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Abstra
t

Basi
ally, the 
onne
tion of two many-sorted theories is obtained by

taking their disjoint union, and then 
onne
ting the two parts through


onne
tion fun
tions that must behave like homomorphisms on the shared

signature. We determine 
onditions under whi
h de
idability of the validity

of universal formulae in the 
omponent theories transfers to their 
onne
-

tion. In addition, we 
onsider variants of the basi
 
onne
tion s
heme.
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1 Introdu
tion

The 
ombination of de
ision pro
edures for logi
al theories arises in many areas of

logi
 in 
omputer s
ien
e, su
h as 
onstraint solving, automated dedu
tion, term

rewriting, modal logi
s, and des
ription logi
s. In general, one has two �rst-order

theories T

1

and T

2

over signatures �

1

and �

2

, for whi
h validity of a 
ertain type

of formulae (e.g., universal, existential positive, et
.) is de
idable. These theories

are then 
ombined into a new theory T over a 
ombination � of the signatures

�

1

and �

2

. The question is whether de
idability transfers from T

1

; T

2

to their


ombination T .

One way of 
ombining the theories T

1

; T

2

is to build their union T

1

[T

2

. Both the

Nelson-Oppen 
ombination pro
edure [NO79, Nel84℄ and 
ombination pro
edures

for the word problem [Pig74, SS89, Nip91, BT97℄ address this type of 
ombina-

tion, but for di�erent types of formulae to be de
ided. Whereas the original


ombination pro
edures were restri
ted to the 
ase of theories over disjoint signa-

tures, there are now also solutions for the non-disjoint 
ase [DKR94, TR03, BT02,

FG03, Ghi05, BGT04℄, but they always require some additional restri
tions sin
e

it is easy to see that in the unrestri
ted 
ase de
idability does not transfer. Similar


ombination problems have also been investigated in modal logi
, where one asks

whether de
idability of (relativized) validity transfers from two modal logi
s to

their fusion [KW91, Spa93, Wol98, BLSW02℄. The approa
hes in [Ghi05, BGT04℄

a
tually generalize these results from equational theories indu
ed by modal logi
s

to more general �rst-order theories satisfying 
ertain model-theoreti
 restri
tions:

the theories T

1

; T

2

must be 
ompatible with their shared theory T

0

, and this shared

theory must be lo
ally �nite (i.e., its �nitely generated models are �nite). The

theory T

i

is 
ompatible with the shared theory T

0

i� (i) T

0

� T

i

; (ii) T

0

has a

model 
ompletion T

�

0

; and (iii) every model of T

i

embeds into a model of T

i

[T

�

0

.

In [KLWZ04℄, a new 
ombination s
heme for modal logi
s, 
alled E-
onne
tion,

was introdu
ed, for whi
h de
idability transfer is mu
h simpler to show than in

the 
ase of the fusion. Intuitively, the di�eren
e between fusion and E-
onne
tion


an be explained as follows. A model of the fusion is obtained from two models of

the 
omponent logi
s by identifying their domains. In 
ontrast, a model of the E-


onne
tion 
onsists of two separate models of the 
omponent logi
s together with


ertain 
onne
ting relations between their domains. There are also di�eren
es in

the syntax of the 
ombined logi
. In the 
ase of the fusion, the Boolean operators

are shared, and all operators 
an be applied to ea
h other without restri
tions. In

the 
ase of the E-
onne
tion, there are two 
opies of the Boolean operators, and

operators of the di�erent logi
s 
annot be mixed; the only 
onne
tion between the

two logi
s are new (diamond) modal operators that are indu
ed by the 
onne
ting

relations.

If we want to adapt this approa
h to the more general setting of 
ombining �rst-

order theories, then we must 
onsider many-sorted theories sin
e only the sorts

3



allow us to keep the domains separate and to restri
t the way fun
tion symbols


an be applied to ea
h other. Let T

1

; T

2

be two many-sorted theories that may

share some sorts as well as fun
tion and relation symbols. We �rst build the

disjoint union T

1

℄T

2

of these two theories (by using disjoint 
opies of the shared

parts), and then 
onne
t them by introdu
ing 
onne
tion fun
tions between the

shared sorts. These 
onne
tion fun
tions must behave like homomorphisms for

the shared fun
tion and predi
ate symbols, i.e., the axioms stating this are added

to T

1

℄ T

2

. This 
orresponds to the fa
t that the new diamond operators in the

E-
onne
tion approa
h distribute over disjun
tion and do not 
hange the false

formula ?. We 
all the 
ombined theory obtained this way the 
onne
tion of T

1

and T

2

.

This kind of 
onne
tion between theories has already been 
onsidered in auto-

mated dedu
tion (see, e.g., [AK97, Zar02℄), but only in very restri
ted 
ases where

both T

1

and T

2

are �xed theories (e.g., the theory of sets and the theory of inte-

gers in [Zar02℄) and the 
onne
tion fun
tions have a �xed meaning (like yielding

the length of a list). In 
ategori
al logi
, this type of 
onne
tion 
an be seen as

an instan
e of a more general 
o-
omma 
onstru
tion in bi
ategories asso
iated

with theories and synta
ti
 interpretations, see for instan
e [Zaw95℄. However, in

this general setting, 
omputational properties of the 
ombined theories have not

been 
onsidered yet.

This paper is a �rst step towards providing general results on the transfer of

de
idability from 
omponent theories to their 
onne
tion. We start by 
onsidering

the simplest 
ase where there is just one 
onne
tion fun
tion, and show that

de
idability transfers whenever 
ertain model-theoreti
 
onditions are satis�ed.

These 
onditions are weaker than the ones required in [BGT04℄ for the 
ase of

the union of theories.

1

In addition, both the 
ombination pro
edure and its

proof of 
orre
tness are mu
h simpler than the ones in [Ghi05, BGT04℄. The

approa
h easily extends to the 
ase of several 
onne
tion fun
tions. We will

also 
onsider variants of the general 
ombination s
heme where the 
onne
tion

fun
tion must satisfy additional properties (like being surje
tive, an embedding,

an isomorphism), or where a theory is 
onne
ted with itself. The �rst variant

is, for example, interesting sin
e the 
ombination result for the union of theories

shown in [Ghi05℄ 
an be obtained from the variant where one has an isomorphism

as 
onne
tion fun
tion. The se
ond 
ase is interesting sin
e it 
an be used to

redu
e the global 
onsequen
e problem in the modal logi
 K to propositional

satis�ability, whi
h is a surprising result.

1

Our 
onditions are in general not weaker than the ones in [Ghi05℄, alhough this is the 
ase

for all the theories we have 
onsidered until now.
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2 Notation and de�nitions

In this se
tion, we �x the notation and give some important de�nitions, in par-

ti
ular a formal de�nition of the 
onne
tion of two theories.

2.1 Many-sorted �rst-order logi


We use standard many-sorted �rst-order logi
 (see, e.g., [Gal86℄), but try to avoid

the notational overhead 
aused by the presen
e of sorts as mu
h as possible. Thus,

a signature 
 
onsists of a non-empty set of sorts S together with a set of fun
tion

symbols F and a set of predi
ate symbols P. The fun
tion and predi
ate symbols

are equipped with arities from S

�

in the usual way. For example, if the arity of

f 2 F is S

1

S

2

S

3

, then this means that the fun
tion f takes tuples 
onsisting of an

element of sort S

1

and an element of sort S

2

as input, and produ
es an element of

sort S

3

. We 
onsider logi
 with equality, i.e., the set of predi
ate symbols 
ontains

a symbol �

S

for equality in every sort S. Usually, we will just use � without

expli
itly spe
ifying the sort. In this paper we usually assume that signatures are


ountable.

Terms and �rst-order formulae over 
 are de�ned in the usual way, i.e., they must

respe
t the arities of fun
tion and predi
ate symbols, and the variables o

urring

in them are also equipped with sorts. An 
-atom is a predi
ate symbol applied

to (sort-
onforming) terms, and an 
-literal is an atom or a negated atom. A

ground literal is a literal that does not 
ontain variables. We use the notation

�(x) to express that � is a formula whose free variables are among the ones in the

tuple of variables x. An 
-senten
e is a formula over 
 without free variables.

An 
-theory T is a set of 
-senten
es (
alled the axioms of T ). If T; T

0

are 
-

theories, then we write (by a sleight abuse of notation) T � T

0

to express that

all the axioms of T are logi
al 
onsequen
es of the axioms of T

0

.

From the semanti
 side, we have the standard notion of an 
-stru
ture A, whi
h


onsists of non-empty and pairwise disjoint domains A

S

for every sort S, and

interprets fun
tion symbols f and predi
ate symbols P by fun
tions f

A

and

predi
ates P

A

a

ording to their arities. By A (or sometimes by jAj) we denote

the union of all domains A

S

. Validity of a formula � in an 
-stru
ture A (A j=

�), satis�ability, and logi
al 
onsequen
e are de�ned in the usual way. The 
-

stru
ture A is a model of the 
-theory T i� all axioms of T are valid in A. If

�(x) is a formula with free variables x = x

1

; : : : ; x

n

and a = a

1

; : : : ; a

n

is a (sort-


onforming) tuple of elements of A, then we write A j= �(a) to express that �(x)

is valid in A under the assignment fx

1

7! a

1

; : : : ; x

n

7! a

n

g. Note that �(x) is

valid in A i� it is valid under all assignments i� its universal 
losure is valid in A.

An 
-homomorphism between two 
-stru
tures A and B is a mapping � : A! B

that is sort-
onforming (i.e., maps elements of sort S in A to elements of sort S

5



in B), and satis�es the 
ondition

(�) A j= A(a

1

; : : : ; a

n

) implies B j= A(�(a

1

); : : : ; �(a

n

))

for all 
-atoms A(x

1

; : : : ; x

n

) and (sort-
onforming) elements a

1

; : : : ; a

n

of A. In


ase the 
onverse of (�) holds too, � is 
alled an embedding. Note that an embed-

ding is something more than just an inje
tive homomorphism sin
e the stronger


ondition must hold not only for the equality predi
ate, but for all predi
ate

symbols. If the embedding � is the identity on A, then we say that A is a sub-

stru
ture of B. In 
ase (�) holds for all �rst order formulae, then � is said to be

an elementary embedding. If the elementary embedding � is the identity on A,

then we say that A is an elementary substru
ture of B or that B is an elementary

extension of A. An isomorphism is a surje
tive embedding.

We say that � is a subsignature of 
 (written � � 
) i� � is a signature that


an be obtained from 
 by removing some of its sorts and fun
tion and predi
ate

symbols. If � � 
 and A is an 
-stru
ture, then the �-redu
t of A is the �-

stru
ture A

j�

obtained from A by forgetting the interpretations of sorts, fun
tion

and predi
ate symbols from 
 that do not belong to �. Conversely, A is 
alled an

expansion of the �-stru
ture A

j�

to the larger signature 
. If � : A! B is an 
-

homomorphism, then the �-redu
t of � is the �-homomorphism �

j�

: A

j�

! B

j�

obtained by restri
ting � to the sorts that belong to �, i.e., by restri
ting the

mapping to the domain of A

j�

.

Given a set X of 
onstant symbols not belonging to the signature 
, but ea
h

equipped with a sort from 
, we denote by 


X

the extension of 
 by these new


onstants. If A is an 
-stru
ture, then we 
an view the elements of A as a set

of new 
onstants, where a 2 A

S

has sort S. By interpreting ea
h a 2 A by

itself, A 
an also be viewed as an 


A

-stru
ture. The positive diagram �

+




(A)

of A is the set of all ground 


A

-atoms that are true in A, the diagram �




(A)

of A is the set of all ground 


A

-literals that are true in A, and the elementary

diagram �

e




(A) of A is the set of all 


A

-senten
es that are true in A. The

subs
ript 
 in �

+




(A), �




(A) and �

e




(A) is sometimes omitted if there is no

danger of 
onfusion. Robinson's diagram theorems [CK90℄ say that there is a

homomorphism (embedding, elementary embedding) between the 
-stru
tures A

and B i� it is possible to expand B to an 


A

-stru
ture in su
h a way that it

be
omes a model of the positive diagram (diagram, elementary diagram) of A.

