Skip to main content

Discriminating Exanthematic Diseases from Temporal Patterns of Patient Symptoms

  • Conference paper
Artificial Intelligence in Medicine (AIME 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3581))

Included in the following conference series:

Abstract

The temporal dimension is a characterizing factor of many diseases, in particular, of the exanthematic diseases. Therefore, the diagnosis of this kind of diseases can be based on the recognition of the typical temporal progression and duration of different symptoms. To this aim, we propose to apply a temporal reasoning system we have developed. The system is able to handle both qualitative and metric temporal knowledge affected by vagueness and uncertainty. In this preliminary work, we show how the fuzzy temporal framework allows us to represent typical temporal structures of different exanthematic diseases (e.g. Scarlet Fever, Measles, Rubella et c.) thus making possible to find matches with data coming from the patient disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbod, M.F., von Keyserlinngk, D.G., Linkens, D.A., Mahfouf, M.: Survey of utilization of fuzzy technology in medicine and healthcare. Fuzzy Sets and Systems 120, 331–349 (2001)

    Article  MathSciNet  Google Scholar 

  2. Allen, J.F.: Maintaining knowledge about temporal intervals. Communications of the ACM 26, 832–843 (1983)

    Article  MATH  Google Scholar 

  3. Badaloni, S., Giacomin, M.: A fuzzy extension of Allen’s interval algebra. In: Lamma, E., Mello, P. (eds.) AI*IA 1999. LNCS (LNAI), vol. 1792, pp. 155–165. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  4. Badaloni, S., Giacomin, M.: Flexible temporal constraints. In: Proc. of IPMU 2000, Madrid, Spain, pp. 1262–1269 (2000)

    Google Scholar 

  5. Badaloni, S., Falda, M., Giacomin, M.: Integrating quantitative and qualitative constraints in fuzzy temporal networks. AI Communications 17, 183–272 (2004)

    MathSciNet  Google Scholar 

  6. Badaloni, S., Giacomin, M.: Fuzzy extension of interval-based temporal sub-algebras. In: Proc. of IPMU 2002, Annecy, France, pp. 1119–1126 (2002)

    Google Scholar 

  7. Badaloni, S., Giacomin, M.: The algebra IAfuz: a framework for qualitative fuzzy temporal reasoning (2005) (to appear)

    Google Scholar 

  8. Barro, S., Marín, R., Mira, J., Paton, A.: A model and a language for the fuzzy representation and handling of time. Fuzzy Sets and Systems 175, 61–153 (1994)

    Google Scholar 

  9. Barro, S., Marín, R., Palacios, F., Ruiz, R.: Fuzzy logic in a patient supervision system. Artificial Intelligence in Medicine 21, 193–199 (2001)

    Article  Google Scholar 

  10. Bouaud, J., Séroussi, B., Touzet, B.: Restoring the patient therapeutic history from prescription data to enable computerized guideline-based decision support in primary care. In: Proc. Medinfo 2004, pp. 120–124 (2004)

    Google Scholar 

  11. Dechter, R., Meiri, I., Pearl, J.: Temporal constraint networks. Artificial Intelligence 49, 61–95 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  12. Dubois, D., Fargier, H., Prade, H.: Possibility theory in constraint satisfaction problems: Handling priority, preference and uncertainty. Applied Intelligence 6, 287–309 (1996)

    Article  Google Scholar 

  13. Félix, P., Barro, S., Marín, R.: Fuzzy constraint networks for signal pattern recognition. Artificial Intelligence 148, 103–140 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  14. Godo, L., Vila, L.: Possibilistic temporal reasoning based on fuzzy temporal constraints. In: Proc. of IJCAI 1995, pp. 1916–1922 (2001)

    Google Scholar 

  15. Keravnou, E.T.: Temporal constraints in clinical diagnosis. Journal of Intelligent and Fuzzy Systems 12, 49–67 (2002)

    MATH  Google Scholar 

  16. Mahfouf, M., Abbod, M.F., Linkens, D.A.: A survey of fuzzy logic monitoring and control utilization in medicine. Artificial Intelligence in Medicine 21, 27–42 (2001)

    Article  Google Scholar 

  17. Marín, R., Cárdenas, M.A., Balsa, M., Sanchez, J.L.: Obtaining solutions in fuzzy constraint network. International Journal of Approximate Reasoning 16, 261–288 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  18. Meiri, I.: Combining qualitative and quantitative constraints in temporal reasoning. Artificial Intelligence 87, 343–385 (1996)

    Article  MathSciNet  Google Scholar 

  19. Rossi, F., Sperduti, A., Venable, K.B., Khatib, L., Morris, P., Morris, R.: Learning and solving soft temporal constraints: An experimental study. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, p. 249. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  20. Schwalb, E., Dechter, R.: Processing temporal constraint networks. Artificial Intelligence 93, 29–61 (1995)

    Article  MathSciNet  Google Scholar 

  21. Steimann, F.: On the use and usefulness of fuzzy sets in medical AI. Artificial Intelligence in Medicine 21, 131–137 (2001)

    Article  Google Scholar 

  22. Wainer, J., Sandri, S.: Fuzzy temporal/categorical information in diagnosis. Journal of Intelligent Information Systems 11, 9–26 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Badaloni, S., Falda, M. (2005). Discriminating Exanthematic Diseases from Temporal Patterns of Patient Symptoms. In: Miksch, S., Hunter, J., Keravnou, E.T. (eds) Artificial Intelligence in Medicine. AIME 2005. Lecture Notes in Computer Science(), vol 3581. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11527770_5

Download citation

  • DOI: https://doi.org/10.1007/11527770_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-27831-3

  • Online ISBN: 978-3-540-31884-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics