
QBF Reasoning on Real-World Instances

Enrico Giunchiglia, Massimo Narizzano, and Armando Tacchella?

DIST, Universit̀a di Genova, Viale Causa, 13 – 16145 Genova, Italy
{enrico,mox,tac }@dist.unige.it

Abstract. During the recent years, the development of tools for deciding Quantified Boolean Formu-
las (QBFs) has been accompanied by a steady supply of real-world instances, i.e., QBFs originated
by translations from application domains. Instances of this kind showed to be challenging for current
state-of-the-art QBF solvers, while the ability to deal effectively with them is necessary to foster adop-
tion of QBF-based reasoning in practice. In this paper we describe three reasoning techniques that we
implemented in our solver QUBE++ to increase its performances on real-world instances coming from
formal verification and planning domains. We present experimental results that witness the contribu-
tion of each technique and the better performances of QUBE++ with respect to other state-of-the-art
QBF solvers. The effectiveness of QUBE++ is further confirmed by experiments run on challenging
real-world SAT instances, where QUBE++ turns out to be competitive with respect to current state-of-
the-art SAT solvers.

1 Introduction

During the recent years, the development of tools for deciding Quantified Boolean Formulas (QBFs) has
been accompanied by a steady supply of real-word instances. Following the standard practice of SAT com-
petitions [1, 2], we consider as real-world the instances originated by translations from application domains
such as, e.g., Formal Verification [3, 4], Planning [5, 6], and Reasoning about Knowledge [7]. In the last
evaluation of QBF solvers [8], instances of this kind emerged as challenging benchmarks for the current
state-of-the-art tools: real-world benchmarks represented about 50% of the evaluation test set, and they con-
stituted about 95% of the “hard” instances, i.e., problems that could not be solved by any of the participants
within the allotted time. On the other hand, improving the capabilities of QBF tools for reasoning on real-
world QBF instances is necessary to foster the adoption of QBF-based approaches in the context of suitable
application domains.

In this paper we describe three reasoning techniques that we implemented into our solver QUBE++ to
increase its effectiveness on instances coming from formal verification and planning domains, two domains
we are particularly interested in. The techniques are:(i) efficient detection of unit and monotone literals
using lazy data structures as in [9];(ii) learning, as introduced in [10], with improvements that generalize
the techniques first used in SAT byGRASP[11]; (iii) a branching strategy that exploits information gleaned
from the input formula initially, and leverages the information extracted in the learning phase. Using formal
verification and planning benchmarks from the QBF evaluation [8], we conducted an experimental cam-
paign to highlight the relative efficiency of the above techniques, and of their combination: the results show
that each single technique contributes to the effectiveness of QUBE++ and that the resulting system is a
clear improvement over current state-of-the-art QBF solvers. QUBE++ is able to solve 10% of the instances
that defied all the participants in the QBF evaluation, and it is up to one, two, and nearly three orders of
magnitude faster than, respectively, QUBEREL, QUBEBJ andSEMPROP, i.e., the best QBF solvers on non-
random instances according to [8]. We have also tried QUBE++ on a test set of challenging real-world SAT
benchmarks together with QUBEREL, the previous best version of QUBE, andZCHAFF, the winner of
SAT 2002 competition [1] and one of the best solvers in SAT 2003 competition [2] on real-world SAT in-
stances. The results show that QUBE++ is able to conquer about 90% of the test set, and it loses, medianly,
only a factor of two fromZCHAFF, while QUBEREL, conquers only 50% of the test set and it is, medianly,
one order of magnitude slower thanZCHAFF.

The paper is structured as follows. We first present some formal preliminaries and the basic algorithm
of QUBE++. We devote three sections to the improvements on lookahead techniques, learning and the
branching strategy, respectively. We comment the results of the experiments outlining the effectiveness of
each technique and of the resulting system. We end the paper with some remarks.
? The authors wish to thank MIUR, ASI and the Intel Corporation for their financial support, and the reviewers who

helped to improve the original manuscript.

248 Enrico Giunchiglia, Massimo Narizzano, and Armando Tacchella

bool SOLVE(Q, Σ, Π, S)
1 do
2 〈Q′, Σ′, Π ′, S′〉 ← 〈Q, Σ, Π, S〉
3 〈Q, Σ, Π, S〉 ← LOOKAHEAD(Q′, Σ′, Π ′, S′)
4 while 〈Q, Σ, Π, S〉 6= 〈Q′, Σ′, Π ′, S′〉
5 if Σ = ∅ or ∅∀ ∈ Π then return TRUE

6 if ∅∃ ∈ Σ and Π = ∅ then return FALSE

7 l← CHOOSE-L ITERAL(Q, Σ, Π)
8 if l is existentialthen
9 return SOLVE(Q, Σ ∪ {l}, Π, S) or

SOLVE(Q, Σ ∪ {l}, Π, S)
10else
11 return SOLVE(Q, Σ, Π ∪ {l}, S) and

SOLVE(Q, Σ, Π ∪ {l}, S)

setLOOKAHEAD(Q, Σ, Π, S)
12while {l}∃ ∈ Σ or {l}∀ ∈ Π do
13 S← S ∪ {l}
14 Q← REMOVE(Q, |l|)
15 for eachc ∈ Σ s.t.l ∈ c do
16 Σ← Σ \ {c}
17 for eacht ∈ Π s.t.l ∈ t do
18 Π ←Π \ {t}
19 for eachc ∈ Σ s.t.l ∈ c do
20 Σ← (Σ \ {c}) ∪ {c \ {l}}
21 for eacht ∈ Π s.t.l ∈ t do
22 Π ← (Π \ {t}) ∪ {t \ {l}}
23 for eachl s.t.l 6∈ k for all k ∈ (Σ ∪Π) do
24 if l is existentialthen Σ← Σ ∪ {l}
25 elseΠ ←Π ∪ {l}
26 return 〈Q, Σ, Π, S〉

Fig. 1.Basic search algorithm of QUBE++.

2 Preliminaries

Consider a setP of propositional letters. Anatom is an element ofP . A literal is an atom or the negation
thereof. Given a literall, |l| denotes the atom ofl, andl denotes thecomplement of l, i.e., if l = a then
l = ¬a, and if l = ¬a thenl = a, while |l| = a in both cases. Apropositional formula is a combination
of atoms using thek-ary (k ≥ 0) connectives∧, ∨ and the unary connective¬. In the following, we use
> and⊥ as abbreviations for the empty conjunction and the empty disjunction respectively. AQBF is an
expression of the form

ϕ = Q1x1Q2x2 . . . QnxnΦ (n ≥ 0) (1)

where everyQi (1 ≤ i ≤ n) is a quantifier, either existential∃, or universal∀; x1 . . . xn are distinct atoms
in P, andΦ is a propositional formula.Q1x1Q2x2 . . . Qnxn is theprefix andΦ is thematrix of (1). A literal
l is existential, if ∃|l| is in the prefix, anduniversal otherwise. We say that (1) is inConjunctive Normal
Form (CNF) whenΦ is a conjunction ofclauses, where each clause is a disjunction of literals inx1 . . . xn;
we say that (1) is inDisjunctive Normal Form (DNF) whenΦ is a disjunction ofterms, where each term
is a conjunction of literals inx1 . . . xn. We use the termconstraints when we refer to clauses and terms
indistinctly. The semantics of a QBFϕ can be defined recursively as follows. If the prefix is empty, then
ϕ’s satisfiability is defined according to the truth tables of propositional logic. Ifϕ is ∃xψ (resp.∀xψ), ϕ is
satisfiable if and only ifϕx or (resp. and)ϕ¬x are satisfiable. Ifϕ = Qxψ is a QBF andl is a literal,ϕl is
the QBF obtained fromψ by substitutingl with > andl with ⊥.

3 QUBE++

In Figure 1 we present the pseudo-code of SOLVE, the basic search algorithm of QUBE++. SOLVE gen-
eralizes standard backtrack algorithms for QBFs by allowing mixed CNF/DNF instances, i.e., instances of
the kindQ1x1 . . . QnxnΦ, whereΦ = Ψ ∨ Θ, Ψ is a conjunction of clauses, andΘ is a disjunction of
terms. Even assuming thatΘ is initially ⊥, formulas of this kind arise during the learning process as shown
in [10]. SOLVE returnsTRUE if the input QBF is satisfiable andFALSE otherwise. In Figure 1, one can see
that SOLVE takes four parameters:Q is the prefix, i.e., the listQ1x1, . . . , Qnxn, Σ is the set of clauses
corresponding toΨ , Π is the set of terms corresponding toΘ, andS is a set of literals calledassignment
(initially S = ∅). In the following, as customary in search algorithms, we deal with constraints as if they
weresetsof literals. SOLVE works in three steps (line numbers refer to Figure 1):

1. Simplify the input instance with LOOKAHEAD (lines 1-4): LOOKAHEAD is iterated until no further
simplification is possible.

