Skip to main content

Approximate Model-Based Diagnosis Using Preference-Based Compilation

  • Conference paper
  • 1004 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3607))

Abstract

This article introduces a technique for improving the efficiency of diagnosis through approximate compilation. We extend the approach of compiling a diagnostic model, as is done by, for example, an ATMS, to compiling an approximate model. Approximate compilation overcomes the problem of space required for the compilation being worst-case exponential in particular model parameters, such as the path-width of a model represented as a Constraint Satisfaction Problem. To address this problem, we compile the subset of most “preferred” (or most likely) diagnoses. For appropriate compilations, we show that significant reductions in space (and hence on-line inference speed) can be achieved, while retaining the ability to solve the majority of most preferred diagnostic queries. We experimentally demonstrate that such results can be obtained in real-world problems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. de Kleer, J.: An Assumption-based TMS. AI Journal 28, 127–162 (1986)

    Google Scholar 

  2. Darwiche, A.: A compiler for deterministic, decomposable negation normal form. In: Proceedings of the Eighteenth National Conference on Artificial Intelligence (AAAI), Menlo Park, California, pp. 627–634. AAAI Press, Menlo Park (2002)

    Google Scholar 

  3. Console, L., Portinale, L., Dupre, D.T.: Using Compiled Knowledge to Guide and Focus Abductive Diagnosis. IEEE Trans. on Knowledge and Data Engineering 8(5), 690–706 (1996)

    Article  Google Scholar 

  4. Darwiche, A.: Model-based diagnosis using structured system descriptions. Journal of Artificial Intelligence Research 8, 165–222 (1998)

    MATH  MathSciNet  Google Scholar 

  5. Bodlander, H.: Treewidth: Algorithmic techniques and results. In: Privara, I., Ružička, P. (eds.) MFCS 1997. LNCS, vol. 1295, pp. 29–36. Springer, Heidelberg (1997)

    Google Scholar 

  6. de Kleer, J.: Focusing on Probable Diagnoses. In: Proc. AAAI, pp. 842–848 (1991)

    Google Scholar 

  7. Sachenbacher, M., Williams, B.: Diagnosis as semiring-based constraint optimization. In: Proceedings of ECAI 2004, Valencia, Spain (2004)

    Google Scholar 

  8. Bistarelli, S., Montanari, U., Rossi, F.: Semiring-based constraint logic programming: syntax and semantics. ACM TOPLAS 23 (2002)

    Google Scholar 

  9. Bryant, R.E., Meinel, C.: Ordered binary decision diagrams. In: Hassoun, S., Sasao, T. (eds.) Logic Synthesis and Verification. Kluwer Academic Publishers, Dordrecht (2001)

    Google Scholar 

  10. Pargamin, B.: Extending Cluster Tree Compilation with non-Boolean Variables in Product Configuration. In: IJCAI (2003)

    Google Scholar 

  11. Selman, B., Kautz, H.: Knowledge compilation and theory approximation. Journal of the ACM 43, 193–224 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  12. del Val, A.: An analysis of approximate knowledge compilation. In: Proc. IJCAI, pp. 830–836 (1995)

    Google Scholar 

  13. Darwiche, A., Marquis, P.: Compilation of weighted propositional knowledge bases. In: Proceedings of the Workshop on Nonmonotonic Reasoning, Toulouse, France (2002)

    Google Scholar 

  14. Spohn, W.: Ordinal conditional functions: A dynamic theory of epistemic states. In: Harper, W.L., Skyrms, B. (eds.) Causation in Decision, Belief Change, and Statistics, pp. 105–134. Reidel, Dordrecht (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Provan, G. (2005). Approximate Model-Based Diagnosis Using Preference-Based Compilation. In: Zucker, JD., Saitta, L. (eds) Abstraction, Reformulation and Approximation. SARA 2005. Lecture Notes in Computer Science(), vol 3607. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11527862_13

Download citation

  • DOI: https://doi.org/10.1007/11527862_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-27872-6

  • Online ISBN: 978-3-540-31882-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics