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Abstract. Two object-oriented programming language paradigms—
dynamic, prototype-based languages and multi-method languages—
provide orthogonal benefits to software engineers. These two paradigms
appear to be in conflict, however, preventing engineers from realizing
the benefits of both technologies in one system. This paper introduces
a novel object model, prototypes with multiple dispatch (PMD), which
seamlessly unifies these two approaches. We give formal semantics for
PMD, and discuss implementation and experience with PMD in the dy-
namically typed programming language Slate.

1 Overview

We begin the paper by describing a motivating example that shows the limita-
tions of current, popular object-oriented languages for capturing how method
behavior depends on the interaction between objects and their state. The ex-
ample shows that multi-methods can cleanly capture how behavior depends on
the interaction between objects, while dynamic, prototype-based languages can
cleanly capture how behavior depends on object state. Unfortunately, unifying
highly dynamic, prototype-based languages with multi-methods is hard, because
traditional multi-methods assume a static class hierarchy that is not present in
dynamic prototype-based languages.

In section 3 we describe Prototypes with Multiple Dispatch (PMD), an object
model that combines the benefits of dynamic, prototype-based languages with
multi-methods. PMD supports both paradigms by introducing a role concept
that links a slot within an object to a dispatch position on a method, and
defining a dynamic multi-method dispatch mechanism that traverses the graph
of objects, methods, and roles to find the most specific method implementation
for a given set of receiver objects.

Section 4 defines the PMD model more precisely using operational semantics.
Section 5 demonstrates the expressiveness of PMD through the standard library
of Slate, a dynamically-typed language that implements the PMD object model.
Section 6 describes an efficient algorithm for implementing dispatch in Slate.
Section 7 describes related work, and section 8 concludes.



2 DMotivating Example

In this section, we use a simple running example to examine the benefits and
limitations of two current trends in object-oriented programming: prototype-
based languages and multi-method languages. Objects were originally invented
for modeling and simulation purposes, and our example follows this tradition by
modeling a simple ocean ecosystem.

class Animal {
abstract method encounter (other : Animal);
method swimAway (other : Animal) { ... }

}

class Fish inheriting Animal {
method encounter (other : Animal) {
if (other.isShark())
if (other.isHealthy())
swimAway () ;
}
}

class Shark inheriting Animal {
variable healthy : boolean;
method isHealthy() {
return healthy;
}
method swallow (other : Animal) { ... }
method encounter (other : Animal) {
if (isHealthy())
if (other.isFish())
swallow (other);
else if (other.isShark())
fight (other);
else
swimAway () ;
}
method fight (other : Shark) {
healthy := False;
}
}

Fig. 1. A simple inheritance hierarchy modeling an ocean ecosystem. The encounter
method illustrates behavior that depends both on an object’s class (Shark or Fish)
and its state (healthy or not). In conventional class-based languages, the behavior
specification is complex, imperative, and hard to extend with additional classes.

Figure 1 presents the running example in a conventional class-based language
like Java or C#. The inheritance hierarchy is made up of an abstract Animal
superclass and two concrete subclasses, Fish and Shark. An animal’s behavior
is defined by the encounter method. Fish swim away from healthy sharks, but
ignore other animals. If a shark is healthy, it will eat any fish it encounters
and fight other sharks; if the shark is not healthy it will swim away from other
animals. When a shark fights, it becomes unhealthy.



This example illustrates behavior that depends on both an object’s class
and its state, echoing many important real-world programming situations. For
example, a fish’s behavior depends on the type of animal that it encounters.
A shark’s behavior depends both on the type of animal it encounters and its
current health.

In this example, object-oriented programming is beneficial in that it allows
us to encapsulate a shark’s behavior within the shark code and a fish’s behavior
within the fish’s code. However, it also shows problems with current object-
oriented languages. The specification of behavior is somewhat complex and hard
to understand—even for this simple example—because the control structure within
the encounter methods branches on many conditions. The program is also rela-
tively hard to extend with new kinds of animals, because in addition to defining
a new subclass of Animal, the programmer must add appropriate cases to the
encounter methods in Fish and Shark to show how these animals behave when
they encounter the new type of animal.

2.1 Multiple Dispatch

A language with multi-methods dispatches on the classes of all the argument
objects to a method, rather than on just the class of the receiver. Multiple
dispatch is useful for modeling functionality that depends on the type of multiple
interacting objects.

Figure 2 shows the ocean ecosystem modeled using multi-methods. Instead
of being written as part of each class, multi-methods are declared at the top level
and explicitly include the first (or receiver) argument. Multi-methods dispatch
on all argument positions, so that one of four encounter methods can be called,
depending on whether the two animals are both sharks, both fish, or one of each
in either order.

Typically, multiple dispatch is resolved by picking the most specific method
that is applicable to all of the arguments, with a subtype relation among classes
determining this specificity. For example, if a fish encounters a shark, at least
two methods are applicable: the first method defined accepts a fish in the first
position and any animal in the second position, but the second is more specific,
accepting a fish in the first position but only sharks in the second position. In
this case the second method would be invoked because it is more specific.

In cases where two methods are equally specific, languages differ. Languages
like Cecil that use symmetric dispatch would signal a message ambiguous er-
ror [5], while languages like CLOS and Dylan would choose a method by giving
the leftmost arguments greater priority whenever the specificities of two methods
are compared [2, 8].

The example shows that multiple dispatch has a number of advantages over
single dispatch. It is more declarative, concise, and easy to understand, because
the control-flow branches within the encounter method have been replaced with
declarative object-oriented dispatch. It is more extensible, because the system
can be extended with new objects and new methods without changing existing



class Animal { }
method swimAway (animal : Animal) { ... }

class Fish inheriting Animal { }
method encounter (animal : Fish, other : Animal) { }
method encounter (animal : Fish, other : Shark) {
if (other.isHealthy())
swimAway (animal) ;

}

class Shark inheriting Animal {
variable healthy : boolean;
}
method isHealthy (animal : Shark) {
return animal.healthy;
}
method swallow (animal : Shark, other : Animal) { ... }
method encounter (animal : Shark, other : Fish) {
if (animal.isHealthy())
swallow (animal, other);
else
swimAway (animal) ;
}
method encounter (animal : Shark, other : Shark) {
if (animal.isHealthy())
fight (animal, other);
else
swimAway (animal) ;
}
method fight (animal : Shark, other : Shark) {
animal.healthy := False;
}

Fig. 2. Modeling the ocean ecosystem using multi-methods. Here, the encounter
method dispatches on both the first and second arguments, simplifying the control
structure within the methods and making the system more declarative and easier to
extend.

objects and methods. These advantages are similar to the advantages that object-
oriented programming brings relative to procedural programming.