2. Check if the termination condition is met (lines 5-6): if the test in line 5 is true, thenS is a solution,
while if the test in line 6 is true, then aS is aconflict ; ∅∃ (resp.∅∀) stands for theempty clause (resp.
empty term), i.e., a constraint comprised of universal (resp. existential) literals only.

QBF Reasoning on Real-World Instances 249

3. Choose heuristically a literall (line 7) such that(i) |l| is in Q, and(ii) there is no other literall′ not
having the same quantifier of|l|, and occurring beforel in the prefix; the literal returned by CHOOSE-
L ITERAL is calledbranching literal.

4. Branch on the chosen literal: if the literal is existential, then anOR node is explored (line 9), otherwise
anAND node is explored (line 11).

Consider an instance〈Q,Σ,Π〉. In the following we say that a literall is:

– open if |l| is inQ, andassigned otherwise;
– unit if there exist a clausec ∈ Σ (resp. a termt ∈ Π) such thatl is the only existential inc (resp.

universal int) and there is no universal (resp. existential) literall′ ∈ c (resp.l′ ∈ t) such that|l′| is
before|l| in the prefix;

– monotone if for all constraintsk ∈ (Σ ∪Π), l 6∈ k.

Now consider the simplification routine LOOKAHEAD in Figure 1:{l}∃ (resp.{l}∀) denotes a constraint
which is unit inl, and REMOVE(Q,xi) returns the prefix obtained fromQ by removingQixi. The function
LOOKAHEAD has the task of finding and assigning all unit and monotone literals at every node of the search
tree. LOOKAHEAD loops until eitherΣ orΠ contains a unit literal (line 12). Each unit literall is added to
the current assignment (line 13), removed fromQ (line 14), and then it is assigned by:

– removing all the clauses (resp. terms) to whichl (resp.l) pertains (lines 15-18), and
– removingl (resp.l) from all the clauses (resp. terms) to whichl (resp.l) pertains (lines 19-22).

We say that an assigned literall (i) eliminates a clause (resp. a term) whenl (resp.l) is in the constraint,
and(ii) simplifies a clause (resp. a term) whenl (resp.l) is in the constraint. After assigning all unit literals,
LOOKAHEAD checks and propagates any monotone literal.

For the sake of clarity we have presented QUBE++ with recursive chronological backtracking. To avoid
the expensive copying of data structures that would be needed to saveΣ andΠ at each node, QUBE++
features a non-recursive implementation of the lookback procedure. The implementation is based on an
explicit search stack and on data structures that can assign a literal during lookahead and then retract the
assignment during lookback, i.e., restoreΣ andΠ to the configuration before the assignment was made.

4 Optimized lookahead

As reported by [12] in the case of SAT instances, a major portion of the runtime of the solver is spent
in the lookahead process. Running a profiler on a DPLL-based QBF solver like QUBE++ confirms this
result: on all the instances that we have tried, lookahead always amounted to more than 70% of the total
runtime. The need for a fast lookahead procedure is accentuated by the use of smart lookback techniques
such as learning [10], where the solver augments the initial set of constraints with other ones discovered
during the search. With learning, possibly large amounts of lengthy constraints have to be processed quickly,
otherwise the overhead will dwarf the benefits of learning itself. For these reasons, the implementation of
LOOKAHEAD in QUBE++ is based on an extension of the three literal watching (3LW) and the clause
watching (CW) lazy data structures as presented in [9] to detect, respectively, unit and monotone literals.
The description of CW and 3LW in [9] considers only the case whereΠ = ∅. In the following we give a
particular emphasis to the extensions that we have developed on top of the original algorithms in order to
handle the cases whereΠ 6= ∅.