2.2 Basi
 
onne
tions

In the remainder of this se
tion, we introdu
e our basi
 s
heme for 
onne
ting

many-sorted theories, and illustrate it with the example of E-
onne
tions of modal

logi
s. Let T

1

; T

2

be theories over the respe
tive signatures 


1

;


2

, and let 


0

be

a 
ommon subsignature of 


1

and 


2

. We 
all 


0

the 
onne
ting signature. In

6



addition, let T

0

be an 


0

-theory

2

that is 
ontained in both T

1

and T

2

. We de�ned

the new theory T

1

>

T

0

T

2

(
alled the 
onne
tion of T

1

and T

2

over T

0

) as follows.

The signature 
 of T

1

>

T

0

T

2


ontains the disjoint union 


1

℄


2

of the signatures




1

and 


2

, where the shared sorts and the shared fun
tion and predi
ate symbols

are appropriately renamed, e.g., by atta
hing labels 1 and 2. Thus, if S (f , P )

is a sort (fun
tion symbol, predi
ate symbol) 
ontained in both 


1

and 


2

, then

S

i

(f

i

, P

i

) for i = 1; 2 are its renamed variants in the disjoint union, where the

arities are a

ordingly renamed. In addition, 
 
ontains a new fun
tion symbol

h

S

of arity S

1

S

2

for every sort S of 


0

.

The axioms of T

1

>

T

0

T

2

are obtained as follows. Given an 


i

-formula �, its

renamed variant �

i

is obtained by repla
ing all shared symbols by their renamed

variants with label i. The axioms of T

1

>

T

0

T

2


onsist of

f�

1

j � 2 T

1

g [ f�

2

j � 2 T

2

g;

together with the universal 
losures of the formulae

h

S

(f

1

(x

1

; : : : ; x

n

)) � f

2

(h

S

1

(x

1

); : : : ; h

S

n

(x

n

));

P

1

(x

1

; : : : ; x

n

)! P

2

(h

S

1

(x

1

); : : : ; h

S

n

(x

n

));

for every fun
tion (predi
ate) symbol f (P ) in 


0

of arity S

1

: : : S

n

S (S

1

: : : S

n

).

Sin
e the signatures 


1

and 


2

have been made disjoint, and sin
e the additional

axioms state that the family of mappings h

S

behaves like an 


0

-homomorphism,

it is easy to see that the models of T

1

>

T

0

T

2

are formed by triples of the form

(M

1

;M

2

; h

M

), where M

1

is a model of T

1

, M

2

is a model of T

2

and h

M

is an




0

-homomorphism

h

M

:M

1

j


0

!M

2

j


0

between the respe
tive 


0

-redu
ts.

Example 2.1 The most basi
 variant of an E-
onne
tion [KLWZ04℄ is an in-

stan
e of our approa
h if one translates it into the algebrai
 setting. The abstra
t

des
ription systems 
onsidered in [KLWZ04℄, whi
h 
over all the usual modal and

des
ription logi
s, 
orrespond to Boolean-based equational theories [BGT04℄. The

theory E is 
alled Boolean-based equational theory i� its signature � has just one

sort, equality is the only predi
ate symbol, the set of fun
tion symbols 
ontains

the Boolean operators u;t;:;>;?, and its set of axioms 
onsists of identities

(i.e., the universal 
losures of atoms s � t) and 
ontains the Boolean algebra

axioms.

For example, 
onsider the basi
 modal logi
 K, where we use only the modal

operator � (sin
e � 
an then be de�ned). The Boolean-based equational theory

2

When de�ning the 
onne
tion of T

1

; T

2

, the theory T

0

is a
tually irrelevant; all we need

is its signature 


0

. However, for our de
idability transfer results to hold, T

0

and the T

i

must

satisfy 
ertain model-theoreti
 properties.

7



E

K


orresponding toK is obtained from the theory of Boolean algebras by adding

the identities �(x t y) � �(x) t �(y) and �(?) � ?.

Let us illustrate the notion of an E-
onne
tion also on this simple example (see

Appendix A for a more general des
ription of E-
onne
tions and their relationship

to the notion of a 
onne
tion introdu
ed in this report). To build the E-
onne
tion

of K with itself, one takes two disjoint 
opies of K, obtained by renaming the

Boolean operators and the diamonds, e.g., into u

i

;t

i

;:

i

;>

i

;?

i

;�

i

for i = 1; 2.

The signature of the E-
onne
tion 
ontains all these renamed symbols together

with a new symbol �. However, it is now a two-sorted signature, where symbols

with index i are applied to elements of sort S

i

and yield as results an element of

this sort. The new symbol has arity S

1

S

2

.

3

The semanti
s of this E-
onne
tion 
an

be given in terms of Kripke stru
tures. A Kripke stru
ture for the E-
onne
tion


onsists of two Kripke stru
tures K

1

;K

2

for K over disjoint domains W

1

and W

2

,

together with an additional 
onne
ting relation E � W

2

�W

1

. The symbols with

index i are interpreted in K

i

, and the new symbol � is interpreted as the diamond

operator indu
ed by E, i.e., for every X � W

1

we have

�(X) := fx 2 W

2

j 9y 2 W

1

: (x; y) 2 E ^ y 2 Xg:

This interpretation of the new operator implies that it satis�es the usual identities

of a diamond operator, i.e., �(x t

1

y) � �(x) t

2

�(y) and �(?

1

) � ?

2

, and that

these identities are suÆ
ient to 
hara
terize its semanti
s. Thus, the equational

theory 
orresponding to the E-
onne
tion of K with itself 
onsists of these two

axioms, together with the axioms of E

K

1

and E

K

2

.

Obviously, this theory is also obtained as the 
onne
tion of the theory E

K

with

itself, if the 
onne
ting signature 


0


onsists of the single sort of E

K

, the predi
ate

symbol �, and the fun
tion symbols t;?. As theory T

0

we 
an take the theory

of semilatti
es, i.e., the axioms that say that t is asso
iative, 
ommutative, and

idempotent, and that ? is a unit for t.

Example 2.2 The previous example 
an be varied by additionally in
luding u

in the 
onne
ting signature, and taking as theory T

0

the theory of distributive

latti
es with a least element ?. It is easy to see that this 
orresponds to the 
ase

of an E-
onne
tion where the 
onne
ting relation E is required to be a partial

fun
tion (we 
all su
h an E-
onne
tion deterministi
). Finally, if we additionally

in
lude both u and > in the 
onne
ting signature, and take T

0

to be the the-

ory of bounded distributive latti
es (i.e., distributive latti
es with a least and a

greatest element), then the equational theory obtained through our 
onne
tion


orresponds to the 
ase of an E-
onne
tion where the 
onne
ting relation E is a

(total) fun
tion (we 
all su
h an E-
onne
tion fun
tional).

3

In the general E-
onne
tion s
heme, there is also be an inverse diamond operator �

�

with

arity S

2

S

1

, but we 
urrently 
annot treat this 
ase (see the 
on
lusion for a dis
ussion).
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3 Positive algebrai
 
ompletions and 
ompati-

bility

In order to transfer de
idability results from the 
omponent theories T

1

; T

2

to

their 
onne
tion T

1

>

T

0

T

2

over T

0

, the theories T

0

; T

1

; T

2

must satisfy 
ertain

model-theoreti
 
onditions, whi
h we introdu
e below. The most important one

is that T

0

has a positive algebrai
 
ompletion. Before we 
an de�ne this 
on
ept,

we must introdu
e some notions from model theory.

The formula � is 
alled open i� it does not 
ontain quanti�ers; it is 
alled universal

i� it is obtained from an open formula by adding a pre�x of universal quanti�ers;

and it is 
alled geometri
 i� it is built from atoms by using 
onjun
tion, disjun
-

tion, and existential quanti�ers. The latter formulae are 
alled \geometri
" in


ategori
al logi
 [MR77℄ sin
e they are preserved under inverse image geometri


morphisms.

The main property of geometri
 formulae is that they are preserved under ho-

momorphisms in the following sense: if � : A ! B is a homomorphism between


-stru
tures and �(x

1

; : : : ; x

n

) is a geometri
 formula over 
, then

A j= �(a

1

; : : : ; a

n

) implies B j= �(�(a

1

); : : : ; �(a

n

))

for all (sort-
onforming) a

1

; : : : ; a

n

2 A.

Open formulae are related to embeddings in various way. First, they are pre-

served under building sub- and superstru
tures, i.e., if A is a substru
ture of B,

�(x

1

; : : : ; x

n

) is an open formula, and a

1

; : : : ; a

n

2 A are sort-
onforming, then

A j= �(a

1

; : : : ; a

n

) i� B j= �(a

1

; : : : ; a

n

). The following lemma is well-known

[CK90℄:

Lemma 3.1 Two 
-theories T; T

0

entail the same set of open formulae i� every

model of T 
an be embedded into a model of T

0

and vi
e versa.

Proof. The dire
tion from right to left follows from the fa
t that open formulae

are preserved under building substru
tures.

For the other dire
tion, assume that T and T

0

entail the same set of open formulae,

and take any model M of T (for T

0

the argument is symmetri
). First observe

that T

0

[ �(M) is 
onsistent. Otherwise, by 
ompa
tness of �rst-order logi
,

T

0

j= �(a) for some ground senten
e �(a) with additional free 
onstants a from

M that is false inM. Sin
e a 
onsists of free 
onstants, it follows that T

0

j= �(x),

and 
onsequently T j= �(x) by assumption. Sin
e T j= �(x) i� T j= 8x:�(x), this

is a 
ontradi
tion sin
e �(a) is false in M.

Now, letN be a model of T

0

[�(M). Thus, N is a model of T

0

, and by Robinson's

diagram theorem, M 
an be embedded into N . a

9



Sin
e a theory entails an open formula i� it entails its universal 
losure, the

lemma also says that two theories T; T

0

entail the same universal senten
es i�

every model of T 
an be embedded into a model of T

0

and vi
e versa.

The theory T is a universal theory i� its axioms are universal senten
es; it is a

geometri
 theory i� it 
an be axiomatized by using universal 
losures of geometri


sequents, where a geometri
 sequent is an impli
ation between two geometri


formulae. Note that any universal theory is geometri
 sin
e open formulae are


onjun
tions of 
lauses and 
lauses 
an be rewritten as geometri
 sequents.

De�nition 3.2 Let T be a universal and T

�

a geometri
 theory over 
. We say

that T

�

is a positive algebrai
 
ompletion of T i� the following properties hold:

1. T � T

�

;

2. every model of T embeds into a model of T

�

;

4

3. for every geometri
 formula �(x) there is an open geometri
 formula �

�

(x)

su
h that T

�

j= �$ �

�

.

It 
an be shown that the models of T

�

are exa
tly the algebrai
ally 
losed models

of T (see Appendix B below). In parti
ular, this means that the positive algebrai



ompletion of T is unique, provided that it exists.