However, there remain problems with the example, as expressed. It is still
awkward to express stateful behavior; this is still represented by the control
flow branches inside encounter methods. Furthermore, the code describing that
unhealthy sharks swim away from all other animals is duplicated in two different
encounter methods. This redundancy makes the program harder to understand,
and creates the possibility that errors may be introduced if the duplicated code
is evolved in inconsistent ways.

2.2 Prototype-Based Languages

Prototype-based languages, pioneered by the language Self [14], simplify the
programming model of object-oriented languages by replacing classes with pro-
totype objects. Instead of creating a class to represent a concept, the programmer
creates an object that represents that concept. Whenever the program needs an
instance of that concept, the prototype object is cloned to form a new object



that is identical in every way except its identity. Subsequent modifications to
the clone diverge from the original and vice versa.

Prototype-based languages also emphasize the step-wise construction of ob-
jects over a static and complete description. Methods may be added to an indi-
vidual object at any time, and in languages like Self, inheritance relationships
may also be changed at any time. This emphasis on incremental construction
occurs because objects are now self-sufficient entities that contain behavior as a
genuine component of their state, rather than being instances of a class which
merely describes their behavior for them.

object Animal;
object Fish;

object Shark;
object HealthyShark
object DyingShark

addDelegation (Fish, Animal);
addDelegation (Shark, Animal);
addDelegation (Shark, HealthyShark) ;

method Animal.swimAway () { ... }

method Fish.encounter(other) {
if (other.isA(HealthyShark))
swimAway () ;

}

method HealthyShark.swallow (other : Fish) { ... }

method HealthyShark.fight (other : Shark) {
removeDelegation (HealthyShark) ;
addDelegation(DyingShark) ;

}

method HealthyShark.encounter (other) {
if (other.isFish())
swallow (other)
else if (other.isShark())
fight (other)
}
method DyingShark.encounter (other) {
swimAway () ;

}

Fig. 3. Modeling the ocean ecosystem using a prototype-based language. Here, the
health of a shark is modeled by delegation to either the HealthyShark or the Dying-
Shark. These abstractions represent behavior more cleanly and declaratively compared
to the solutions described above.

Figure 3 shows how the ocean ecosystem can be expressed in a prototype-
based language. The programmer first creates a prototype Animal object, then
creates prototype Shark and Fish objects that delegate to the Animal.

The health of a Shark is represented by delegation to either a HealthyShark
object or a DyingShark object. These objects encapsulate the behavior of the
shark when it is healthy or dying, respectively. Sharks begin in the healthy



state, delegating to the HealthyShark object and thus inheriting its encounter
method. When a HealthyShark fights, the current object’s delegation is changed
from HealthyShark to DyingShark, and from that point on the shark inherits
the encounter method from DyingShark.

This example shows a strength of prototype-based languages: delegation can
easily be used to represent the dynamic behavior of an object. The behavior
can be changed dynamically when some event occurs simply by changing the
object’s delegation. Although we use dynamic inheritance as an illustration of
the malleability provided by prototype-based languages, other features of these
languages provide expressiveness benefits as well. For example, we could just as
easily have redefined Shark’s encounter method in the fight method to model
changes in health.

Despite the advantages that prototypes bring, some problems remain.
Like the original class-based code, the prototype-based implementation of the
encounter methods branch explicitly on the type of the object being encoun-
tered. As discussed earlier, this makes the code more difficult to understand and
harder to extend with new kinds of animals.

2.3 Discussion

The advantages of multiple dispatch and prototypes are clearly complementary.
Multiple dispatch allows programmers to more declaratively describe behavior
that depends on multiple interacting objects. Prototypes allow programmers to
more cleanly describe stateful behavior, in addition to other benefits accrued
by more malleable objects such as more accessible object representation, finer-
grained method definition, and arbitrary object extension.

Because of these complementary advantages, it is natural to suggest combin-
ing the two models. Such a combination is difficult, however, because multiple
dispatch depends on a predetermined hierarchy of classes, while prototypes gen-
erally allow a delegation hierarchy to change arbitrarily at any time.

Thus previous languages such as Cecil that combine these two models restrict
delegation and method definition to be relatively fixed at a global scope that may
be easily analyzed [5]. Unfortunately, restricting the manipulation of objects and
methods, without compensating with additional mechanisms, also eliminates
a key advantage of prototypes: the elevation of behavior to state. This fixed
delegation hierarchy and method definition becomes reminiscent of classes which
also, in general, emphasize this fixed inheritance and construction.

While other techniques for declaratively specifying the dependence of object
behavior on state do exist, [6,7,11], they are more complex and restricted than
dynamic inheritance and method update mechanisms in Self.

3 Prototypes with Multiple Dispatch

The contribution of this paper is describing how a dynamic, prototype-based
object model in the style of Self can be reconciled with multiple dispatch. Our



object Animal;
object Fish;

object Shark;

object HealthyShark;
object DyingShark;

addDelegation (Fish, Animal);
addDelegation (Shark, Animal);
addDelegation (Shark, HealthyShark) ;

method swimAway (animal : Animal) { ... }

method encounter(animal : Fish, other : Animal) /* A %/ { }
method encounter(animal : Fish, other : HealthyShark) /* B */ {
swimAway () ;

}

method swallow (animal : Shark, other : Fish) { ... }

method fight (animal : HealthyShark, other : Shark) {
removeDelegation(animal, HealthyShark);
addDelegation(animal, DyingShark);

}

method encounter (animal : HealthyShark, other : Fish) /*Cx/ {
swallow (other)

}
method encounter (animal : HealthyShark, other : Shark) /#D*/ {
fight (other)

method encounter (animal : DyingShark, other : Animal) /*Ex/ {
swimAway () ;

}

Fig. 4. Modeling the ocean ecosystem in Prototypes with Multiple Dispatch (PMD).
PMD combines multiple dispatch with a dynamic, prototype-based object model, lead-
ing to a declarative treatment of both state and dispatch.

object model, Prototypes with Multiple Dispatch (PMD), combines the benefits
of these two previous object models.

Animal

encounter:2 —> A
encounter:2 —>E

Fish Shark HealthyShark DyingShark
encounter:1 —> A encounter:2 —> D encounter:2 —> B encounter:1 —>E
encounter:1 —> B encounter:1 —> C

encounter:2 —> C encounter:1 —>D

Fig. 5. A conceptual view of prototypes with multiple dispatch.



Figure 4 shows the programmer’s view of PMD. The programmer creates
an object structure that mirrors the prototype code given earlier. When defin-
ing methods, however, the programmer declares all arguments (including the
receiver) explicitly, as in the multi-method code given earlier. Instead of giving
the class that each argument dispatches on, a prototype object is given.

The code in Figure 4 combines the best of both prototypes and multiple dis-
patch. As in the prototype case, the behavioral dependence on the health of the
shark is modeled as delegation to a HealthyShark or a DyingShark object. This
delegation can be changed, for example, if the shark is injured in a fight. At the
same time, behavioral dependence on multiple interacting objects is expressed
through multiple method declarations, one for each relevant case. In a sense, the
code is as clean and declarative as it could possibly be: no state variables or
control-flow branches remain.

3.1 Dispatch Model

The key insight that makes PMD work is that multi-methods must be internal-
ized into objects, rather than treated as external entities that dispatch across
a fixed inheritance hierarchy. Retaining a largely extrinsic dispatch process, as
in previous multi-method languages, inevitably restricts the capability of devel-
opers to manipulate the behavior of an object through dynamic inheritance or
method update.

In Self, methods are internalized by storing them in slots of the receiver
object. PMD cannot use this strategy, however, because a multi-method must
operate on multiple objects; there is no distinguished receiver.

We solve this challenge by introducing the concept of the role played by
a particular object in an interaction defined by a multi-method. Each multi-
method defines a role for each of its argument positions. For example, in the last
method of Figure 4, the encounter method’s first role is played by a DyingShark
object, while the second role is played by an Animal object.

Each object keeps track of which roles it plays for which multi-methods. Fig-
ure 5 shows the roles that different objects play in different encounter methods.
Animal plays the second role in two different encounter method bodies: the
ones marked A and E in the code above. Fish plays the first role in the first two
methods (since their first parameter dispatches on Fish) and the second role in
method C.

Dispatch occurs by searching the delegation hierarchy for inherited methods
with the right name and appropriate roles for each of the arguments. For exam-
ple, consider what happens when a fish encounters a shark that is healthy (i.e.,
still is delegating to the HealthyShark object). Fish can play the “encounterer”
role (role #1) in both methods A and B. The shark can play the “encounteree”
role (role #2) in methods A and E, inherited from Animal, method B, inher-
ited from HealthyShark, and method D, defined in the Shark object itself. Only
methods A and B will work for both roles. We choose the method to invoke
by ordering the delegations for a given object, in case there are multiple such
delegations.



A number of semantics are possible for determining the precedence of differ-
ent applicable methods. The semantics we chose implements a total ordering of
methods by considering (first) arguments farther to the left to take precedence
over arguments to the right, (second) multiple delegations within a single object
to be ordered according to the most recent time of definition, and (third) meth-
ods closer in the delegation hierarchy to the supplied method arguments to be
more precise.

We chose a total order rather than a partial order, as in Cecil [5], to avoid
the possibility of ambiguity in dispatch. A left-to-right ordering is standard,
as is the criteria of closeness in the dispatch hierarchy. We chose to prioritize
more recent delegations because this gives developers more flexibility to affect
the behavior of objects by adding a new delegation. We prioritize first on the
argument position, then on the ordering of delegations, then on the distance in
the delegation hierarchy, because this gives us a convenient depth-first search
algorithm to find the appropriate method (Section 6.1). This algorithm is both
more efficient and easier for a programmer to understand than a breadth-first
algorithm that would otherwise be required.’

4 Formal Model

This section provides a formal model of prototypes with multiple dispatch
through a new object calculus. Our calculus borrows ideas from several previous
object calculi, but the differences between PMD and previous object models are
too great to use a straightforward extension of a previous calculus. For example,
only one previous calculus that we know of supports imperative updates of meth-
ods [1]. However, this calculus, like most others [3], compiles away delegation by
simply copying methods from the delegatee into the delegator. This strategy
cannot possibly work in PMD because delegation can change after an object
is created. Thus, the representation of objects in the calculus must maintain
information about delegation to support this properly.

The most significant difference with all previous calculi is our modeling of
multiple dispatch through roles on objects; this makes the common approach
of modeling objects as records of methods inappropriate [9,1,3]. Although a
few object calculi model multi-methods [12,4], they all model multi-methods
as external functions that dispatch over a fixed dispatch hierarchy, while PMD
allows the developer to change the methods that are applicable to an object, as
well as to modify the inheritance hierarchy at run time.

We instead sketch an untyped, imperative object calculus, PMD (Prototypes
with Multiple Dispatch), that precisely describes the semantics of our proposed
object model. The main contributions of the model are formalizing multi-method
dispatch based on roles, and exposing the choices language designers have for

L If depth in the delegation hierarchy were considered first, for example, then simply
adding an extra layer of delegation would affect dispatch, which seems extremely
counterintuitive.



determining dispatching strategies. We hope that the calculus can be extended
with a type system, but this remains challenging future work.

l € locations possible object identities in the store

fu=AT.e lambda expressions defining a method body
en=2x bindings
| 1 locations that the store maps to objects
| es(€) invokes method identified by selector es upon arguments €

| es(€) « f defining a method at selector es; with body f, dispatching on €
| clone(e)  copies an object

| e>eq updates e to delegate to eq
| e f removes the last delegation that was added to e
vu=1 reduced values
d:==1 delegations
ra=(,1,f) roles contain a method selector, a method parameter index,

and a method body
O == ({d),{T}) objects contain a list of delegations and set of roles
Su=1l—0 store mapping object identity to representation

Fig. 6. The syntax of PMD. The notation Z denotes a syntactic sequence of z.

4.1 Syntax

Figure 6 explains syntax of PMD. This syntax provides lambda expressions for
defining method bodies, object construction through ordered delegation and
method definition, and roles that define the various connections between ob-
jects. As in Smalltalk [10], method selectors are themselves objects and can be
computed.

As PMD is an imperative calculus, the model further assumes a store map-
ping a store location, used to represent object identity, to an object’s representa-
tion. The object representation consists first of a sequence of locations denoting
the objects the particular object delegates to and then a set of roles identifying
the methods connected to the particular object.

The notation S[I] will be used to denote object representation corresponding
to the location [ in the store S, and the notation S|l — O] will be used to denote
the store S adjusted to map the location [ to the object representation O.

4.2 Example

Figure 7 presents the running example in the PMD calculus. It still retains all of
the conciseness and descriptiveness as the original PMD-inspired example and
differs little from it, despite being framed in terms of the lower-level calculus. The
PMD semantics sufficiently captures the mechanisms that lead to the minimal
factoring of the running example.



Animal & clone(Root)

Fish & clone(Root)

Shark < clone(Root)

HealthyShark = clone(Root)

DyingShark = clone(Root)

Fish > Animal

Shark > Animal

Shark > HealthyShark

encounter(Fish, HealthyShark) «— Azy.swimAway(x)
encounter(Fish, Animal) «— \zy.x
fight(HealthyShark, Shark) «— Azy.x p > DyingShark
encounter(HealthyShark, Fish) — Azy.swallow(z,y)
encounter(HealthyShark, Shark) «— Azy.fight(z,y)

Fig. 7. The example scenario represented in the formal model.

The example assumes the existence of a distinguished empty object Root
from which blank objects may be cloned as well as sufficient unique objects
defined to cover all method selectors used in the example. Otherwise, the example
remains a straight-forward translation of the earlier informal PMD example.

4.3 Dynamic Semantics

Figure 8 presents the core dynamic semantics of PMD. These reduction rules
take the form S F e — ¢/, S’, to be read as "with respect to a store S, the
expression e reduces in one step to ¢, yielding a new store S’”. The reduction
rules define method invocation, method definition, object cloning, and delegation
addition and removal. The congruence rules define the order of evaluation in the
standard way.

The rule R-Invoke looks up the body of the most applicable method, with
respect to a method selector and a sequence of method arguments, given by
the lookup function (defined below in Figure 9). The method arguments are
then substituted into the lambda expression/method body which is the result.
Substitution occurs as in the lambda calculus.

The rule R-Method defines a new method body, to be invoked with a given
selector, and dispatching on the given set of objects. A new role is added to each
object v;, stating that the object (or any object that delegates to it) can play
the 4th role in a dispatch on method selector vs to method body f. The object
representations are updated in the store to reflect this, yielding a new store.
The first condition ensures this definition is unique to the particular method
selector and arguments; there is no other method body defined upon this exact
invocation. The expression reduces to the first argument here only to simplify
presentation. We omit a rule for method removal for brevity’s sake, which would
be a straight-forward inversion of this particular rule.



Reduction Rules

lookup(S, vs, V) = AT.e

ST 0s(0) — [o/7]e, & T invoke
A (Yo<i<n (So [vz] = (- ><7_~;L (5,3, f)}1))
. Si[vi] = ((d) . {T}) ) )
Vo<i<n A Siv1 = [ _ <d>, 7, (Us,z f) })] R-Method
SoFvs(vo -+ vn) — f < vo,Snt1
S]=0 I & dom(S) S =S~ O]
S+ clone(v) — 1,8 R-Clone
Sl =7 5 =5 = (40, D] g pddDetegation
Sl =({do---dn), {F}) n>0
"=8Sw— ({do-- 1),{T})]  R-RemoveDelegation
Skuv pf— dn, S’
Congruence Rules
Skes—el S Skes—el S
Stes(e) = es(e), Stes(E) — f—e@«—f5

Ste — e, S
! !
S vs(vo- - vic1, €4, €41 €n) = Vs(Vo -+ Vim1, €}, €41 €n), S

Ske—e,S
! !
St vs(vo--vic1,€i €41 €n) — f = vs(vo- - vic1,€f, €41 €n) — f,S

Ske,—el, S
Ske,>e; — e e, S

Ske —e;, S Ske,—el,S
SkFube —vnel, S Ste, p—e, p,5

Fig. 8. The dynamic semantics of PMD.

Note that method definition here affects intrinsic properties of the supplied
argument objects’ representations, rather than appealing to some extrinsic se-
mantic device. This becomes significant in the rule R-Clone, which provides
the ubiquitous copying operation found in prototype-based languages. To en-
sure that the copied object, which bears a new location and representation in
the store, responds to all method invocations in similar fashion as the original
object, the rule only needs to do duplicate the list of delegations and set of roles.
This simple duplication of relevant dispatch information in turn simplifies the
implementation of these semantics.



The rules R-AddDelegation and R-RemoveDelegation together manip-
ulate the ordered list of delegations of an object in stack-like fashion. The rule
R-AddDelegation adds a target object as a delegation to the top of the or-
dered list of delegations of the origin object. The rule R-RemoveDelegation
removes the top of this ordered list and returns the removed delegation tar-
get. These two particular rules were merely chosen to simplify presentation, and
other alternative rules allowing for arbitrary modification of the list are certainly
possible.

4.4 Dispatch Semantics

f € applic(S,vs,T)
vf’6applic(S,wS,5) (f = fl V Tank(sv f: ’US,E) < Tank(S7 flz ’Usvﬁ)) R'LOOkup
lookup(S,vs,v) = f

_ delegates(S, 1)7;)_: (do-++dm) N\
VOSZS” <HO§k§m (S [dk] = (<dl> ) { ) (US, i, f)})) ) }

applic(S,vs,vo - - vn) < {f

rank(S, f,vs,vo - vn) et [T min {k

0<i<n0Sksm

delegates(S,vi) = (do - -+ dm) }
/\S[dk] = (<dl> ) { T (Us,i, f)})

Fig. 9. The dispatch semantics of PMD.

Figure 9 presents the dispatch semantics provided by the lookup function.
The rule R-Lookup is a straight-forward transcription of the idea of multiple
dispatch. It states that a method body should be dispatched if it is applicable - a
member of the set of applicable methods - and it is the most specific of all such
method bodies, or rather, is the least method body according to an operator
that compares the applicable method bodies. The rank function and < operator
together implement this comparison operator.

We then define the applic set of methods as those methods for which every
argument either contains a satisfactory role for the method, or delegates to
an object with such a role. A role here is satisfactory if index of the method
argument on which it is found matches that in the role, and the method selector
matches that in the role as well. This definition relies on the delegates function,
which returns an ordered list of all delegated-to objects transitively reachable by
the delegation lists in objects, and including the original method argument itself.
In the case of a statically-fixed delegation hierarchy, this rule exactly mirrors the
applicability criteria in previous multi-method languages such as Cecil, Dylan
and CLOS.

Note that because of the first condition of R-Method, only one method
body can be directly defined on a tuple of objects at a particular selector. Thus,
in the absence of delegation, dispatch is trivial since the applicable set of methods



contains at most a single method body. Ranking the applicable methods is thus
a necessary consequence of delegation.

Finally, the rank function, conceptually, finds, among those methods in the
applic set, the distance at which the roles corresponding to some method ap-
peared. Given the ordered list of delegates for an argument described above, it
determines the minimal position at which a delegated-to object contains a sat-
isfactory role corresponding to the method. The [ operator, which also param-
eterizes the rank function, combines these minimal positions for each argument
and produces a single rank value - conceptually, a n-dimensional coordinate in
the ranking. The total ordering given by the delegates function facilitates the
ordering that rank provides, without which these semantics would be trickier to
define.

We assume here that a particular method body is unique to a single method
definition. So, in the absence of the rule R— Clone, for a specific method selector
and parameter index, there can only exist a single satisfactory role correspond-
ing to that particular method body. However, since we do include R — Clone,
and a role may thus be copied to another object, multiple satisfactory roles cor-
responding to the method body exist and the closest role among them in the
delegates ordering is chosen.

We leave the delegates function, the < operator, and the [] operator un-
defined. The reader may define these arbitrarily to suit their intended dispatch
semantics. Slate’s semantics for these operators are defined along with Slate’s
dispatch algorithm in Section 6.1.

5 Slate

Prototypes with Multiple Dispatch has been implemented in Slate [13], a dynam-
ically typed programming language. Self [14], Cecil [5], and CLOS [2] directly
inspired the design of Slate and the PMD model on which it is based. How-
ever, due to the retained flexibility of prototypes in PMD, Slate most strongly
resembles Self and retains much of its language organization without greatly
compromising its simple object model.

The following section provides a taste of the Slate language through small
case studies describing how the implementation of the Slate standard library
within Slate either benefits or suffers from various aspects of PMD in actual use.

5.1 Brief Overview

The syntax and system organization of Slate strongly resembles Self and so
should be discernable to the reader if moderately familiar with Self or even
Smalltalk [10]. We omit discussion at length of Slate’s syntax, as it is presented
more extensively elsewhere [13]. However, we still provide the following small case
studies in Slate, as some are slightly difficult to improvise in a more common
syntax.



For readers familiar with Smalltalk or Self who wish to examine the various
examples more closely, we provide a brief overview of some of the more confusing
aspects of the syntax.

Method definition simply affixes a block (the method body) to the
normal message syntax, with the arguments also qualified with pa-
rameter bindings. These qualified message arguments are of the form
“parameterName @ roleArgument”, with “roleArgument” identifying the ar-
gument to method definition wherein to place a role, and “parameterName”
being a variable bound when the method body is actually applied. If the mes-
sage argument is merely of the form “parameterName”, this behaves as if the
role were placed on the distinguished object “Root” to which most other objects
in Slate delegate. The presence of atleast one fully qualified parameter is what
signals a method definition in the grammar as opposed to a method invocation.

Some important messages to be used in the subsequent examples include:

resend Resends the message that invoked the current method while ignoring
any methods of greater or equal precedence in the dispatch order than the
current method during dispatch.

prototype clone Returns a new copy of “prototype” that contains all the
same slots, delegation slots, and roles.

object addSlot: name valued: initialValue Adds a new slot to “object”
and defines the method “name” with which to access its value and the method
“name:” with which to set it. “name” must evaluate to a symbol. The slot’s
value is initially “initialValue”.

object addDelegate: name valued: initialValue This method behaves ex-
actly like “addSlot:valued:”, except only that the slot is treated as a del-
egation slot. The value of the delegation slot is treated as an object that
“object” delegates to.

object traits Accessor message for the “traits” delegation slot, which holds
an object sharing method roles for a whole family of “clone”-d objects.

block do Evaluates “block”.

collection do: block Evaluates “block” with each element of collection
“collection” supplied in turn as an argument.

cond ifTrue: trueBlock ifFalse: falseBlock Evaluates  “trueBlock” if
“cond” evaluates to “True”, or instead “falseBlock” if it evaluates to
“False”.

5.2 Example: Instance-specific Dispatch

Instance-specific dispatch is an extensively used idiom in Slate. Yet, it is intrin-
sically supported by PMD, since it is purely based on prototypes, and requires
no special handling in Slate.

When combined with multiple dispatch, it begins to strongly resemble
pattern-matching while still within an object-oriented framework. For exam-
ple, much of the boolean logic code in Slate is written in a strikingly declarative
form using instance-specific dispatch:



_Q@True and: _@True [True].

_Q@(Boolean traits) and: _@(Boolean traits) [False].
_QFalse or: _@False [False].

_@(Boolean traits) or: _@(Boolean traits) [True].

The code dispatches directly on “True” and “False” to handle specific cases. It
then defines methods on “Boolean traits” to handle the remaining default cases.

5.3 Example: Eliminating Double Dispatch

Smalltalk [10] and similar languages based on single dispatch typically rely on an
idiom called “double dispatch” to work around the limitations this model imposes.
Double dispatch bottles up dispatch code for a second or subsequent argument of a
method either directly within the method dispatching on the distinguished receiver or
is manually factored into a dispatch object written by the programmer.

This idiom frequently surfaces in such places as Smalltalk numerics system and
makes it a chore to integrate new numeric entities into the system. All the double
dispatch code, distributed among many diverse classes, must be updated to take the
new entity into account where necessary.

Slate natively supports multiple dispatch and does not fall victim to these limi-
tations. It is relatively simple to extend Slate’s numerics system while keeping these
extensions well-encapsulated and without needing global changes to other objects. For
example, the following code illustrates how an epsilon object, a negligibly small yet
non-zero value, may be easily integrated:

numerics addSlot: #PositiveEpsilon valued: Magnitude clone.

_@PositiveEpsilon isZero

[False].

_QPositiveEpsilon isPositive

[True] .

x@(Magnitude traits) + _@PositiveEpsilon

[x].

It is also common in Smalltalk to find many methods such as “asArray” or
“asDictionary” for converting a certain object to the type indicated by the message
name. This is, in effect, the programmer manually performing the double dispatch.