In QUBE++ 3LW is organized as follows. For each constraint, QUBE++ has to watch three literalsw1,
w2 andw3: if the constraint is a clause, thenw1, w2 are existential andw3 is universal; otherwise,w1, w2

are universal andw3 is existential. Dummy values are used to handle the cases when a clause (resp. a term)
does not contain at least two existential (resp. universal) literals and one universal (resp. existential) literal.
3LW for clauses works in the same way as described in [9], while for terms it works as follows. Each time
a literall is assigned, the terms wherel is watched are examined. For each such term:

– If l is universal then, assumingl = w1:
• if w2 orw3 eliminate the term then stop;
• if w2 is open, then check the universal literals to see if there existsl∀ such thatl∀ 6= w2 andl∀ is

either open, or it eliminates the term; if so, letw1 ← l∀ and stop, otherwise check the existential
literals to see if there existsl∃ such that eitherl∃ eliminates the term orl∃ is beforew2 in the prefix;
if so, letw3 ← l∃ and stop, otherwise a unit literal (w2) is found;

250 Enrico Giunchiglia, Massimo Narizzano, and Armando Tacchella

• finally, if w2 is assigned (i.e.,w2 simplified the term) then check the existential literals to see if
there existsl∃ such thatl∃ eliminates the term; if so, letw3 ← l∃ and stop, otherwise an empty
term is found.

– If l is existential then, if bothw1 andw2 are open, or ifw1 orw2 are eliminating the term, then stop; if
eitherw1 orw2 is open (say it isw2) then check the existential literals to see if there existsl∃ such that
eitherl∃ eliminates the term orl∃ is beforew2 in the prefix; if so, letw3 ← l∃ and stop, otherwise a
unit literal (w2) is found.

By keeping separate account of existential and universal literals in the constraints, 3LW always performs
less operations than the other lazy data structures described in [9]. The 3LW algorithm is sound and com-
plete in the sense that it correctly identifies unit and empty constraints, and that it detects all such constraints
when they arise at a given node of the search tree.

The implementation of CW in QUBE++ is obtained by associating to each literal a single watched
constraint. When the watched constraint is eliminated during the search, a new constraint to be watched is
sought by scanning a list of constraints that QUBE++ maintains for each literal. If all the constraints where
l occurs are eliminated, thenl is pure and it can be propagated accordingly. The CW algorithm is sound and
complete in the sense that it correctly identifies monotone literals, and that it detects all such literals when
they arise at a given node of the search tree. The use of CW (and 3LW) speeds up the lookahead process by
examining fewer constraints, and the search process as a whole, by avoiding the bookkeeping work needed
by non-lazy data structures when assignments are retracted during backtracking.

Lazy data structures do not provide up-to-date information about the status of the formula, e.g, how
many constraints have been eliminated, or how many binary, ternary, etc. constraints are left. Therefore,
they have an impact on the implementation of QUBE++ and, in particular, on the termination condition
(when are all the clauses inΣ eliminated?) and on the search heuristic (how to score literals?). The first
issue is solved having QUBE++ try to assign all the literals: if no empty constraint is detected beforehand,
then a solution is found. As for the heuristic, the issue is more complicated and we have dedicated a sepa-
rate section to it. Despite these apparent limitations, we have run experiments using the real-world instances
from the QBF evaluation that confirm the effectiveness of lazy data structures vs. a non-lazy counterpart.
We compared QUBE++ vs. an early version of the system using a non-lazy data structure; both versions
featured chronological backtracking so that no advantage for fast exploration of large constraints sets is
expected for lazy data structures. Moreover, the version using non-lazy data structures keeps track of elim-
inated clauses, and therefore identifies solutions as soon as they arise. Even in this unfavorable setting,
lazy data structures are, on average, 25% faster then their non-lazy counterpart. Considering the ratio of
literal assignments vs. CPU time, lazy data structures perform, on average, two times more assignments per
second than a non-lazy data structure.

5 Learning

Only a minority of state-of-the-art QBF solvers uses standard chronological backtracking (CB) as lookback
algorithm (see [8]). This is not by chance, since CB may lead to the fruitless exploration of possibly large
subtrees where all the leaves are either conflicts (in the case of subtrees rooted at OR nodes) or solutions (in
the case of subtrees rooted at AND nodes). This is indeed the case when the conflicts/solutions are caused
by some choice done way up in the search tree. To solve this problem [13] introduced conflict backjumping
and solution backjumping (CBJ, SBJ) for QBFs. Using CBJ (resp. SBJ) the lookback procedure jumps
over the choices that do not belong to the reason of the conflict (resp. solution) that triggered backtracking.
Intuitively, given the QBF instance〈Q,Σ,Π〉, if S is a conflict (resp. a solution), then a reasonR is a subset
of S such that〈Q,Σ ∪ {l : l ∈ R},Π〉 (resp.〈Q,Σ,Π ∪ {R}〉) is logically equivalent to〈Q,Σ,Π〉.