When trying to show that Property 3 of De�nition 3.2 holds for given theo-

ries T; T

�

, then it is suÆ
ient to 
onsider simple existential formulae �(x), i.e.,

formulae that are obtained from 
onjun
tions of atoms by adding an existen-

tial quanti�er pre�x. In fa
t, any geometri
 formula � 
an be normalized to a

disjun
tion �

1

_ : : : _ �

n

of simple existential formulae �

i

by using distributiv-

ity of 
onjun
tion and existential quanti�
ation over disjun
tion. In addition, if

T

�

j= �

i

$ �

�

i

for geometri
 open formulae �

�

i

(i = 1; : : : ; n), then �

�

1

_ : : : _ �

�

n

is also a geometri
 open formula and T

�

j= (�

1

_ : : : _ �

n

)$ (�

�

1

_ : : : _ �

�

n

).

The following lemma will turn out to be useful later on.

Lemma 3.3 Assume that T; T

�

satisfy Property 1 and 2 of De�nition 3.2. If �(x)

is a simple existential formula and �

�

(x) is an open formula, then T

�

j= �! �

�

i� T j= �! �

�

.

This is an immediate 
onsequen
e of the fa
t that � ! �

�

is then equivalent to

an open formula, and hen
e Lemma 3.1 applies.

The �rst ingredient of our 
ombinability 
ondition is the following notion of 
om-

patibility, whi
h is a variant of analogous 
ompatibility 
onditions introdu
ed in

[Ghi05, BGT04℄ for the 
ase of the union of theories.

4

equivalently, T and T

�

entail the same universal senten
es.

10



De�nition 3.4 Let T

0

� T be theories over the respe
tive signatures 


0

� 


1

.

We say that T is T

0

-algebrai
ally 
ompatible i� T

0

is universal, has a positive

algebrai
 
ompletion T

�

0

, and every model of T embeds into a model of T [ T

�

0

.

The se
ond ingredient is that T

0

must be lo
ally �nite, i.e., all �nitely generated

models of T

0

are �nite. To be more pre
ise, we need the following e�e
tive variant

of lo
al �niteness de�ned in [Ghi05, BGT04℄.

De�nition 3.5 Let T

0

be a universal theory over the �nite signature 


0

. Then

T

0

is 
alled e�e
tively lo
ally �nite i� for every tuple of variables x, one 
an

e�e
tively determine terms t

1

(x); : : : ; t

k

(x) su
h that, for every further term u(x),

we have that T

0

j= u � t

i

for some i = 1; : : : ; k.

4 The main 
ombination results

We are interested in de
iding the universal fragments of our theories, i.e., validity

of universal formulae (or, equivalently open formulae) in a theory T . This is the

de
ision problem also treated by the Nelson-Oppen 
ombination method (albeit

for the union of theories). It is well know that this problem is equivalent to the

problem of de
iding whether a set of literals is satis�able in some model of T .

We 
all su
h a set of literals a 
onstraint.

By introdu
ing new free 
onstants (i.e., 
onstants not o

urring in the axioms

of the theory), we 
an assume without loss of generality that su
h 
onstraints


ontain no variables. In addition, we 
an transform any ground 
onstraint into

an equisatis�able set of ground 
at literals, i.e., literals of the form

a � f(a

1

; : : : ; a

n

); P (a

1

; : : : ; a

n

); or :P (a

1

; : : : ; a

n

);

where a; a

1

; : : : ; a

n

are (sort-
onforming) free 
onstants, f is a fun
tion symbol,

and P is a predi
ate symbol (possibly also equality).

In the following, we �rst treat the 
ase of a basi
 
onne
tion, as introdu
ed

in Se
tion 2. Then, we show that the 
ombination result 
an be extended to


onne
tions with several 
onne
tion fun
tions, possibly going in both dire
tions.

Finally, we give examples of theories satisfying our 
ombinability 
onditions.

4.1 Basi
 
onne
tions

In this subse
tion we show under what 
onditions de
idability of the universal

fragments of T

1

; T

2

transfers to their 
onne
tion T

1

>

T

0

T

2

.
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Theorem 4.1 Let T

0

; T

1

; T

2

be theories over the respe
tive signatures 


0

;


1

;


2

,

where 


0

is a 
ommon subsignature of 


1

and 


2

. Assume that T

0

� T

1

and

T

0

� T

2

, that T

0

is universal and lo
ally �nite, and that T

2

is T

0

-algebrai
ally


ompatible. Then the de
idability of the universal fragments of T

1

and T

2

entails

the de
idability of the universal fragment of T

1

>

T

0

T

2

.

To prove the theorem, we 
onsider a �nite set � of ground 
at literals over the

signature 
 of T

1

>

T

0

T

2

(with additional free 
onstants), and show how it 
an be

tested for satis�ability in T

1

>

T

0

T

2

. Sin
e all literals in � are 
at, we 
an divide

� into three disjoint sets � = �

0

[ �

1

[ �

2

; where �

i

(i = 1; 2) is a set of literals

in the signature 


i

(expanded with free 
onstants), and �

0

is of the form

�

0

= fh(a

1

) � b

1

; : : : ; h(a

n

) � b

n

g

for free 
onstants a

1

; b

1

; : : : ; a

n

; b

n

.

Proposition 4.2 The 
onstraint � = �

0

[ �

1

[ �

2

is satis�able in T

1

>

T

0

T

2

i�

there exists a triple (A;B; �) su
h that

1. A is an 


0

-model of T

0

, whi
h is generated by fa

A

1

; : : : ; a

A

n

g;

2. B is an 


0

-model of T

0

, whi
h is generated by fb

B

1

; : : : ; b

B

n

g;

3. � : A! B is an 


0

-homomorphism su
h that �(a

A

j

) = b

B

j

for j = 1; : : : ; n;

4. �

1

[�




0

(A) is satis�able in T

1

;

5. �

2

[�




0

(B) is satis�able in T

2

.

Proof. The only-if dire
tion is simple. In fa
t, as noted in Se
tion 2, a model M

of T

1

>

T

0

T

2

is given by a triple (M

1

;M

2

; h

M

), where M

1

is a model of T

1

, M

2

is a model of T

2

and h

M

: M

1

j


0

! M

2

j


0

is an 


0

-homomorphism between the

respe
tive 


0

-redu
ts. Assume that this model M satis�es �. We 
an take as

A the substru
ture of M

1

j


0

generated by (the interpretations of) a

1

; : : : ; a

n

, as

B the substru
ture of M

2

j


0

generated by (the interpretations of) b

1

; : : : ; b

n

, and

as homomorphism � the restri
tion of h

M

to A. It is easy to see that the triple

(A;B; �) obtained this way satis�es 1.{5. of the proposition.

Conversely, assume that (A;B; �) is a triple satisfying 1.{5. of the proposition.

Be
ause of 4. and 5., there is an 


1

-model N

0

of T

1

satisfying �

1

[�




0

(A) and an




2

-model N

00

of T

2

satisfying �

2

[�




0

(B). By Robinson's diagram theorem, N

0

has A as an 


0

-substru
ture and N

00

has B as an 


0

-substru
ture. We assume

without loss of generality that N

0

is at most 
ountable and that N

00

is a model

of T

2

[ T

�

0

. The latter assumption is by T

0

-algebrai
 
ompatibility of T

2

, and the

12



former assumption is by the L�owenheim-Skolem theorem sin
e our signatures are

at most 
ountable. Let us enumerate the elements of N

0

as




1

; 


2

; : : : ; 


n

; 


n+1

; : : :

where we assume that 


i

= a

A

i

(i = 1; : : : ; n), i.e., 


1

; : : : ; 


n

are generators of A.

We de�ne an in
reasing sequen
e of sort-
onforming fun
tions �

k

: f


1

; : : : 


k

g !

N

00

(for k � n) su
h that, for every ground 


f


1

;:::;


k

g

0

-atom A we have

N

0

j


0

j= A(


1

; : : : ; 


k

) implies N

00

j


0

j= A(�

k

(


1

); : : : ; �

k

(


k

)):

We �rst take �

n

to be �. To de�ne �

k+1

(for k � n), let us 
onsider the 
onjun
tion

 (


1

; : : : ; 


n

; 


n+1

) of the 


f


1

;:::;


n+1

g

0

-atoms that are true in N

0

j


0

: this 
onjun
tion

is �nite (modulo taking representative terms, thanks to lo
al �niteness of T

0

). Let

�(x

1

; : : : ; x

n

) be 9x

n+1

: (x

1

; : : : ; x

n

; x

n+1

) and let �

�

(x

1

; : : : ; x

n

) be a geometri


open formula su
h that T

�

0

j= �$ �

�

.

By Lemma 3.3, T

0

j= � ! �

�

, and thus we have N

0

j


0

j= �

�

(


1

; : : : ; 


k

) and

also N

00

j


0

j= �

�

(�

k

(


1

); : : : ; �

k

(


k

)) by the indu
tion hypothesis. Sin
e N

00

j


0

is a

model of T

�

0

, there is a b su
h that N

00

j


0

j=  (�

k

(


1

); : : : ; �

k

(


k

); b) for some b. We

now obtain the desired extension �

k+1

of �

k

by setting �

k+1

(


k+1

) := b. Taking

�

1

=

S

k�n

�

k

, we �nally obtain a homomorphism �

1

: N

0

j


0

! N

00

j


0

su
h that

the triple (N

0

;N

00

; �

1

) is a model of T

1

>

T

0

T

2

that satis�es �

0

[ �

1

[ �

2

. a

The above proof uses the assumption that T

0

is lo
ally �nite. By using heavier

model-theoreti
 ma
hinery, one 
an also prove the proposition without using lo
al

�niteness of T

0

(see Appendix C below). However, sin
e the proof of Theorem 4.1

needs this assumption anyway (see below), we gave the above proof sin
e it is

simpler.

To 
on
lude the proof of Theorem 4.1, we des
ribe a non-deterministi
 de
ision

pro
edure that e�e
tively guesses an appropriate triple (A;B; �) and then 
he
ks

whether it satis�es 1.{5. of Proposition 4.2. To guess an 


0

-model of T

0

that

is generated by a �nite set X, one uses e�e
tive lo
al �niteness of T

0

to obtain

an e�e
tive bound on the size of su
h a model and guesses an 


0

-stru
ture that

satis�es this size bound.

On
e the 


0

-stru
tures A;B are given, one 
an build their diagrams, and use the

de
ision pro
edures for T

1

and T

2

to 
he
k whether 4. and 5. of Proposition 4.2

are satis�ed. If the answer is yes, then A;B are also models of T

0

: in fa
t, if for

instan
e �

1

[ �




0

(A) is satis�able in the model M of T

1

, then M has A as a

substru
ture, and this implies A j= T

0

be
ause T

0

is universal and T

0

� T

1

.

Finally, one 
an guess a mapping � : A ! B that satis�es �(a

A

j

) = b

B

j

, and

then use the diagrams of A;B to 
he
k whether � satis�es the homomorphism


ondition (�).
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4.2 Two-side 
onne
tions

The proof of Proposition 4.2 basi
ally shows that our de
idability transfer result


an easily be extended to the 
ase of several 
onne
tion fun
tions, possibly going

in both dire
tions. For simpli
ity, we examine only the 
ase of two 
onne
tion

fun
tions, going in the two opposite dire
tions.

The theory T

1

>

T

0

<T

2

is de�ned as the union of T

1

>

T

0

T

2

and T

2

>

T

0

T

1

. Thus, a

model of T

1

>

T

0

<T

2

is a 4-tuple given by a model M

1

of T

1

, a model M

2

of T

2

and two homomorphisms

h

M

:M

1

j


0

�!M

2

j


0

and g

M

:M

2

j


0

�!M

1

j


0

among the respe
tive 


0

-redu
ts.

Theorem 4.3 Let T

0

; T

1

; T

2

be theories over the respe
tive signatures 


0

;


1

;


2

,

where 


0

is a 
ommon subsignature of 


1

and 


2

. Assume that T

0

� T

1

and

T

0

� T

2

, that T

0

is universal and lo
ally �nite, and that T

1

; T

2

are both T

0

-

algebrai
ally 
ompatible. Then the de
idability of the universal fragments of T

1

and T

2

entails the de
idability of the universal fragment of T

1

>

T

0

<T

2

.

To prove the Theorem, noti
e that any �nite set of ground 
at literals (with free


onstants) � to be tested for T

1

>

T

0

< T

2

-
onsisten
y 
an be divided into four

disjoint sets

� = �

1

[�

2

[ �

1

[ �

2

;

where �

i

(i = 1; 2) are sets of literals in the signature 


i

(expanded with free


onstants), and

�

1

= fh(a

1

) � b

1

; : : : ; h(a

n

) � b

n

g and �

2

= fg(b

0

1

) � a

0

1

; : : : ; g(b

0

m

) � a

0

m

g:

Theorem 4.3 is an easy 
onsequen
e of the following proposition.

Proposition 4.4 The 
onstraint � = �

1

[�

2

[�

1

[�

2

is satis�able in T

1

>

T

0

<T

2

i� there exist two triples (A;B; �) and (A

0

;B

0

; �

0

) su
h that

1. A is a 


0

-model of T

0

that is generated by fa

A

1

; : : : ; a

A

n

g, B is a 


0

-model of

T

0

whi
h is generated by fb

B

1

; : : : ; b

B

n

g and � : A! B is a 


0

-homomorphism

su
h that �(a

A

j

) = b

B

j

for all j = 1; : : : ; n;

2. A

0

is a 


0

-model of T

0

that is generated by fa

0

1

A

0

; : : : ; a

0

m

A

0

g, B is a 


0

-

model of T

0

that is generated by fb

0

1

B

0

; : : : ; b

0

m

B

0

g and � : B

0

! A

0

is a




0

-homomorphism su
h that �

0

(b

0

j

B

0

) = a

0

j

A

0

for all j = 1; : : : ; m;

3. �

1

[�




0

(A) [�




0

(A

0

) is satis�able in T

1

, and

�

2

[�




0

(B) [�




0

(B

0

) is satis�able in T

2

.
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Proof. The only-if dire
tion is again simple. To proof the if dire
tion, assume that

for some � : A! B and � : B

0

!A

0

, the set of literals �

1

[�




0

(A)[�




0

(A

0

) is

satis�able in an 


1

-model N

0

of T

1

, and the set of literals �

2

[�




0

(B)[�




0

(B

0

)

is satis�able in an 


2

-model N

00

of T

2

. By Robinson's diagram theorem, N

0

has

A and A

0

as 


0

-substru
tures, and N

00

has B and B

0

as 


0

-substru
tures. We

assume without loss of generality that N

0

and N

00

are at most 
ountable models

of T

1

[ T

�

0

and T

1

[ T

�

0

, respe
tively.

Now, an argument identi
al to the one used in the proof of Proposition 4.2 yields

the homomorphisms

�

1

: N

0

j


0

�! N

00

j


0

and �

0

1

: N

00

j


0

�! N

0

j


0

;

whi
h are needed in order to obtain a full model of T

1

>

T

0

<T

2

. a

It should be 
lear how to adapt this proof to the 
ase of more than one 
onne
tion

fun
tion going in ea
h dire
tion.

4.3 Examples

When trying to axiomatize the positive algebrai
 
ompletion T

�

0

of a given univer-

sal theory T

0

, it is suÆ
ient to produ
e for every simple existential formula �(x)

an appropriate geometri
 and open formula �

�

(x). Take as theory T

�

0

the one

axiomatized by T

0

together with the formulae �$ �

�

for every simple existential

formula �. In order to 
omplete the job, it is suÆ
ient to show that every model

of T

0

embeds into a model of T

�

0

. It should also be noted that one 
an without

loss of generality restri
t the attention to simple existential formulae with just

one existential quanti�er sin
e more than one quanti�er 
an then be treated by

iterated elimination of single quanti�ers.

In the next example we en
ounter a spe
ial 
ase where the formulae � $ �

�

are already valid in T

0

. In this 
ase, we have T

0

= T

�

0

, and thus the model-

embedding 
ondition is trivially satis�ed. In addition, any theory T with T

0

� T

is T

0

-algebrai
ally 
ompatible.

Example 4.5 Re
all from [BGT04℄ the de�nition of a Gaussian theory. Let us


all a 
onjun
tion of atoms an e-formula. The universal theory T

0

is Gaussian

i� for every e-formula �(x; y) it is possible to 
ompute an e-formula  (x) and a

term s(x; z) with fresh variables z su
h that

T

0

j= �(x; y)$ ( (x) ^ 9z:(y � s(x; z))): (1)

Any Gaussian theory T

0

is its own positive algebrai
 
ompletion. In fa
t, it is

easy to see that (1) implies T

0

j= (9y:�(x; y)) $  (x), and thus the 
omment

given above this example applies.
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As a 
onsequen
e, our 
ombination result applies to all the examples of e�e
tively

lo
ally �nite Gaussian theories given in [BGT04℄ (e.g., Boolean algebras, ve
tor

spa
es over a �nite �eld, empty theory over a signature whose sets of predi
ates


onsists of � and whose set of fun
tion symbols is empty): if the universal theory

T

0

is e�e
tively lo
ally �nite and Gaussian, and T

1

; T

2

are arbitrary theories


ontaining T

0

and with de
idable universal fragment, then the universal fragment

of T

1

>

T

0

T

2

is also de
idable.

Example 4.6 Let T

0

be the theory of semilatti
es (see Example 2.1). This theory

is obviously e�e
tively lo
ally �nite. In the following, we use the disequation s v t

as an abbreviation for the equation s t t � t. Obviously, any equation s � t 
an

be expressed by the disequations s v t ^ t v s.

The theory T

0

has a positive algebrai
 
ompletion, whi
h 
an be axiomatized

as follows. Let �(x) be a simple existential formula with just one existential

quanti�er. Using the fa
t that z

1

t: : :tz

n

v z is equivalent to z

1

v z^: : :^z

n

v z,

it is easy to see that �(x) is equivalent to a formula of the form

9y:((y v t

1

) ^ � � � ^ (y v t

n

) ^ (u

1

v s

1

t y) ^ � � � ^ (u

m

v s

m

t y)); (2)

where t

i

; s

j

; u

k

are terms not involving y. Let �

�

(x) be the formula

n

^

i=1

m

^

j=1

(u

j

v s

j

t t

i

); (3)

and let T

�

0

be obtained from T

0

by adding to it the universal 
losures of all

formulae �$ �

�

.

We prove that T

�

0

is 
ontained in the theory of Boolean algebras. In fa
t, the

system of disequations (2) is equivalent, in the theory of Boolean algebras, to

9y:((y v t

1

) ^ � � � ^ (y v t

n

) ^ (u

1

u :s

1

v y) ^ � � � ^ (u

m

u :s

m

v y); (4)

and hen
e to

(u

1

u :s

1

v t

1

u : : : u t

n

) ^ � � � ^ (u

m

u :s

m

v t

1

u : : : u t

n

): (5)

Finally, it is easy to see that (5) and (3) are equivalent.

It is well-known that every semilatti
e embeds into a Boolean algebra. This 
an,

for example, be shown as follows. Given a semilatti
e S = (S;t;?), just 
onsider

the Boolean algebra B = (2

S

;\; S;[; ;; (�)) given by the dual of the usual Boolean

algebra formed by the powerset of S: this means that as join in B we take the

interse
tion of sets, as the least element S, as the meet the union of sets, as the

greatest element ;, and as the negation operation the set 
omplement. It is easy

to see that the map asso
iating with s 2 S the set fs

0

j s v s

0

g is a semilatti
e

embedding from S into B.

This shows that T

�

0

is the positive algebrai
 
ompletion of T

0

. In addition, this

implies that any Boolean-based theory T is T

0

-algebrai
ally 
ompatible sin
e T

�

0

is 
ontained in T . Consequently, Theorem 4.1 
overs the 
ase of a basi
 E-


onne
tion, as introdu
ed in Example 2.1 (see Appendix A for details).
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Example 4.7 Let us now turn to Example 2.2, i.e., to 
onne
tions over the

theory T

0

of distributive latti
es with a least element ?. This theory is obviously

e�e
tively lo
ally �nite, and it has a positive algebrai
 
ompletion, whi
h 
an be

obtained as follows. Every term is equivalent modulo T

0

both to (i) a term that

is a (possibly empty) �nite join of (non-empty) �nite meets of variables, and to

(ii) a term that is a (non-empty) �nite meet of (possibly empty) �nite joins of

variables. A simple existential formula with just one existential quanti�er �(x)

is then easily seen to be equivalent to a formula of the form

9y:(

^

i

(y v u

i

) ^

^

j

(t

j

u y v z

j

) ^

^

k

(v

k

v y t w

k

)); (6)

where u

i

; t

j

; v

k

; w

k

are terms not involving y. Let �

�

(x) be the formula

^

i;k

(v

k

v u

i

t w

k

) ^

^

j;k

(v

k

u t

j

v w

k

t z

j

); (7)

and let T

�

0

be obtained from T

0

by adding to it the universal 
losures of all

formulae �$ �

�

.

We prove that T

�

0

is 
ontained in the theory of Boolean algebras. In fa
t, the

system of disequations (6) is equivalent, in the theory of Boolean algebras, to

9y:(

^

i

(y v u

i

) ^

^

j

(y v :t

j

t z

j

) ^

^

k

(v

k

u :w

k

v y)); (8)

and hen
e to

^

i;k

(v

k

u :w

k

v u

i

) ^

^

j;k

(v

k

u :w

k

v :t

j

t z

j

): (9)

Finally, it is easy to see that (9) and (7) are equivalent.

Sin
e every distributive latti
e with least element embeds into a Boolean algebra,

5

this shows that T

�

0

is the positive algebrai
 
ompletion of T

0

. In addition, this

implies that any Boolean-based equational theory T is T

0

-algebrai
ally 
ompatible

sin
e T

�

0

is 
ontained in T . Consequently, Theorem 4.1 
overs the 
ase of a basi


deterministi
 E-
onne
tion, as introdu
ed in Example 2.2 (see Appendix A for

details).

Example 4.8 The previous example 
an be sleightly varied, by 
onsidering the

theory T

0

of bounded distributive latti
es (i.e., distributive latti
es with a least

and a greatest element). Let us prove that its positive algebrai
 
ompletion is the

theory T

�

0

axiomatized by T

0

together with the (universal 
losure of the) formula

9y:((x u y � 0) ^ (x t y � 1)):

5

It is well-known that distributive latti
es with least and greatest elements embed into

Boolean algebras, and it is easy to embed a distributive latti
e with least element into one with

least and greatest elements by just adding a greatest element.
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Thus, T

�

0

is simply the theory of Boolean algebras, formulated in a 
omplement-

free signature. Sin
e every bounded distributive latti
e embeds into a Boolean

algebra, and sin
e the theory of Boolean algebras 
oin
ides with its own positive

algebrai
 
ompletion be
ause it is Gaussian (see Example 4.5), it is suÆ
ient to

show that every e-formula � in the signature of Boolean algebras is equivalent to

an e-formula in the 
omplement-free subsignature. In fa
t, we 
an assume that

� is a 
onjun
tion of identities of the form

1 � x

1

t � � � t x

n

t y

1

t � � � t y

m

;

these identities are in turn trivially equivalent to the inequations

x

1

u � � � u x

n

v y

1

t � � � t y

m

;

whi
h 
an obviously be transformed into identities between term in the 
omplement-

free subsignature.

Again this implies that every Boolean-based equational theory is T

0

-
ompatible

and that Theorem 4.1 
overs the 
ase of a basi
 fun
tional E-
onne
tion, as

introdu
ed in Example 2.2 (see again Appendix A for details).

Example 4.9 Here we give an example with a non-fun
tional signature. Let T

0

be the (obviously lo
ally �nite) theory of partial orders (posets). The positive

algebrai
 
ompletion T

�

0

of T

0

is the theory axiomatized by T

0

together with the

axioms

9x:(

^

i

(x v a

i

) ^

^

j

(b

j

v x))$

^

i;j

(b

j

v a

i

);

where i; j range over a �nite index set and a

i

; b

j

are variables.

To embed a model (P;v) of T

0

into a model of T

�

0

, just take the poset of downward


loset subsets of (P;v). A downward 
losed subset of P is a set X � P su
h that

x 2 X and y v x imply y 2 X. These sets are ordered by set in
lusion. It is easy

to see that this yields a model of T

�

0

. In fa
t, it is enough to show that, given

downward 
losed sets A

i

; B

j

satisfying

V

i;j

(B

j

v A

i

), there is a downward 
losed

set X su
h that

V

i

(X v A

i

)^

V

j

(B

j

v X). Sin
e the union of downward 
losed

sets is again downward 
losed, we 
an take the union of the B

j

as the set X. The

embedding of (P;v) into downward 
losed sets is obtained by asso
iating with

a 2 P the 
one a# := fb j b v ag. It is easy to see that a v a

0

i� a# � a

0

#.

In order to obtain a T

0

-algebrai
ally 
ompatible theory, we 
onsider again the

theory T of semilatti
es, but now we assume that the symbol v belongs to the

signature, and satis�es the axiom x v y $ x ^ y � y. The theory T is T

0

-

algebrai
ally 
ompatible sin
e every model of T is a model of T

�

0

: in fa
t

9x:(

^

i

(x v a

i

) ^

^

j

(b

j

v x))

is equivalent (in the theory T ) to

9x:(

^

i

(x v a

i

) ^ (

G

j

b

j

v x));
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i.e., to

^

i

(

G

j

b

j

v a

i

)

and thus to

V

i;j

(b

j

v a

i

):

Other theories that extend T

�

0

(and are hen
e T

0

-algebrai
ally 
ompatible) are

theories that extend the theory of total orders, as is easily seen.

5 A variant of the 
onne
tion s
heme

Here we 
onsider a slightly di�erent 
ombination s
heme where a theory T is


onne
ted with itself w.r.t. a subtheory T

0

. Let T

0

� T be theories over the

respe
tive signatures 


0

� 
. We use T

>T

0

to denote the theory whose models

are models M of T endowed with a homomorphism h : M

j


0

! M

j


0

: Thus,

the signature 


0

of T

>T

0

is obtained from the signature 
 of T by adding a new

fun
tion symbol h

S

of arity SS for every sort S of 


0

. The axioms of T

>T

0

are

obtained from the axioms of T by adding

h

S

(f(x

1

; : : : ; x

n

)) � f(h

S

1

(x

1

); : : : ; h

S

n

(x

n

));

P (x

1

; : : : ; x

n

)! P (h

S

1

(x

1

); : : : ; h

S

n

(x

n

));

for every fun
tion (predi
ate) symbol f (P ) in 


0

of arity S

1

: : : S

n

S (S

1

: : : S

n

).

Example 5.1 An interesting example of a theory obtained as su
h a 
onne
tion

is the theory E

K


orresponding to the basi
 modal logi
 K. In fa
t, let T be the

theory of Boolean algebras, and T

0

the theory of semilatti
es over the signature




0

as de�ned in Example 2.1. If we use the symbol � for the 
onne
tion fun
tion,

then T

>T

0

is exa
tly the theory E

K

.

5.1 A non-deterministi
 
ombination pro
edure

In this subse
tion we state the main de
idability transfer result. The approa
h is

analogous to the one 
hosen in Se
tion 4, and it leads to a non-deterministi
 
om-

bination pro
edure. In the next subse
tion we show that, under 
ertain additional

restri
tions, this non-deterministi
 pro
edure 
an be repla
ed by a deterministi


one.

Theorem 5.2 Let T

0

; T be theories over the respe
tive signatures 


0

;
, where




0

is a subsignature of 
. Assume that T

0

� T , that T

0

is universal and lo
ally

�nite, and that T is T

0

-algebrai
ally 
ompatible. Then the de
idability of the

universal fragment of T entails the de
idability of the universal fragment of T

>T

0

.
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To prove the theorem, we 
onsider a �nite set �[�

0

of ground 
at literals over the

signature 


0

of T

>T

0

, where � is a set of literals in the signature 
 of T (expanded

with free 
onstants), and �

0

is of the form

�

0

= fh(a

1

) � b

1

; : : : ; h(a

n

) � b

n

g:

The theorem is an easy 
onsequen
e of the following proposition, whose proof is

similar to the one of Proposition 4.2.

Proposition 5.3 The 
onstraint � [ �

0

is satis�able in T

>T

0

i� there exists a

triple (A;B; �) su
h that

1. A is an 


0

-model of T

0

, whi
h is generated by fa

A

1

; : : : ; a

A

n

g;

2. B is an 


0

-model of T

0

, whi
h is generated by fb

B

1

; : : : ; b

B

n

g;

3. � : A! B is an 


0

-homomorphism su
h that �(a

A

j

) = b

B

j

for j = 1; : : : ; n;

4. � [�




0

(A) [�




0

(B) is satis�able in T .

Proof. The only-if dire
tion is again simple. To proof the if dire
tion, assume

that there is a triple (A;B; �) satisfying 1.{4. of the proposition. In parti
ular,

this means that � [�




0

(A) [�




0

(B) is satis�able in a model N of T . We 
an

assume without loss of generality that N is an at most 
ountable model of T [T

�

0

.

By Robinson's diagram theorem, A;B are 


0

-substru
tures of N . Using the same

argument as in the proof of Proposition 4.2, we 
an extend the 


0

-homomorphism

� : A! B to an 


0

-endomorphism �

1

: N

j


0

! N

j


0

. The pair (N ; �

1

) yields a

model of T

>T

0

that satis�es � [ �

0

. a

Obviously, this proposition gives rise to a non-deterministi
 de
ision pro
edure

for the universal fragment of T

>T

0

, whi
h is analogous to the one des
ribed in the

proof of Theorem 4.1

Applied to the 
onne
tion of BA with itself w.r.t. the theory of semilatti
es 
onsid-

ered in Example 5.1, the proof of Theorem 5.2 shows that de
iding the universal

theory of E

K


an be redu
ed to de
iding the universal theory of BA. It is well-

known that de
iding the universal theory of E

K

is equivalent to de
iding global


onsequen
e in K, and that de
iding the universal theory of BA is equivalent

to propositional reasoning. Thus, we have shown the (rather surprising) result

that the global 
onsequen
e problem in K 
an be redu
ed to purely propositional

reasoning. However, if we dire
tly apply the non-deterministi
 
ombination algo-

rithm suggested by Proposition 5.3, then the 
omplexity of the obtained de
ision

pro
edure is worse then the known ExpTime-
omplexity [Spa93℄ of the prob-

lem. The deterministi
 
ombination pro
edure des
ribed below over
omes this

problem.
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5.2 A deterministi
 
ombination pro
edure

As pointed out in [Opp80℄, Nelson-Oppen style 
ombination pro
edures 
an be

made deterministi
 in the presen
e of a 
ertain 
onvexity 
ondition. Let T be

a theory over the signature 
, and let 


0

be a subsignature of 
. Following

[Tin03℄, we say that T is 


0

-
onvex i� every �nite set of ground 


X

-literals (using

additional free 
onstants from X) T -entailing a disjun
tion of n > 1 


X

0

-atoms,

already T -entails one of the disjun
ts. Note that universal Horn 
-theories are

always 
-
onvex. In parti
ular, this means that equational theories (like BA) are


onvex w.r.t. any subsignature.

Let T

0

� T be theories over the respe
tive signatures 


0

;
, where 


0

is a sub-

signature of 
. If T is 


0

-
onvex, then Theorem 5.2 
an be shown with the help

of a deterministi
 
ombination pro
edure. (The same is a
tually also true for

Theorem 4.1 and Theorem 4.3, but this will not expli
itly be shown here.)

Let � [ �

0

be a �nite set of ground 
at literals (with free 
onstants) in the

signature of T

>T

0

; suppose also that � does not 
ontain the symbol h and that

�

0

= fh(a

1

) � b

1

; : : : ; h(a

n

) � b

n

g. We say that � is �

0

-saturated i� for every




0

-atom A(x

1

; : : : ; x

n

), T [ � j= A(a

1

; : : : ; a

n

) implies A(b

1

; : : : ; b

n

) 2 �:

Theorem 5.4 Let T

0

; T be theories over the respe
tive signatures 


0

;
, where




0

is a subsignature of 
. Assume that T

0

� T , that T

0

is universal and lo
ally

�nite, and that T is 


0

-
onvex and T

0

-algebrai
ally 
ompatible. Then the following

deterministi
 pro
edure de
ides whether � [ �

0

is satis�able in T

>T

0

(where �;�

0

are as above):

1. �

0

-saturate �;

2. 
he
k whether the �

0

-saturated set

b

� obtained this way is satis�able in T .

Proof. The saturation pro
ess (and thus the pro
edure) terminates be
ause T

0

is

lo
ally �nite (it should be 
lear that saturation is done modulo T

0

). In addition,

if �[�

0

is satis�ed in a modelM of T

>T

0

, then the redu
t ofM to the signature


 obviously satis�es

b

�.

Conversely, if the �

0

-saturated set

b

� is satis�able in T , then we use

b

� to 
onstru
t

a triple (A;B; �) satisfying 1.{4 of Proposition 5.3. Sin
e

b

� is satis�able in T ,

and T is 


0

-
onvex, the following two �nite

6

sets of literals are both satis�able

in T

0

(where a abbreviate a

1

; : : : ; a

n

and let b abbreviate b

1

; : : : ; b

n

):

�

a

:= fA(a) j T [

b

� j= A(a)g [ f:A(a) j T [

b

� 6j= A(a)g;

�

b

:= fA(b) j T [

b

� j= A(b)g [ f:A(b) j T [

b

� 6j= A(b)g;

6

It goes without saying that \�niteness" here means \�niteness modulo T

0

;" see the de�nition

of lo
al �niteness.
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where A(x) ranges over 


0

-atoms (modulo T

0

). In fa
t, assume (without loss of

generality) that �

a

is not satis�able in T

0

. This means that

T

0

[ fA(a) j T [

b

� j= A(a)g j=

_

T[

b

� 6j=A(a)

A(a);

Sin
e T

0

� T and T is 


0

-
onvex, this implies that T [ fA(a) j T [

b

� j= A(a)g j=

A

0

(a) for some 


0

-atom A

0

(x) su
h that T [

b

� 6j= A

0

(a). However, T [ fA(a) j

T [

b

� j= A(a)g j= A

0

(a) obviously implies T [

b

� j= A

0

(a), whi
h yields the desired


ontradi
tion.

Pi
k a pair of models of T

0

satisfying �

a

and �

b

, and let A, B be their 


0

-

substru
tures generated by (the interpretations of) a and b, respe
tively. Sin
e

T

0

is universal, A and B are models of T

0

. Moreover, by 
onstru
tion, for every 


0

-

atom A(x) we have that T[

b

� j= A(a) i� A j= A(a) and, similarly, T[

b

� j= A(b) i�

B j= A(b). As a 
onsequen
e, the �

0

-saturatedness of

b

� and Robinson's diagram

theorem guarantee that the map asso
iating b

i

with a

i


an be extended to a

homomorphism � : A! B.