With the aid of PMD, Slate easily supports a more expressive and uniform protocol
for coercing objects of one type to another via the message “as:”. The object to convert
is supplied along with an instance (as opposed to a class) of some object type the
programmer would like the original to coerce to. To define coercions, the programmer
need only define a particular method for his new objects as in the following code:

x@(Root traits) as: y@(Root traits)
[(x isSameAs: y)

ifTrue: [x]

ifFalse: [x conversionNotFoundTo: yl
1.
c@(Collection traits) as: d@(Collection traits)
[d newWithAll: c].
s@(Sequence traits) as: ec@(ExtensibleCollection traits)
[l newEC |

newEC: (ec newSizeOf: s).

newEC addAll: s.

newEC
1.
s@(Symbol traits) as: _Q(String traits)
[s name].



5.4 Example: Supporting System Reorganization

Another benefit of using a prototype object system as the language core is that it easily
supports reorganizing the language to support new features or remodel old ones.

For instance, Slate uses a depth-first search strategy for finding roles on delegated-
to objects. Whichever roles are found first according to this order take precedent over
ones found later. However, this simplistic scheme, while allowing an efficient dispatch
algorithm and providing the illusion of single inheritance, easily becomes inappropriate
in the presence of multiple inheritance.

ReadWriteStream traits

parentl
ReadWriteStream parent2

WriteStream traits ReadStream traits

R

Stream traits

Fig. 10. Slate’s original traits inheritance model. Multiple inheritance occasionally
results in problems with sequencing methods.

Figure 10 illustrates the problem. A ReadWriteStream is derived from both a
WriteStream and a ReadStream, and so its traits object delegates to both of their traits
objects as well. ReadStream, in particular, might override a method “next” on the ba-
sic Stream prototype. However, should the dispatch algorithm visit ReadWriteStream’s
traits, WriteStream’s traits, ReadStream’s traits, and Stream traits in that order,
the “next” method on Stream will resurface and take precedence over the version on
ReadStream. Ideally, the search should proceed topologically, so that Stream’s traits
object is visited only after both WriteStream’s and ReadStream’s traits objects have
been visited.

This behavior became severely confusing at times, yet merely throwing an error in
this case forces the programmer to manually disambiguate it by defining a new method.
Instead of adding a barrier to object reuse, a simple reorganization of the traits object
system, still only replying upon native delegation and dispatch of PMD, allowed a
much more satisfactory behavior.

Instead of having traits directly delegate to their parent traits, an extra layer of
indirection was added in the form of a traits window. Objects now delegate to this



ReadWriteStream traits

WriteStream traits

ReadWriteStream ReadWriteStream traitswini
: : traits
traitswindow .
traits2

traits3 . » ReadStreamtraits

Stream traits

Fig.11. Slate’s new traits inheritance model allows the more desirable topological
sequencing of methods.

window instead of directly to traits, and this window merely keeps a list of traits in
the exact order they should be visited by the dispatch algorithm. This has the added
benefit that even orderings that are expensive to compute and might otherwise defeat
various optimizations Slate uses to enhance the performance of dispatch may be freely
used and customized at a whim without any negative impacts. Figure 11 illustrates
this new organization.

Yet, because Slate is based upon a prototype object system, this did not require
any profound changes to the language’s implementation to effect this new organization.
Most of the changes were localized within the standard library itself, and mostly to
utility methods used to construct new prototypes. Only a few lines of code in the
interpreter itself that depended on the structure of certain primitively provided objects
needed revision.

5.5 Example: Subjective Dispatch

In earlier work on the Self extension Us [15], it was noted that any language possessing
multiple dispatch can easily implement subjective dispatch similar to that provided by
Us. In this view of subjective dispatch, a subject is merely an extra implicit participant
in the dispatch process, supplied in ways other than directly via a message invocation.

As PMD provides multiple dispatch, Slate supports subjective dispatch of this sort
with some slight changes to its semantics. It need maintain a distinguished subject
in its interpreter state, which is implicitly appended to the argument lists of message
invocations and method definitions whenever either is evaluated within this subject.
The interpreter also provides a primitive message “changeSubject:” to modify the
current subject. The semantics of Slate otherwise remain unchanged.



Further, prototypes naturally support composition of subjects by delegation, al-
lowing for a sort of dynamic scoping of methods by merely linking subjects together
with dynamic extent. The message “seenFrom:” is easily implemented to this effect:

addSlot: #Subject valued: Cloneable clone.
Subject addDelegate: #label.
Subject addDelegate: #previousSubject.

m@(Method traits) seenFrom: label
[l newSubject |
newSubject: Subject clone.
newSubject label: label.
newSubject previousSubject: (changeSubject: newSubject).
m do.
changeSubject: newSubject previousSubject

This subjective behavior can easily allow for the implementation of cross-cutting
aspects of a program. The following code illustrates this through the implementation of
an undoable transaction, which works by intercepting any modifications to objects via
the message “atSlotNamed:put”, logging the original value of the slot, then allowing
the modification to proceed:

addSlot: #Transaction valued: Cloneable clone.
Transaction addSlot: #undo valued: ExtensibleArray newEmpty.
Transaction addSlot: #replay valued: ExtensibleArray newEmpty.

t@Transaction log: object setting: slot to: newValue
[l oldvalue |
oldValue: (object atSlotNamed: slot).
t undo addLast: [object atSlotNamed: slot put: oldValue].
t replay addLast: [object atSlotNamed: slot put: newValue].

t@Transaction undo

[t undo reverseDo: [| :action | action doll.
t@Transaction replay

[t replay do: [| :action | action dol].

[object atSlotNamed: slot@(Symbol traits) put: value
[Transaction log: object setting: slot to: value.
resend
1.

] seenFrom: Transaction.

6 Dispatch in Slate

Many optimizations have been explored to enhance the performance of programs in
Slate. This section details implementation strategies used in Slate and that may be
applied to implementations of PMD for other languages.

6.1 Dispatch Algorithm

The formalization presented in the previous section leaves open a number of practical
considerations about how to implement the core dispatch algorithm of PMD. These is-
sues include determining the proper order of delegations, the candidate set of methods
that may be applicable, and finally, the ranks of these methods and how to repre-
sent them. Various optimizations also expediently reduce the memory and processing
requirements of the algorithm.



dispatch(selector, args, n) {
for each index below n {
position := 0
push args[index] on ordering stack
while ordering stack is not empty {

arg := pop ordering stack
for each role on arg with selector and index {
rank[role’s method] [index] := position

if rank[role’s method] is fully specified {
if no most specific method
or rank[role’s method] < rank[most specific method] {
most specific method := role’s method
X
}
}
for each delegation on arg {
push delegation on ordering stack if not yet visited

}
position := position + 1
}
¥
return most specific method

}

Fig. 12. Pseudo-code for the basic dispatch algorithm used in Slate.