Reasons are initialized when a conflict or a solution is detected, and they are updated while backtracking.
For details regarding this process, see [10]. With CBJ/SBJ reasons are discarded while backtracking over
the nodes that caused the conflict or the solution, and this may lead to a subsequent redundant exploration.
With learning as introduced for QBFs by [10], the reasons computed may be stored as constraints to avoid
repeating the same search. In particular, although learning did not emerge from the QBF evaluation as an
all-time winner [8], its effectiveness on real-world test cases is a consolidated result in the SAT literature
(see, e.g., [11, 14, 12]), and positive results have been reported also for QBF reasoning (see, e.g., [10, 15]).

The fundamental problem with learning is that unconstrained storage of clauses (resp. terms) obtained
by the reasons of conflicts (resp. solutions) may lead to an exponential memory blow up. In practice, it

QBF Reasoning on Real-World Instances 251

is necessary to introduce criteria(i) for limiting the constraints that have to be learned, and/or(ii) for
unlearning some of them. The implementation of learning in QUBE++ works as follows. Assume that
we are backtracking on a literall assigned at decision leveln, where thedecision level of a literal is the
number of AND-OR nodes beforel. The constraint corresponding to the reason for the current conflict
(resp. solution) is learned only if:

– l is existential (resp. universal),
– all the assigned literals in the reason exceptl, are at a decision level strictly smaller thann, and
– there are no open universal (resp. existential) literals in the reason that are beforel in the prefix.

Notice that these three conditions ensure thatl is unit in the constraint corresponding to the reason. Once
QUBE++ has learned the constraint, it backjumps to the node at the maximum decision level among the
literals in the reason, excludingl. We say thatl is aUnique Implication Point (UIP) and therefore the look-
back in QUBE++ is UIP-based. Notice that our definition of UIP generalizes to QBF the concepts first
described by [11] and used in the SAT solverGRASP. On a SAT instance, QUBE++ lookback scheme be-
haves similarly to the “1-UIP-learning” scheme used inZCHAFF and described in [16]. Even if QUBE++
is guaranteed to learn at most one clause (resp. term) per each conflict (resp. solution), still the number of
the learned constraints may blow up, as the number of backtracks can be exponential. To stop this course,
QUBE++ scans periodically the set of learned constraints in search of those that becameirrelevant, i.e.,
clauses (resp. terms) where the number of open literals exceeds a given parameterr. The method, called
relevance bounded learning and introduced for SAT solvers by [14], ensures that the number of learned
clauses and terms isO(mr), wherem is the number of distinct atoms in the input formula. In other words,
using relevance bounded learning ensures that the number of learned clauses (resp. terms) is polynomial in
the number of distinct existential (resp. universal) atoms in the input formula.

6 Branching strategy

The report by [8] lists the development of an effective heuristic for QBF solvers among the challenges for
future research. For our purposes, an heuristic is effective when it performs consistently better, on average,
than a simple random heuristic. To understand the nature of such a challenge, let us introduce QBFs in the
form

∃X1∀X2∃X3...∀Xn−1∃XnΦ (2)

where eachXi = xi1, . . . ximi , andQiXi stands forQixi1 . . . Qiximi . Running an heuristic on (2) amounts
to choosing an open literal among themi atoms available at theprefix level i, with the proviso that atoms
at prefix leveli must be assigned before we can choose atoms from prefix leveli + 1. Varyingn and each
of themi’s, we can range from formulas like

∃x1∀x2∃x3...∀xn−1∃xnΦ (3)

wheremi = 1 for everyi, to formulas like

∃x1∃x2 . . .∃xmΦ (4)

wheren = 1, i.e., (4) is a SAT instance. If we consider QBFs of the sort (3) then it is likely that the heuristic
is almost useless: unless an atom|l| is removed from the prefix becausel is either unit or monotone, the
atom to pick at each node is fixed. On the other hand, considering QBFs of the sort (4), we know from SAT
literature that nontrivial heuristics are essential to reduce the search space. In practice, QBF instances lay
between one of the extremes marked by (3) and (4), but instances like (3) are fairly uncommon, particularly
in real-world problems. For this reason, it does make sense to try to devise an heuristic for QUBE++,
but to make it effective, we must also minimize its overhead. This task is complicated further by the fact
that QUBE++ uses lazy data structures, and therefore the heuristic cannot efficiently extract complete and
up-to-date information about the formula. In order to accomplish this, we designed CHOOSE-L ITERAL