It remains to show that

b

�[�




0

(A)[�




0

(B) is satis�able in T (sin
e � �

b

�, this

implies that � [�




0

(A) [�




0

(B) is satis�able in T ). Taking into 
onsideration

the 


0

-
onvexity of T and the fa
t that

b

� is satis�able in T , satis�ability of

b

�[�




0

(A)[�




0

(B) in T means that for no atom A(a) false in A (A(b) false in B)

we have that T [

b

�[�

+




0

(A)[�

+




0

(B) j= A(a) (T [

b

�[�

+




0

(A)[�

+




0

(B) j= A(b)).

7

However, as remarked above, T[

b

� j= A(a) holds i�A j= A(a) holds (and similarly

for B). This means that T [

b

�[�

+




0

(A)[�

+




0

(B) is the same theory as T [

b

�. But

then the 
laim that \for no atom A(a) false in A (or A(b) false in B) we have that

T [

b

� j= A(a) (T [

b

� j= A(b))" be
omes trivial, on
e again be
ause T [

b

� j= A(a)

is equivalent to A j= A(a) (T [

b

� j= A(b) is equivalent to B j= A(b)). a

Example 5.1 (
ontinued) Let us 
ome ba
k to the 
onne
tion of T := BA

with itself w.r.t. the theory T

0

of semilatti
es, whi
h yields as 
ombined theory

the equational theory E

K


orresponding to the basi
 modal logi
 K. In this


ase, 
he
king during the saturation pro
ess whether T [ � j= A(a) amounts

to 
he
king whether a propositional formula �

�

(whose size is linear in the size

of �) implies a propositional formula of the form  

1

,  

2

, where  

1

;  

2

are

disjun
tions of the propositional variables from a. Sin
e propositional reasoning


an be done in time exponential in the number of propositional variables, and

there are only exponentially many di�erent formulae of the form  

1

,  

2

, the

saturation pro
ess needs at most exponential time. The size of the �

0

-saturated

set

b

� may be exponential in the size of �, but it still 
ontains only the free


onstants a. Consequently, testing satis�ability of

b

� in T is again a propositional

7

Re
all that �

+




0

(A) denotes the positive diagram of A, i.e., it 
onsists of those atoms true

in A. Also note that :A(a) 2 �




0

(A) n�

+




0

(A) i� the atom A(a) is false in A.
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reasoning problem that 
an be done in time exponential in the number of free


onstants a.

Consequently, we have shown that Theorem 5.4 yields an ExpTime de
ision pro-


edure for the global 
onsequen
e relation in K, whi
h thus mat
hes the known

worst-
ase 
omplexity of the problem.

6 Conditions on the 
onne
tion fun
tions

Until now, we have 
onsidered 
onne
tion fun
tions that are arbitrary homomor-

phisms. In this se
tion we impose the additional 
onditions that the 
onne
tion

fun
tions be surje
tive, embeddings, or isomorphisms: in this way, we obtain new


ombined theories, whi
h we denote by T

1

>

em

T

0

T

2

; T

1

>

s

T

0

T

2

; T

1

>

iso

T

0

T

2

, respe
-

tively. This de�nes the 
ombined theories in a model-theoreti
 way. One 
an also

give an axiomati
 des
ription of T

1

>

em

T

0

T

2

; T

1

>

s

T

0

T

2

, and T

1

>

iso

T

0

T

2

. For example,

the axioms of T

1

>

s

T

0

T

2

are obtained from the ones of T

1

>

T

0

T

2

by adding axioms

expressing that h is surje
tive, i.e., for every sort S in 


0

we add the axiom

8y:9x:h

S

(x) = y;

where x is a variable of sort S

1

and y a variable of sort S

2

.

For these 
ombined theories one 
an show 
ombination results that are analo-

gous to Theorem 4.1: one just needs di�erent 
ompatibility 
onditions. To treat

embeddings and isomorphisms, we use the 
ompatibility 
ondition introdu
ed in

[Ghi05, BGT04℄ for the 
ase of unions of theories. Following [Ghi05, BGT04℄, we


all this 
ondition T

0

-
ompatibility in the following.

In order to de�ne this notion of 
ompatiblity, we need to introdu
e the notion

of a model 
ompletion. The de�nition given below di�ers from the one given

in [Ghi05, BGT04℄. However, the two notions 
an be shown to be equivalent

(see Proposition 9.6 in Appendix B below). The reason for giving an alternative

formulation is that it makes the 
onne
tion between a model 
ompletion and a

positive algebrai
 
ompletion more transparent.

De�nition 6.1 Let T be a universal 
-theory and let T

�

be an 
-theory. We

say that T

�

is a model 
ompletion of T i� the following 
onditions are satis�ed:

(i) T � T

�

;

(ii) every model of T embeds into a model of T

�

;

(iii) for every formula �(x) there is an open formula �

�

(x) su
h that

T

�

j= �$ �

�

:
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It 
an be shown that models of T

�

are just the existentially 
losed models of T

(see [CK90℄ or Appendix B below).

De�nition 6.2 Let T

0

� T be theories over the respe
tive signatures 


0

� 
.

We say that T is T

0

-
ompatible i� T

0

is universal, has a model 
ompletion T

�

0

,

and every model of T embeds into a model of T [ T

�

0

.

6.1 Embeddings as 
onne
tion fun
tions

Let us �rst investigate the 
ase of 
onne
tion fun
tions that are embeddings.

Theorem 6.3 Let T

0

; T

1

; T

2

be theories over the respe
tive signatures 


0

;


1

;


2

,

where 


0

is a 
ommon subsignature of 


1

and 


2

. Assume that T

0

� T

1

and

T

0

� T

2

, and that T

0

is universal and lo
ally �nite. If T

2

is T

0

-
ompatible, then

the de
idability the universal fragments of T

1

and T

2

entails the de
idability of the

universal fragment of T

1

>

em

T

0

T

2

.

As usual, in order to prove the Theorem, we 
onsider a �nite set � of ground 
at

literals over the signature 
 of T

1

>

em

T

0

T

2

(with additional free 
onstants), and

show how it 
an be tested for satis�ability in T

1

>

em

T

0

T

2

. Sin
e all literals in � are


at, we 
an divide � into three disjoint sets � = �

0

[ �

1

[ �

2

; where �

i

(i = 1; 2)

is a set of literals in the signature 


i

(expanded with free 
onstants), and �

0

is

of the form

�

0

= fh(a

1

) � b

1

; : : : ; h(a

n

) � b

n

g

for free 
onstants a

1

; b

1

; : : : ; a

n

; b

n

. Theorem 6.3 easily follows from the next

proposition:

Proposition 6.4 The 
onstraint � = �

0

[ �

1

[ �

2

is satis�able in T

1

>

em

T

0

T

2

i�

there exists a triple (A;B; �) su
h that

1. A is an 


0

-model of T

0

, whi
h is generated by fa

A

1

; : : : ; a

A

n

g;

2. B is an 


0

-model of T

0

, whi
h is generated by fb

B

1

; : : : ; b

B

n

g;

3. � : A! B is an 


0

-embedding su
h that �(a

A

j

) = b

B

j

for j = 1; : : : ; n;

4. �

1

[�




0

(A) is satis�able in T

1

;

5. �

2

[�




0

(B) is satis�able in T

2

.
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Proof. Again, the only-if dire
tion is simple. Conversely, assume that (A;B; �)

is a triple satisfying 1.{5. of the proposition. Be
ause of 4. and 5, there is an




1

-model N

0

of T

1

satisfying �

1

[�




0

(A) and an 


2

-model N

00

of T

2

satisfying

�

2

[�




0

(B). By Robinson's diagram theorem, N

0

has A as an 


0

-substru
ture

and N

00

has B as an 


0

-substru
ture. As in the proof of Proposition 4.2, we

assume without loss of generality that N

0

is at most 
ountable and that N

00

is a

model of T

2

[ T

�

0

. Let us enumerate the elements of N

0

as




1

; 


2

; : : : ; 


n

; 


n+1

; : : :

where we assume that 


i

= a

A

i

(i = 1; : : : ; n), i.e., 


1

; : : : ; 


n

are generators of A.

We de�ne an in
reasing sequen
e of sort-
onforming fun
tions �

k

: f


1

; : : : 


k

g !

N

00

(for k � n) su
h that, for every ground 


f


1

;:::;


k

g

0

-literal A we have

N

0

j


0

j= A(


1

; : : : ; 


k

) implies N

00

j


0

j= A(�

k

(


1

); : : : ; �

k

(


k

))

Sin
e this 
ondition is asked for literals and not just for atoms, it follows that the

mappings �

k

are inje
tive.

We �rst take �

n

to be �. To de�ne �

k+1

(for k � n), let us 
onsider the 
onjun
tion

 (


1

; : : : ; 


n

; 


n+1

) of the 


f


1

;:::;


n+1

g

0

-literals that are true inN

0

j


0

: this 
onjun
tion

is �nite (modulo taking representative terms, thanks to lo
al �niteness of T

0

).

Let �(x

1

; : : : ; x

n

) be 9x

n+1

: (x

1

; : : : ; x

n

; x

n+1

) and let �

�

(x

1

; : : : ; x

n

) be an open

formula su
h that T

�

0

j= �$ �

�

.

By (i) and (ii) of De�nition 6.1, Lemma 3.1, and the fa
t that �! �

�

is equivalent

to an open formula, we have T

0

j= � ! �

�

. This implies N

0

j


0

j= �

�

(


1

; : : : ; 


k

),

and thus N

00

j


0

j= �

�

(�

k

(


1

); : : : ; �

k

(


k

)) by the indu
tion hypothesis. Sin
e N

00

j


0

is a model of T

�

0

and T

�

0

j= �

�

! �, there is an element b of N

00

j


0

su
h that

N

00

j


0

j=  (�

k

(


1

); : : : ; �

k

(


k

); b). We now obtain the desired extension �

k+1

of �

k

by setting �

k+1

(


k+1

) := b. Taking �

1

=

S

k�n

�

k

, we �nally obtain an embedding

�

1

: N

0

j


0

! N

00

j


0

su
h that the triple (N

0

;N

00

; �

1

) is a model of T

1

>

em

T

0

T

2

that

satis�es �

0

[ �

1

[ �

2

. a

6.2 Surje
tive 
onne
tions

To treat T

1

>

s

T

0

T

2

, we must dualize the notions \algebrai
 
ompletion" and

\algebrai
 
ompatibility". These notions are based on 
o-geometri
 formulae,

whi
h the dual of geometri
 formulae in the sense that existential quanti�
ation

is repla
ed by universal quanti�
ation. A 
o-geometri
 formula is a formula

built from atoms by using 
onjun
tion, disjun
tion and universal quanti�
ation.

Similarly, a 
o-geometri
 theory is a theory axiomatized by (universal 
losure of)

impli
ations of 
o-geometri
 formulae.
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De�nition 6.5 Let T be a universal 
-theory, and let T

�

be an 
-theory. We

say that T

�

is a positive 
o-algebrai
 
ompletion of T i� the following 
onditions

are satis�ed:

(i) T � T

�

;

(ii) every model of T embeds into a model of T

�

;

(iii) for every 
o-geometri
 formula �(x) there is an open 
o-geometri
 formula

�

�

(x) su
h that

T

�

j= �$ �

�

:

The new notion of 
ompatibility de�ned below di�ers from the one introdu
ed

in Se
tion 3 in that positive algebrai
 
ompletions are repla
ed by positive 
o-

algebrai
 
ompletions.

De�nition 6.6 Let T

0

� T be theories over the respe
tive signatures 


0

� 


1

.