The programming language Slate serves as a canonical implementation of PMD
and utilizes a dispatch algorithm geared toward a lexicographic ordering of methods
and a number of optimizations, including efficient encoding of rank vectors, sparse
representation of roles, partial dispatch, and method caching. Slate’s dispatch algorithm
shall guide and motivate subsequent implementation discussion.

Figure 12 outlines in pseudo-code a basic version of the dispatch algorithm. The
comparison operator < is as in the formalism and may be chosen to implement either
a partial or lexicographic ordering as desired, the latter of which is used in Slate.
The order in which delegations from a given object are pushed onto and popped from
the ordering stack, analogous to the delegates function in the formalism, determines
the ordering under multiple and non-trivial delegation and should be chosen as is
applicable to the implementation. A simple vector of positions in a rank here provides
the [] operator of the formalism. If one overlooks the necessary bookkeeping for rank
vectors, this algorithm strikingly resembles the message lookup algorithm utilized by
Self.

The process for constructing a depth-first ordering of delegations is straight-
forward. One maintains a stack of visited but not yet ordered objects from which
elements of the ordering are drawn. If the host language allows cyclic delegation links,
one also need maintain a set of objects already visited, easily represented by marking
the objects directly, to avoid traversing the same delegation twice. If one further as-
sumes object structure is represented by maps, as in Self, or classes, this visited set
may be stored on a per-map or per-class basis without loss. The stack is then processed



by popping objects off the top, assigning them the next position in the ordering, and
then pushing all their delegations onto the stack unless they were already visited.

Role information is stored directly on the objects themselves (or their map or
class) and each role identifies a potentially applicable method, or rather, a method
that is supported by at least one of the arguments to the method invocation. One
may conveniently collect all the candidate methods and their ranks while determining
the delegation ordering, merely traversing an object’s roles, for the given argument
position and method selector, as it is popped off the ordering stack. An auxiliary table,
which may be cheaply distributed among the methods themselves, stores the currently
determined rank vector of the method, augmenting the method invocation argument’s
respective component of the rank vector with the current position in the delegation
ordering. When a method’s rank becomes fully determined, the method is noted as the
most specific method (found so far) if its rank is less than the previously found most
specific method, or if it is the first such method found. Once the delegation stack has
been fully processed for each method invocation argument, the resulting most specific
method, if one exists, is a method whose rank is both minimal and fully specified at
all argument positions.

6.2 Rank Vectors

One may represent rank vectors themselves efficiently as machine words, with a fixed
number of bits assigned to each component up to some fixed number of components.
If one assumes method arguments have lexicographical ordering, then simple integer
comparisons suffice to compare ranks, where more significant components are placed
in more significant bits of the integer represented in the machine word. However, if
one assigns each component of the rank number a fixed number of representation bits
and if the rank vectors themselves are fixed size, the maximum length of a delegation
ordering that may be reflected in each component is also effectively fixed as well as the
maximum number of method parameters. One need only provide a fall-back algorithm
using arbitrary precision rank vectors in case the ordering stack overflows or if an
excessive number of arguments are present at a method invocation. Anecdotally, the
majority of methods contain small numbers of parameters and inheritance hierarchies
(and similarly delegation hierarchies) are small, so this fall-back algorithm is rarely
necessary, if ever.

6.3 Sparse Representation of Roles

In Slate, the delegation hierarchy is rooted at one specific object so that certain methods
may be defined upon all objects. However, since this object always assumes the bottom
position in the delegation ordering, any roles defined upon it will always be found and
always be the least specific such roles with respect to other roles with the same method
selector and argument position. These roles do not aid in disambiguating the specificity
of a given method since they occupy the bottom of the ordering and, in effect, contribute
no value to the rank vector.

The majority of methods in the Slate standard library dispatch on the root object
in most arguments positions, so representing these roles needlessly uses memory and
adds traversal overhead to the dispatch algorithm. In the interests of reducing the
amount of role information stored, one need not represent these roles if one identifies,
for each method, the minimum set of roles that need be found for a rank vector to



be fully specified and so allows the size of this set of roles to be less than the number
of actual method parameters. This set of roles does not contain any roles specified on
the root object. A method is now applicable when this minimum set of roles is found
during dispatch, rather than a set of roles corresponding to all method parameters. In
the interests of reducing duplication of information, Slate stores information about the
size of this minimum set of roles on the method object linked by these roles.

6.4 Partial Dispatch

Because of Slate’s sparse representation of roles, the dispatch algorithm may determine
a method to be applicable, or rather, its minimal set of roles may be found, before it
has finished traversing the delegation orderings of all argument positions. The basic
algorithm, however, requires that the entire delegation ordering of all arguments be
scanned to fully disambiguate a method’s specificity and ensure it is the most specific.
The majority of methods in the Slate standard library not only dispatch on fewer non-
root objects than the number of method parameters, but only dispatch on a single non-
root object, and are, in effect, only singly polymorphic. Scanning the entire delegation
orderings for all objects under such conditions is wasteful and needless if an applicable
method is unambiguously known to be the most-specific method and yet dispatch still
continues.

The key to remedying this situation is to take advantage of Slate’s lexicographic
ordering of method arguments and also note that a role not only helps identify an
applicable method, but a role also indicates that some method is possibly applicable in
the absence of information about which other roles have been found for this method.
If no roles corresponding to a method are found, then the method is not applicable. If
at least at least one role corresponding to a method is found, then this method may
become applicable later in the dispatch and effect the result should its determined rank
vector precede the rank vectors of other applicable methods.

Dispatch in Slate traverses method arguments from the lexicographically most sig-
nificant argument to the least significant argument. So, for any role found, its con-
tribution to the rank vector will necessarily decrease with each successive argument
position traversed. If some method is known to be the most specific applicable method
found so far, and a role for a contending method is found whose contribution to its
respective rank vector would still leave it less specific than the most specific method,
then no subsequent roles found for the contending method will change the method
result as they contribute lexicographically less significant values. Thus, one only need
maintain the partial rank vector, representing the contention for most specific method,
corresponding to the lexicographically most significant roles found up to the current
point of traversal. If any applicable method’s rank vector precedes this partial rank
vector, then it is unambiguously the most specific method, since there are no other
more specific methods that may later become applicable.