in QUBE++ to use the information gleaned from the input formula at the beginning of the search, and
then to exploit the information gathered during the learning process. This can be done with a minimum
overhead, and yet enable QUBE++ to make informed decisions at each node. The heuristic is implemented
as follows. To each literal we associate two counters, initially set to 0: the number of clausesc such that
l ∈ c, and the number of termst such thatl ∈ t. Each time a constraint is added, either because it is an

252 Enrico Giunchiglia, Massimo Narizzano, and Armando Tacchella

Fig. 2.Relative effectiveness of the techniques implemented in QUBE++.

input clause or a learned constraint, the counters are incremented; when a learned constraint is removed, the
counters are decremented. This generates a tiny overhead since constraints are examined anyway during the
learning/unlearning process. In order to choose a suitable branching literal, we arrange literals in a priority
queue according to(i) the prefix level of the corresponding atom,(ii) the score and(iii) the numeric ID.
In this way, atoms at prefix leveli are always before atoms at prefix levelsj > i, no matter the score;
among atoms that have the same prefix level, the open literal with the highest score comes first; ties are
broken preferring low numeric IDs. Choosing a branching literal is thus inexpensive, since it amounts to
picking the first literal in the priority queue. Periodically, we rearrange the priority queue by updating the
score of each literall: this is done by halving the old score and summing to it the variation in the number
of constraintsk such thatl ∈ k, if l is existential, or the variation in the number of constraintsk such that
l ∈ k, if l is universal. The variations are measured with respect to the last update. Rearranging the priority
queue is an expensive operation, and therefore QUBE++ does it only at multiples of a fixed threshold in the
number of nodes. In this way, the overhead of the update is amortized over as many nodes as the threshold
value. Clearly, an higher threshold implies less overhead per node.

7 Experimental results

To test the effectiveness of the techniques implemented in QUBE++ we used the set of 450 formal verifi-
cation and planning instances that constituted part of the QBF evaluation1: 25% of these instances are from
formal verification problems [3, 4], and the remaining are from planning domains [5, 6]. All the experiments
where run on a farm of PCs, each one equipped with a PIV 2.4GHz processor, 1GB of RAM, and running
Linux RedHat 7.2 .

In Figure 2 we compare the runtime and tries distribution of QUBE++ with QUBE++(3LW), QUBE++(CBJ/SBJ)
and QUBE++(RND), which are obtained from QUBE++ by switching off, respectively, MLF, UIP-based
learning and the branching strategy. Notice that we use tries as a CPU independent performance measure,
instead of branches. The number of tries is the number of times that a literal is assigned a value, for what-
ever reason, be it a choice of the heuristic, a unit literal, or a monotone literal. The number of branches is
always less than (or equal to) the number of tries, and tries are more informative than branches as a CPU
independent performance measure, because most of the overall run time of the solver is spent on assigning
literals (as reported, e.g., by [17]). Ordering the results of each solver independently and in ascending order
yields the two plots of Figure 2: the x-axis is an ordinal in the range (187-374) since we left out(i) the
problems that could not be solved within 900 seconds, and(ii) the values smaller than the median of the
distributions; the y-axis of Fig. 2 (left) is CPU seconds, while the y-axis of Fig. 2 (right) is the number
of tries, i.e., the number of literals assigned by QUBE++. By looking at Figure 2 we can see that all the
techniques contribute to the effectiveness of QUBE++. The most effective one, despite its substantial over-
head, is UIP-based learning: QUBE++ solves 40 instances more than QUBE++(CBJ/SBJ), and it is up to

1 Our test set is thus comprised of non-random instances without the QBF encodings of the modal K formulas submit-
ted by Guoqiang Pan [7].