We say that T is T

0

-
o-algebrai
ally 
ompatible i� T

0

is universal, has a positive


o-algebrai
 
ompletion T

�

0

, and every model of T embeds into a model of T [T

�

0

.

If the prerequisites of Theorem 4.1 hold and T

1

is additionally T

0

-
o-algebrai
ally


ompatible, then de
idability of the universal fragment transfers from T

1

; T

2

to

T

1

>

s

T

0

T

2

.

Theorem 6.7 Let T

0

; T

1

; T

2

be theories over the respe
tive signatures 


0

;


1

;


2

,

where 


0

is a 
ommon subsignature of 


1

and 


2

. Assume that T

0

� T

1

and

T

0

� T

2

, that T

0

is universal and lo
ally �nite, that T

1

is T

0

-
o-algebrai
ally


ompatible, and that T

2

is T

0

-algebrai
ally 
ompatible. Then the de
idability of the

universal fragments of T

1

and T

2

entails the de
idability of the universal fragment

of T

1

>

s

T

0

T

2

.

To prove the theorem, let � = �

0

[�

1

[�

2

be a �nite set of ground 
at literals over

the signature 
 of T

1

>

s

T

0

T

2

(with additional free 
onstants), where �

i

(i = 1; 2)

is a set of literals in the signature 


i

(expanded with free 
onstants), and �

0

is

of the form

fh(a

1

) � b

1

; : : : ; h(a

n

) � b

n

g;

for free 
onstants a

1

; b

1

; : : : ; a

n

; b

n

. The following proposition, whose formula-

tion is identi
al to the formulation of Proposition 4.2, immediately entails Theo-

rem 6.7.

Proposition 6.8 The 
onstraint � = �

0

[ �

1

[ �

2

is satis�able in T

1

>

s

T

0

T

2

i�

there exists a triple (A;B; �) su
h that
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1. A is an 


0

-model of T

0

, whi
h is generated by fa

A

1

; : : : ; a

A

n

g;

2. B is an 


0

-model of T

0

, whi
h is generated by fb

B

1

; : : : ; b

B

n

g;

3. � : A! B is an 


0

-homomorphism su
h that �(a

A

j

) = b

B

j

for j = 1; : : : ; n;

4. �

1

[�




0

(A) is satis�able in T

1

;

5. �

2

[�




0

(B) is satis�able in T

2

.

Proof. The only-if dire
tion is again simple. The proof of the if dire
tion requires

now a ba
k-and-forth argument. Suppose we are given A, B, � as in 1.{5. of

the proposition, and let N

0

be an 


1

-model of T

1

satisfying �

1

[ �




0

(A), and

N

00

be an 


2

-model of T

2

satisfying �

2

[ �




0

(B). We 
an assume without loss

of generality that N

0

;N

00

are both at most 
ountable, that N

0

is a model of the

positive 
o-algebrai
 
ompletion of T

0

, and that N

00

is a model of the positive

algebrai
 
ompletion of T

0

. By Robinson's diagram theorem, N

0

has A as an




0

-substru
ture, and N

00

has B as an 


0

-substru
ture. Let us enumerate the

elements of N

0

as




1

; 


3

; : : : ; 


2k+1

; : : :

and the elements of N

00

as

d

2

; d

4

; : : : ; d

2k

; : : :

(here we prefer, for uniformity, both lists to be in�nite, so we may tolerate repeti-

tions in ea
h list). We de�ne an in
reasing sequen
e of sort-
onforming surje
tive

mappings �

k

: S

k

�! T

k

, su
h that:

� S

k

is a �nite subset of N

0

in
luding all the elements from A as well as 


2j+1

,

for 2j + 1 � k;

� T

k

is a �nite subset of N

00

in
luding all the elements from B as well as d

2j

,

for 2j � k;

� for all 


0

-atoms C(x) we have

N

0

j


0

j= C(a) implies N

00

j


0

j= C(�

k

(a)) (10)

for every tuple a from S

k

.

On
e this is settled, N

0

and N

00

together with the surje
tive homomorphism

�

1

=

S

k�n

�

k

give, as usual, the desired model of T

1

>

s

T

0

T

2

satisfying �.

We �rst take �

0

to be �. To de�ne �

k

(k > 0), we distinguish the 
ase in whi
h k

is even from the 
ase in whi
h k is odd. In the latter 
ase, we pro
eed as in the

proof of Proposition 4.2. As to the former 
ase, let b = d

2k

and let a be a tuple


olle
ting all the elements from S

k�1

. We want to �nd a suitable a 2 N

0

in order
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to extend �

k�1

by de�ning �

k

(a) := b. For this purpose, it is suÆ
ient to show that

N

0

6j= 8y:�(a; y), where �(x; y) is the disjun
tion of all atoms C(x; y) su
h that

N

00

6j= C(�

k�1

(a); b). In fa
t, if N

0

6j= 8y:�(a; y), then there is a (sort-
onforming)

a 2 N

0

su
h that N

0

j= :�(a; a), and we 
an set �

k

(a) := b. Assume that C

is an atom su
h that N

0

j


0

j= C(a; a), but N

00

j


0

6j= C(�

k

(a; a)) = C(�

k�1

(a); b).

However, this means that C(x; y) o

urs as a disjun
t in �(x; y), and thus N

0

j=

:�(a; a) implies that N

0

j= :C(a; a), whi
h is a 
ontradi
tion to our assumption

that N

0

j


0

j= C(a; a).

To show thatN

0

6j= 8y:�(a; y), we 
onsider the positive 
o-algebrai
 
ompletion T

�

0

of T

0

. In this theory, 8y:�(x; y)$ �

�

(x) is provable for some (
o-)geometri
 open

formula

8

�

�

(x). As usual, the impli
ation �

�

(x) ! 8y:�(x; y) must already hold

in T

0

be
ause T

0

and its 
o-algebrai
 
ompletion T

�

0

entail the same open formulae,

and �

�

(x)! 8y:�(x; y) is equivalent to the open formula �

�

(x)! �(x; y).

Sin
e N

0

is a model of T

�

0

, and T

�

0

j= 8y:�(x; y) ! �

�

(x), it is enough to prove

that N

0

6j= �

�

(a). However, N

00

6j= 8y:�(�

k�1

(a); y), by the de�nition of �. Sin
e

N

00

is a model of T

0

, and T

0

j= �

�

(x)! 8y:�(x; y), this implies N

00

6j= �

�

(�

k�1

(a)).

Finally, the indu
tion hypothesis on the validity of (10) yields N

0

6j= �

�

(a). a

The following example shows that there are natural examples of theories T

0

ad-

mitting both a positive algebrai
 and a positive 
o-algebrai
 
ompletion.

Example 6.9 Consider the theory of join semilatti
es with a greatest element.

These are join semilatti
es as introdu
ed in Example 4.6, but endowed with a

further element > su
h that x t > = > holds for all x. The positive algebrai



ompletion of this theory is axiomatized as in Example 4.6 above. In order to

axiomatize the 
o-algebrai
 
ompletion of this theory, we need a theory that

allows us to eliminate the universal quanti�er from formulae 8y:�(x; y) of the

form

8y: ((y v t

1

) _ � � � _ (y v t

n

) _ (u

1

v s

1

t y) _ � � � _ (u

m

v s

m

t y)) ; (11)

where t

i

; s

j

; u

k

are terms not involving y. Let �

�

(x) be the formula

n

_

i=1

(t

i

� >) _

m

_

j=1

(u

j

v s

j

); (12)

and let T

�

0

be obtained from T

0

by adding to it the universal 
losures of the

senten
es � $ �

�

. The theory T

�

0

is in
luded in the theory BA

�

of atomless

Boolean algebras (re
all that a Boolean algebra is said to be atomless i� it does

not have non-zero minimal elements): the axioms of T

�

0

are in fa
t provable in

BA

�

, as it is evident from the quanti�er elimination pro
edure for BA

�

(see, e.g.,

[GZ02℄). Sin
e every join semilatti
e with a greatest element embeds into an

8

In the open 
ase, geometri
 and 
o-geometri
 formulae trivially 
oin
ide.
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atomless Boolean algebra,

9

this shows both that T

�

0

is the positive 
o-algebrai



ompletion of T

0

, and that the theory of Boolean algebras is 
o-algebrai
ally


ompatible with the theory of join semilatti
es with a greatest element.

Sin
e the formulation of Proposition 6.8 
oin
ides with the one of Proposition 4.2,

we know that the universal fragments of T

1

>

s

T

0

T

2

and T

1

>

T

0

T

2


oin
ide if the


onditions of Theorem 6.7 are satis�ed.

Corollary 6.10 Let T

0

; T

1

; T

2

be theories over the respe
tive signatures 


0

;


1

;


2

,

where 


0

is a 
ommon subsignature of 


1

and 


2

. Assume that T

0

� T

1

and

T

0

� T

2

, that T

0

is universal and lo
ally �nite, that T

1

is T

0

-
o-algebrai
ally 
om-

patible, and that T

2

is T

0

-algebrai
ally 
ompatible. Then the universal fragment

of T

1

>

T

0

T

2


oin
ides with the universal fragment of T

1

>

s

T

0

T

2

.

6.3 Isomorphisms as 
onne
tion fun
tions

Finally, let us 
onsider the problem of de
iding the universal fragment of T

1

>

iso

T

0

T

2

.

Theorem 6.11 Let T

0

; T

1

; T

2

be theories over the respe
tive signatures 


0

;


1

;


2

,

where 


0

is a 
ommon subsignature of 


1

and 


2

. Assume that T

0

� T

1

and

T

0

� T

2

, that T

0

is universal and lo
ally �nite, and that T

1

; T

2

are both T

0

-


ompatible. Then the de
idability of the universal fragments of T

1

and T

2

entails

the de
idability of the universal fragment of T

1

>

iso

T

0

T

2

.

To prove the theorem, let � = �

0

[�

1

[�

2

be a �nite set of ground 
at literals over

the signature 
 of T

1

>

iso

T

0

T

2

(with additional free 
onstants), where �

i

(i = 1; 2)

is a set of literals in the signature 


i

(expanded with free 
onstants), and �

0

is

of the form

fh(a

1

) � b

1

; : : : ; h(a

n

) � b

n

g;

for free 
onstants a

1

; b

1

; : : : ; a

n

; b

n

. The following proposition, whose formula-

tion is identi
al to the formulation of Proposition 6.4, immediately entails Theo-

rem 6.11.

Proposition 6.12 The 
onstraint � = �

0

[ �

1

[ �

2

is satis�able in T

1

>

iso

T

0

T

2

i�

there exists a triple (A;B; �) su
h that

9

One 
an embed a join semilatti
e with greatest element into a bounded distributive latti
e

by taking the dual of the latti
e of non-empty upward 
losed subsets; that bounded distributive

latti
es embed into Boolean algebras, and that Boolean algebras embed into atomless Boolean

algebras are standard latti
e-theoreti
 fa
ts.
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1. A is an 


0

-model of T

0

, whi
h is generated by fa

A

1

; : : : ; a

A

n

g;

2. B is an 


0

-model of T

0

, whi
h is generated by fb

B

1

; : : : ; b

B

n

g;

3. � : A! B is an 


0

-embedding su
h that �(a

A

j

) = b

B

j

for j = 1; : : : ; n;

4. �

1

[�




0

(A) is satis�able in T

1

;

5. �

2

[�




0

(B) is satis�able in T

2

.

Proof. To prove the if dire
tion, we must extend � to an isomorphism between the




0

-redu
ts ofN

0

;N

00

, where N

0

;N

00

are at most 
ountable models of the diagrams

of A;B and of T

1

[T

�

0

, T

2

[T

�

0

, respe
tively. The ba
k-and-forth argument used in

the proof of Proposition 6.8 
an be easily adapted to the present 
ase: it suÆ
ient

to ask in 
ondition (10) for truth of ground 


S

k

0

-literals rather than just atoms to

be preserved.