For example, if one method singly dispatches on the Shark prototype, and another
similarly named method dispatches on the Animal prototype in a lexicographically
less significant or equally significant argument position, then dispatch will determine
the Shark prototype’s method to be applicable as soon as the Shark prototype is
traversed and before traversing the Animal prototype. If no other roles were found at
lexicographically more significant positions, or on preceding objects in the delegation
ordering for the lexicographically equal argument position, then there is no possible
contention for the resulting most specific method, and the Shark prototype’s method
must be the most specific.



Intriguingly, this optimization reduces the cost of dispatch to the amount of poly-
morphism represented in the entire set of candidate methods. So, if all methods only
dispatch on their first argument, the dispatch algorithm effectively degenerates to a
traditional single dispatch algorithm and need never examine more than the first argu-
ment or traverse farther down the delegation hierarchy than where the first candidate
method is found. The algorithm then only incurs the cost of maintaining the rank
information above the cost of single dispatching. Single dispatching becomes a special-
case optimization of the PMD dispatch semantics. Further, almost all the dispatches
in the Slate standard library were found to terminate early due to this optimization,
rather than requiring a full traversal. This number closely corresponds to the fraction
of methods dispatching on fewer non-root objects than their number of arguments,
which supports this intuition.

6.5 Method Caching

Various global and inline method caching schemes may be extended to fit the dispatch-
ing algorithm and provide an essentially constant time fast-path for method invocation
under PMD. Given partial dispatching and if for each method selector one identifies
the global polymorphism of the set of methods it identifies (the set of argument posi-
tions any roles have been specified in), one only need store the significant arguments
positions, as given by the global polymorphism, as the keys of the cache entries. How-
ever, cache entries must still have a capacity to store up to the maximally allowable
amount of polymorphism for caching. In the degenerate case of global polymorphism
of only the first argument, this extended caching scheme degenerates to an ordinary
single dispatch caching scheme. The method caching optimization assumes that there
are no changes to delegation relationships and no method addition or removal; if these
changes are made, the caches must be invalided in the general case.

7 Related Work

Section 4 described related work in the area of formal object models. Three program-
ming languages significantly influenced the development of PMD and the implementa-
tion in Slate: Self [14], CLOS [2], and Cecil [5].

Self attempted to provide a Smalltalk [10] better suited for interactive program-
ming and direct manipulation of objects by dispensing with classes and providing
self-representing objects. These objects simply contain slots - modifiable, named value-
holders - which can serve as ordinary bindings, method definitions, or delegations.
Further, objects are used to more flexibly represent traditionally fixed implementation
facilities such as namespaces, shared behavior, and user interfaces. Slate, to date, bor-
rows and benefits from much of this system organization while expanding upon the
notion of method definition as in PMD.

CLOS [2] is an extension to Common Lisp that provides object-oriented program-
ming through classes and generic functions. Generic functions are functions made up
multiple method cases, which a multiple dispatch algorithm chooses among by exam-
ining the classes of all the arguments to a method call. A subtyping relation between
the classes of parameters and arguments determines the applicable method bodies and
their relative specificities. CLOS linearly (totally) orders both the class and method.
The class hierarchy is sequenced into a precedence list to disambiguate any branches in



the hierarchy as a result of multiple inheritance. Leftmost parameters also take prece-
dence over the rightmost, disambiguating cases where not all the parameter classes of
one method are subtypes of the respective parameter classes of another. The formalism
of PMD borrows the idea of a total ordering of inheritance and method arguments in
its dispatch semantics to avoid appealing to subtyping, but dispenses with classes and
the extrinsic notion of generic functions.

Dylan [8] is another dynamically-typed object-oriented language with multi-
methods. Like CLOS, it gives precedence to the leftmost parameter of a function during
object-oriented dispatch.

Cecil [5] is the first language known by the authors to integrate a prototype-inspired
object model with multiple dispatch. Cecil dispenses with the slot-based dynamic in-
heritance of Self, opting instead to fix delegation between objects at the time an object
is instantiated. Method definition is similarly limited to a global scope, restricting cer-
tain higher-order uses. Cecil provides multiple dispatch by a form of subtyping upon
this relatively fixed delegation hierarchy. This multiple dispatch only provides a partial
ordering among objects and method arguments. Dispatch ambiguities arise from the
use of multiple delegation or incompete subsumption among the methods according to
the subtyping relation. Such ambiguities raise an error when encountered, and recent
work has focused on finding these ambiguities statically [12].

Instead of the slot-based dynamic inheritance of Self, however, Cecil provides predi-
cate classes [6] wherein a fixed delegation relationship is established to a predicate class
that is qualified by a predicate. When the predicate of a predicate class is satisfied for
some object delegating to it, the object delegating to it will inherits its behavior. When
this predicate is not satisfied, this behavior will not be inherited. Predicate dispatch is
thus ideal for capturing behavior that depends on a formula over the state of the ob-
ject, while the dynamic delegation mechanism in PMD captures behavior changes due
on program events more cleanly. More recently, predicate classes have been generalized
to a predicate dispatch [7,11] mechanism which unifies object-oriented dispatch with
pattern-matching in functional programming languages.

One other closely related system is Us, an extension of Self to support subject-
oriented programming [15]. Subject-oriented programming allows a method to behave
differently depending on the current subject in scope. Intuitively, subject-oriented pro-
gramming can be modeled as an additional layer of dispatch, and multiple dispatch is a
natural mechanism for implementing this concept, especially when combined with flex-
ible objects with which to dynamically compose subjects, as the authors of Us noted.
However, as Us extends a language only providing single-dispatch, the authors of Us
instead chose to separate objects into pieces, all addressed by a single identity. Dynam-
ically composable layer objects implicitly select which piece of the object represents it,
effectively implementing a specialized form of multiple dispatch only for this extension.
Since PMD provides multiple dispatch and dynamic inheritance, it naturally supports
subjects with only a bit of syntactic sugar.

8 Conclusion

This paper introduced a new object model, Prototypes with Multiple Dispatch, that
cleanly integrates prototype-based programming with multiple dispatch. The PMD
model allows software engineers to more cleanly capture the dynamic interactions of
multiple, stateful objects.
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