QBF Reasoning on Real-World Instances 253

Fig. 3. QUBE++ vs. state-of-the-art QBF and SAT solvers.

more than two orders of magnitude faster. MLF comes second: QUBE++ solves 29 instances more than
QUBE++(3LW) and it is up to more than one order of magnitude faster. Notice that, despite the overhead
of MLF, the gap between QUBE++ and QUBE++(3LW) in terms of CPU time is wider than the corre-
sponding gap in terms of tries. This phenomenon is explained by the fact that switching off MLF causes
monotone literals to be propagated as branching literals, thus artificially inflating the number of nodes and
consequently the number of updates that the heuristic performs on its priority queue. Finally, the branching
strategy also helps in reducing the search space: QUBE++ solves 19 instances more than QUBE++(RND),
and it is up to one order of magnitude faster. If we restrict our attention to the 306 instances solved by all the
variants of QUBE++, it turns out that QUBE++ is faster than QUBE++(RND) and QUBE++(CBJ/SBJ)
on 243 of them (about 80%), and it is faster than QUBE++(3LW) on 213 of them (about 70%); in all the
problems where QUBE++ is slower than one of its variants its runtime is in any case less than 1 minute.

In Figure 3 (left) we show the results of a comparison between QUBE++ and the state-of-the-art QBF
solvers that were reported as best on non-random instances by [8]. In particular, we selected the three top
performers on these kind of instances:SEMPROP[18], QUBEBJ [13], and QUBEREL [10]. By looking
at Figure 3 (left) it is evident that QUBE++ advances the state of the art in the solution of real-world
QBFs. Within 900 seconds, QUBE++ solves 31, 43, and 69 more instances than QUBEREL, QUBEBJ,
andSEMPROP, respectively. Among these, QUBE++ is the only one able to solve 13 instances, of which 6
defied all the participants in the QBF evaluation [8]. Overall, QUBE++ is up to one, two, and nearly three
orders of magnitude faster than QUBEREL, QUBEBJ, andSEMPROP, respectively. A different view of these
results is obtained comparing QUBE++ and the SOTA solver, i.e., the best time ofSEMPROP, QUBEBJ and
QUBEREL run in parallel on three different processors. Focusing on a subset of 304 nontrivial benchmarks,
i.e., those where the run time of either QUBE++ or the SOTA solver exceeds10−1 seconds, we see that, on
197 instances, QUBE++ is as fast as, or faster than, the SOTA solver: the median CPU times ratio indicates
that QUBE++ is at least 3.7 times faster than the SOTA solver on half of these instances, while on 23 of
them the gap is more than one order of magnitude. On the remaining 107 instances, QUBE++ is slower
than the SOTA solver: on 8 of these instances, QUBE++ run time exceeds 900 seconds, whileSEMPROP,
QUBEBJ and QUBEREL manage to solve 4, 6, and 1 instances, respectively; on the remaining 99 instances,
the median CPU time ratio indicates that QUBE++ is at least a factor of 5 slower than the SOTA solver on
half of them, but the same value calculated separately for QUBEBJ, QUBEREL andSEMPROP, indicates that
QUBE++ is medianly as fast as QUBEREL andSEMPROPand about a factor of 2.5 slower than QUBEBJ. In
Figure 3 (right) we also checked the standing of QUBE++ with respect to the state of the art in SAT using
a set of 483 challenging real-world SAT instances. We compared QUBE++(3LW), QUBEREL, the best
state-of-the-art solver on real-world QBFs according to our experiments, andZCHAFF, the winner of SAT
2002 competition [1] and one of the best solvers in SAT 2003 competition [2] on real-world SAT instances.
We have used QUBE++(3LW) instead of QUBE++ since it is well known that MLF is not helpful in SAT
and, in our experiments, MLF degraded the performances of QUBE++ on most SAT instances. The results
show that QUBE++(3LW) is, medianly, only a factor of two slower thanZCHAFF, while QUBEREL is,
medianly, one order of magnitude slower thanZCHAFF. Overall, both QUBE++ andZCHAFF conquer
about 90% of the instances within 1200 seconds, while QUBEREL can solve only 50% of them. Considering

254 Enrico Giunchiglia, Massimo Narizzano, and Armando Tacchella

that QUBE++ has to pay the overhead associated to being able to deal with QBFs instead of SAT instances
only, it is fair to say that QUBE++ is effectively bridging the gap between SAT and QBF solvers, and that
this is mainly due to the techniques that we proposed and their combination.

