidence that random k-SAT instances undergo a satisfiabil-
ity phase transition even if positive and negative literals occur with different probabilities. We took
skewed random 3-SAT distributions at four levels of skewness: p = 0.5(the plain random 3-SAT); 0.4; 0.3; 0.2.
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Figure 1 shows the sample probability that a random clause is unsatisfiable at the particular
clause density and skewness. There are four curves, one for each level of skewness. Along the
horizontal axis is the clause density. Each sample contains 500 random 3-SAT instances on 200
variables.

We observe that all four distributions exhibit the satisfiability phase transition. The transition
manifests at a greater density and becomes less distinct as the skewness of the distribution increases
and the number of variables remains constant.
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Fig. 1. The probability that a skewed random 3-SAT formula is unsatisfiable, as a function of the clause
density m/n (p - the skewness of the distribution)

4 A Lower Bound on the Size of Satisfying Partial Assignments of a

Skewed Random k-SAT Formula

Given a propositional formula over n variables, we are interested in finding a satisfying partial
assignment of the minimum size, that corresponds to the largest cluster of satisfying complete
assignments. In this section we prove a linear lower bound on the size of a satisfying partial
assignment of a random formula from a skewed random k-SAT distribution.

Let’s consider a fixed ratio λ between the size of a partial assignment and the total number of
variables, a skewed random k-SAT distribution SD(n, k, δn, π) with fixed k and p and a random
formula F from that distribution. The main theorem below provides an equation that defines a
clause density δ such that for all larger density values the probability that a formula F has a
satisfying partial assignment of size λn tends to zero as the number of variables n tends to infinity.

For k ∈ N , λ ∈ (0, 1], q ∈ (1 − λ, 1 − λ/2] we consider the following equation

H(λ)

(1 − qk)δ
=

(

1 + exp

(

−
kδqk

1 − qk
·
2(1 − q) − λ

q

))λ

. (5)

Lemma 1 Let k ∈ N , λ ∈ (0, 1], q ∈ (1 − λ, 1 − λ/2].
Then there exists a single δ0 that satisfies (5), δ0 > 0 and for all δ

δ > δ0 ⇔
H(λ)

(1 − qk)δ
>

(

1 + exp

(

−
kδqk

1 − qk
·
2(1 − q) − λ

q

))λ

. (6)
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Proof. Take arbitrary k ∈ N , λ ∈ (0, 1], q ∈ (1 − λ, 1 − λ/2].
Consider two functions

f(δ) =
H(λ)

(1 − qk)δ
, (7)

g(δ) =

(

1 + exp

(

−
kδqk

1 − qk
·
2(1 − q) − λ

q

))λ

. (8)

f(δ) is a continuous, strictly increasing function of δ, limδ→+∞ f(δ) = +∞, f(0) = H(λ) ≤ 1.
g(δ) is a continuous, decreasing function of δ, g(0) = 2λ > 1. This implies the statement of the
lemma. ⊓⊔

Definition 1 Let k ∈ N , λ ∈ (0, 1], q ∈ (1 − λ, 1 − λ/2].
Then ∆s(q, k, λ) denotes the root of the equation (5)

Theorem 1 Let δ > 0, λ ∈ (0, 1], π ∈ (0, 1), p = min (π, 1 − π), k ∈ N .

Let Fk(n, δ, π) be a random formula from SD(n, k, δn, π).
Then

δ > ∆s(1 − λ(1 − p), k, λ) ⇒ lim
n→∞

P (minsat(Fk(n, δ, π)) ≤ λn) = 0. (9)

Proof. Take arbitrary k ∈ N , λ ∈ (0, 1], m = λn. A partial assignment σ ∈ A(n,m) satisfies a
formula F if and only if the complementary assignment σ̄ satisfies the complementary formula F̄ .
So it is sufficient to prove the theorem for π ∈ (0, 1/2], p = π. Let q = 1 − λ(1 − p).
Let Xm denote the number of partial assignments of size m that satisfy Fk(n, δ, π). It is easy to
see that

P (minsat(Fk(n, δ, π)) ≤ λn) = P (Xm ≥ 1) ≤ E[Xm]. (10)

Now we are going to obtain a suitable upper bound for E[Xm].

E[Xm] =
∑

σ∈A(n,m)

P (σ ∈ S(Fk(n, δ, π))). (11)

Due to the symmetry of the distribution, the probability that σ satisfies a random formula depends
only on pl(σ), so

E[Xm] =

m
∑

z=0

∑

σ∈A(n,m)
pl(σ)=z

P (σ ∈ S(Fk(n, δ, π))
∣

∣pl(σ) = z). (12)

Now let’s compute the probability that a partial assignment with a fixed number of positive lit-
erals satisfies a random formula. Let C and l denote random formulas from SD(n, k, 1, π) and
SD(n, 1, 1, π) respectively (C and l can be viewed as a random clause and a random literal from
Fk(n, δ, π)). Then, since clauses in Fk(n, δ, π) are independent,