8 Conclusions

In this paper we have described three reasoning techniques that combined into our solver QUBE++ con-
tributed to make it particularly effective on real world QBF instances coming from formal verification and
planning domains. According to our experiments, efficient monotone literal fixing, UIP-based learning and
adaptive branching strategies boost performances on their own and, combined together, enable QUBE++
to obtain order-of-magnitude improvements with respect toSEMPROP, QUBEBJ and QUBEREL which
ranked as the best solvers on real-world instances in the last QBF evaluation. QUBE++ effectiveness is
further confirmed by the fact that its performances are competitive with respect toZCHAFF on real-world
SAT instances.

References

1. L. Simon, D. Le Berre, and E. A. Hirsch. The SAT2002 Competition, 2002.
2. L. Simon and D. Le Berre. The essentials of SAT 2003 Competition. InSixth International Conference on Theory

and Applications of Satisfiability Testing (SAT 2003), volume 2919 ofLecture Notes in Computer Science. Springer
Verlag, 2003.

3. C. Scholl and B. Becker. Checking equivalence for partial implementations. In38th Design Automation Conference
(DAC’01), 2001.

4. Abdelwaheb Ayari and David Basin. Bounded model construction for monadic second-order logics. In12th Inter-
national Conference on Computer-Aided Verification (CAV’00), number 1855 in LNCS, pages 99–113. Springer-
Verlag, 2000.

5. J. Rintanen. Constructing conditional plans by a theorem prover.Journal of Artificial Intelligence Research,
10:323–352, 1999.

6. C. Castellini, E. Giunchiglia, and A. Tacchella. Sat-based planning in complex domains: Concurrency, constraints
and nondeterminism.Artificial Intelligence, 147(1):85–117, 2003.

7. Guoqiang Pan and Moshe Y. Vardi. Optimizing a BDD-based modal solver. InProceedings of the 19th Interna-
tional Conference on Automated Deduction, 2003.

8. D. Le Berre, L. Simon, and A. Tacchella. Challenges in the QBF arena: the SAT’03 evaluation of QBF solvers.
In Sixth International Conference on Theory and Applications of Satisfiability Testing (SAT 2003), volume 2919 of
Lecture Notes in Computer Science. Springer Verlag, 2003.

9. I. Gent, E. Giunchiglia, M. Narizzano, A. Rowley, and A. Tachella. Watched data structures for QBF solvers.
In Sixth International Conference on Theory and Applications of Satisfiability Testing (SAT’03), pages 348–355,
2003. Extended Abstract.

10. E. Giunchiglia, M. Narizzano, and A. Tacchella. Learning for quantified boolean logic satisfiability. InEighteenth
National Conference on Artificial Intelligence (AAAI’02). AAAI Press/MIT Press, 2002.

11. J. P. Marques-Silva and K. A. Sakallah. GRASP - A New Search Algorithm for Satisfiability. InProceedings of
IEEE/ACM International Conference on Computer-Aided Design, pages 220–227, November 1996.

12. M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering an efficient SAT solver.
In Proceedings of the 38th Design Automation Conference (DAC’01), pages 530–535, 2001.

13. E. Giunchiglia, M. Narizzano, and A. Tacchella. Backjumping for Quantified Boolean Logic Satisfiability. In
Seventeenth International Joint Conference on Artificial Intelligence (IJCAI 2001). Morgan Kaufmann, 2001.

14. R. J. Bayardo, Jr. and R. C. Schrag. Using CSP Look-Back Techniques to Solve Real-World SAT instances. In
Proc. of AAAI, pages 203–208. AAAI Press, 1997.

15. L. Zhang and S. Malik. Conflict driven learning in a quantified boolean satisfiability solver. InProceedings of
International Conference on Computer Aided Design (ICCAD’02), 2002.

16. L. Zhang, C. F. Madigan, M. W. Moskewicz, and S. Malik. Efficient conflict driven learning in a Boolean satisfia-
bility solver. In International Conference on Computer-Aided Design (ICCAD’01), pages 279–285, 2001.

17. E. Giunchiglia, M. Maratea, and A. Tacchella. (In)Effectiveness of Look-Ahead Techniques in a Modern SAT
Solver. In9th Conference on Principles and Practice of Constraint Programming (CP 2003), volume 2833 of
Lecture Notes in Computer Science. Springer Verlag, 2003.

18. R. Letz. Lemma and model caching in decision procedures for quantified boolean formulas. InProceedings of
Tableaux 2002, LNAI 2381, pages 160–175. Springer, 2002.