P (σ ∈ S(Fk(n, δ, π))
∣

∣pl(σ) = z) = (1 − P (σ /∈ S(C)
∣

∣pl(σ) = z))δn. (13)

Let var(C) and var(σ) denote the set of variables in C and σ respectively, overlap(C, σ) =
|var(C) ∩ var(σ)| - the number of variables shared by C and σ. Note that overlap(C, σ) ≤ k
and thus

P (σ /∈ S(C)
∣

∣pl(σ) = z) =

=

k
∑

j=0

P (σ /∈ S(C)
∣

∣overlap(C, σ) = j & pl(σ) = z)P (overlap(C, σ) = j). (14)

Literals in a random clause are independent, so

P (overlap(C, σ) = j) =

(

k

j

)

(m

n

)j
(

n − m

n

)k−j

, (15)

P (σ /∈ S(C)
∣

∣overlap(C, σ) = j & pl(σ) = z) =

= P (σ /∈ S(l)
∣

∣pl(σ) = z & var(l) ∈ var(σ))j .
(16)
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Conditioning on the event of l being positive, we compute

P (σ /∈ S(l)
∣

∣pl(σ) = z & var(l) ∈ var(σ)) = p + (1 − 2p)z/m. (17)

Plugging this into (14), we can return to (12)

E[Xm] =

m
∑

z=0

∑

σ∈A(n,m)
pl(σ)=z

(

1 −
(

1 −
m

n
·
(

1 − p −
z

m
(1 − 2p)

))k
)δn

. (18)

Using (3), the expectation can be bounded from above as follows

E[Xm] ≤
(

1 − qk
)δn

(

n

λn

)

×

λn
∑

z=0

(

λn

z

)(

1 −
qk

1 − qk
· k ·

z

n
·
2(1 − q) − λ

q

)δn

. (19)

Now we sequentially apply (4) and (2) to obtain a simpler bound

E[Xm] ≤ H(λ)−n
(

1 − qk
)δn

·

(

1 + exp

(

−
kδqk

1 − qk
·
2(1 − q) − λ

q

))λn

. (20)

We take p ∈ (0, 1/2], so q ∈ (1 − λ, 1 − λ/2] and we can use Lemma 1 to state that for all
δ > ∆s(1 − λ(1 − p), k, λ) E[Xm] = o(1) as n → ∞. This statement together with (10) proves the
theorem. ⊓⊔

For λ = 1 we get an upper bound on the satisfiability threshold for a skewed random k-SAT
formula: for any δ, π ∈ (0, 1) and p = min (π, 1 − π)

δ > ∆s(p, k, 1) ⇒ lim
n→∞

P (Fk(n, δ, π)) ∈ SAT ) = 0. (21)

For p = 1/2 we get a linear lower bound on the size of satisfying partial assignments for a plain
random k-SAT formula: for any δ and λ ∈ (0, 1]

δ >
lnH(λ) − λ ln 2

ln
(

1 − (1 − λ/2)
k
) ⇒ P (minsat(Fk(n, δ)) ≤ λn) = o(1) as n → ∞. (22)

Setting λ = 1 we obtain the known upper bound for the random k-SAT satisfiability threshold
(see [5])

∆s(1/2, k, 1) = −
ln 2

ln (1 − 1/2k)
. (23)

Table 1 provides approximate values of ∆s(1− λ(1− p), k, λ) for k = 3 and k = 4 respectively.

Table 1. Approximate values of ∆s(1 − λ(1 − p), 3, λ).

λ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

p=0.2 0.256 0.670 1.266 2.108 3.314 5.088 7.789 12.000 18.263 22.385
p=0.3 0.238 0.605 1.110 1.783 2.675 3.855 5.413 7.419 9.705 10.204
p=0.4 0.220 0.545 0.976 1.526 2.216 3.068 4.095 5.269 6.406 6.346
p=0.5 0.203 0.489 0.860 1.325 1.897 2.592 3.414 4.335 5.215 5.191

5 Conclusion

In this paper we considered a skewed random k-SAT distribution and investigated the phase
transition behavior in this model. Empirical evidence for the satisfiability phase transition was
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presented. Further experiments suggest that even for a highly skewed random k-SAT distribution
the phase transition becomes sharp as the number of variables increases.

We proved an upper bound on the satisfiability threshold and a lower bound on the number of
literals in satisfying partial assignments for a skewed random k-SAT formula. For the considered
skewed distribution there is still a large gap between the observed threshold location and the proved
upper bound, so better bounds are still to be obtained. Lower bounds on the threshold and upper
bounds on the minimum number of literals in a satisfying partial assignment of a skewed random
k-SAT formula are needed to complete the picture.

Another interesting direction is to evaluate the computational hardness of skewed random k-
SAT formulas with respect to the skewness of the distribution for a fixed clause density. The
possible candidates for the maximum hardness are the non-skewed distribution and the skewed
distribution that undergoes the satisfiability phase transition at this clause density.
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