In the 
ase of k being odd, one 
an pro
eed as in the proof of Proposition 6.4. In

the 
ase of k being even, one must adapt the 
onstru
tion given in Proposition 6.8

appropriately to the stronger 
ondition. We leave this simple adaptation to the

reader. a

Sin
e the formulation of Proposition 6.12 
oin
ides with the one of Proposi-

tion 6.4, we know that the universal fragments of T

1

>

em

T

0

T

2

and T

1

>

iso

T

0

T

2


oin
ide if the 
onditions of Theorem 6.11 are satis�ed.

Corollary 6.13 Let T

0

; T

1

; T

2

be theories over the respe
tive signatures 


0

;


1

;


2

,

where 


0

is a 
ommon subsignature of 


1

and 


2

. Assume that T

0

� T

1

and

T

0

� T

2

, that T

0

is universal and lo
ally �nite, and that T

1

; T

2

are T

0

-
ompatible.

Then the universal fragment of T

1

>

em

T

0

T

2


oin
ides with the universal fragment

of T

1

>

iso

T

0

T

2

.

It is easy to see that the problem of de
iding the universal fragment of T

1

>

iso

T

0

T

2

is interredu
able in polynomial time with the problem of de
iding the universal

fragment of T

1

[T

2

. Consequently, the proof of Theorem 6.11 yields an alternative

proof of the 
ombination result in [Ghi05℄.

The main reason for this is that there is a 
lose 
onne
tion between models of

T

1

[ T

2

and T

1

>

iso

T

0

T

2

. In fa
t, if M is a model of T

1

[ T

2

, then it 
an be turned

into a model (M

1

;M

2

; �) of T

1

>

iso

T

0

T

2

by taking as M

1

the redu
t of M to 


1

,

as M

2

the redu
t of M to 


2

, and as isomorphism � the identity mapping on

the domain of the redu
t of M to 


0

. Conversely, if (M

1

;M

2

; �) is a model of

T

1

>

iso

T

0

T

2

, then one 
an turn it into a model of T

1

[T

2

by adapting the well-known

fusion 
onstru
tion [TR03℄ to the many-sorted 
ase.
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Now, given a 
onjun
tion � of (sort-
onforming) literals to be tested for sat-

is�ability in T

1

>

iso

T

0

T

2

, we 
an simply remove the 
onne
tion fun
tion h and

the supers
ripts introdu
ed through the renaming done in the 
onstru
tion of

T

1

>

iso

T

0

T

2

, and test the resulting 
onjun
tion �

0

of literals for satis�ability in

T

1

[ T

2

. If M is a model of T

1

[ T

2

satisfying �

0

, then it is easy to see that

the 
orresponding model (M

1

;M

2

; �) of T

1

>

iso

T

0

T

2

satis�es �. Conversely, if

(M

1

;M

2

; �) is a model of T

1

>

iso

T

0

T

2

satisfying �, then it is easy to see that the

modelM of T

1

[T

2

obtained from this model by applying the fusion 
onstru
tion

satis�es �

0

.

Conversely, given a 
onjun
tion � of 
at ground literals to be tested for satis�a-

bility in T

1

[T

2

, we 
an partition � into � = �

1

[�

2

where �

1

is over the signature




1

and �

2

is over the signature 


2

. For every free 
onstant 
 o

urring in �, we

introdu
e two free 
onstants 


1

and 


2

. We repla
e 
 in �

1

by 


1

and 
 in �

2

by




2

, and also do the appropriate renamings of the shared fun
tion and predi
ate

symbols. In addition, we add the identity 


2

� h(


1

) for ea
h free 
onstant 
 o
-


urring in �. Let �

0

be the 
onjun
tion of literals over the signature of T

1

>

iso

T

0

T

2

obtained this way. Again, it is easy to see that � is satis�able in T

1

[ T

2

i� �

0

is

satis�able in T

1

>

iso

T

0

T

2

.

7 Con
lusion

We have introdu
ed a new s
heme for 
ombining many-sorted theories, and have

shown under whi
h 
onditions de
idability of the universal fragment of the 
om-

ponent theories transfers to their 
ombination. Though this kind of 
ombination

has been 
onsidered before in restri
ted 
ases [KLWZ04, AK97, Zar02℄, it has not

been investigated in the general algebrai
 setting 
onsidered here.

In 
ontrast to the results in [KLWZ04℄, our results are not restri
ted to Boolean-

based equational theories [BGT04℄. However, our results do not imply the alge-

brai
 
ounterpart of the more general 
ombination results in [KLWZ04℄: there,

a 
onne
ting relation E (see Example 2.1) introdu
es two 
onne
tion fun
tion:

the diamond operators indu
ed by E and its inverse E

�1

. These two 
onne
tion

fun
tions are not unrelated, but they are not inverses of ea
h other (as fun
tions).

An important topi
 for future work is to try to extend our framework su
h that

it 
an also handle this type of a 
onne
tion.
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8 Appendix A: E-
onne
tions

The purpose of this appendix is to give a more detailed 
omparison between

the notion of an E-
onne
tions, as introdu
ed in [KLWZ04℄, and our notion of a


onne
tion of many-sorted theories.

First of all, [KLWZ04℄ 
onsider 
onne
tions that are more general than ours, in

the sense that more 
omplex modalities (n-ary modalities, inverse modalities,

Boolean 
ombinations of modalities, 
ounting modalities, et
.) 
an be used as


onne
tion fun
tions. Using su
h sophisti
ated modalities as 
onne
tion fun
tion

is, 
urrently, beyond the s
ope of our methods, but they will be the subje
t of

future resear
h.

Here, we will 
ontent ourselves with examining the spe
ial 
ase of plain unary

modalities as 
onne
tion fun
tions, whi
h is the most basi
 
ase of an E-
onne
tion


onsidered in [KLWZ04℄. However, even with this restri
tion, there are still sig-

ni�
ant di�eren
es between our approa
h and the approa
h in [KLWZ04℄. The

main di�eren
e is that, seen from the modal logi
 point of view, our approa
h

for de�ning the 
onne
tion is synta
ti
 (or algebrai
), in the sense that we 
on-

sider an equational axiomatization of the logi
. In 
ontrast, in [KLWZ04℄ the

emphasis is on the model-theoreti
 side, meaning that E-
onne
tions are de�ned

at the semanti
 level as enri
hments of suitable Kripke-like stru
tures. Be
ause

of this di�eren
e, it is not a priori 
lear that our results spe
ialize to de
idability

transfer results for E-
onne
tions de�ned in the framework of [KLWZ04℄ (even

within the limitation to plain unary modalities as 
onne
tion fun
tions). In this

appendix, we show that this is indeed the 
ase (but this proof turns out to be

not entirely trivial). To simplify matters further, we will not 
onsider abstra
t

des
ription systems (as used in [KLWZ04℄) in their full generality, but restri
t our


onsiderations to normal modal logi
s and to standard uni-modal Kripke frames

(most of these further restri
tions are, however, without loss of generality; they

are assumed just for the sake of simpli
ity).

Propositional modal formulae are built using the Boolean 
onne
tives and a dia-

mond operator �. A Kripke frame is a pair F = (W;R), where W is a non-empty

set, the set of possible worlds, and R is a binary relation on W , the transition

relation. A Kripke model is a triple M = (W;R; V ), where (W;R) is a Kripke

frame and V is a map, 
alled valuation, asso
iating with ea
h propositional letter

a subset of W . The for
ing relation w j=

M

�, whi
h expresses that the modal

formula � is true in the Kripke model M at world w, is de�ned in the standard

way (see, e.g., [BdRV01℄).

For a given 
lass of Kripke frames C, the modal 
onstraint problem for C is the

problem of de
iding whether a �nite set of modal formulae is satis�able w.r.t. a

set of global 
onstraints.

10

10

This is the kind of problem 
onsidered in [KLWZ04℄, where satis�ability of an A-Box 
on-

35



De�nition 8.1 A modal 
onstraint is a pair of �nite sets of modal formulae,

written as �

1

; : : : ; �

n

; �

1

; : : : ; �

m

(n;m � 0); we say that su
h a modal 
onstraint

is satis�able in a Kripke model M = (W;R; V ) i� there are worlds w

1

; : : : ; w

m

2

W su
h that

1. w

1

j=

M

�

1

; : : : ; w

m

j=

M

�

m

;

2. for all v 2 W and for all i = 1; : : : ; n, we have v j=

M

�

i

.

The modal 
onstraint �

1

; : : : ; �

n

; �

1

; : : : ; �

m

is satis�able in a 
lass of Kripke

frames C i� it is satis�able in some M = (W;R; V ), for (W;R) 2 C.

Thus, the satis�ability of a modal 
onstraint �

1

; : : : ; �

n

; �

1

; : : : ; �

m

means that

there is a model in whi
h the �

j

are satis�ed in some worlds w

j

, and in whi
h

�

1

; : : : ; �

n

hold globally, i.e., in every world.

In order to algebraize the above de
ision problem, let us introdu
e the signature

B

M

: this is the single-sorted signature obtained by expanding the signature of

Boolean algebras by a new unary operator that we still 
all �. Noti
e that there

is an obvious bije
tive 
orresponden
e in this way between modal formulae and

terms of the signature B

M

(thus, from now on, we identify modal formulae and

terms of the signature B

M

). Also, a Kripke frame F = (W;R) 
an be 
onverted

into a B

M

-stru
ture 
alled B

F

as follows: we take as underlying Boolean algebra

the powerset Boolean algebra P(W ) and interpret � as the fun
tion asso
iating

with X � W the subset of W given by

�(X) := fw

2

2 W j 9w

1

2 W: (w

2

; w

1

) 2 R ^ w

1

2 Xg:

Valuations V of F 
orrespond in an obvious way to assignments of variables to

elements of P(W ). It is easy to see that, for any modal formula �, we have

w j=

(W;R;V )

� i� w belongs to the set obtained by evaluating the term � in B

F

under the assignment V .

With every 
lass of Kripke frames C we asso
iate the B

M

-theory T

C

whose axioms

are the formulae

(�

1

� >) ^ � � � ^ (�

n

� >) ! (�

1

� ?) _ � � � _ (�

m

� ?); (13)

where �

1

; : : : ; �

n

; �

1

; : : : ; �

m

are the modal 
onstraints that are not satis�able in

C. If F is a Kripke frame in C, then the 
orresponding B

M

-stru
ture B

F

is a

model of T

C

.

taining many individual 
onstants, with respe
t to a given T-Box, is taken into 
onsideration.

Noti
e that, by 
ontrast, relativized satis�ability as traditionally intended in modal logi
 
on-


erns lo
al satis�ability of just one formula with respe
t to a global 
onstraint formed by a

�nite set of formulae.
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Proposition 8.2 The problem of de
iding satis�ability of modal 
onstraints in C

is equivalent to the problem of de
iding the universal fragment of the theory T

C

.

Proof. First, noti
e that a modal 
onstraint

�

1

; : : : ; �

n

; �

1

; : : : ; �

m

(14)

is unsatis�able in C i� the formula (13) is a logi
al 
onsequen
e of T

C

. In fa
t,

if (14) is unsatis�able in C, then (13) is an axiom of T

C

. Conversely, if (14) is

satis�able in a frame F = (W;R) 2 C, then (13) 
annot be a logi
al 
onsequen
e

of T

C

, be
ause it it is easy to see that it is then false in the B

M

-stru
ture B

F

.

Given that, it is suÆ
ient to observe that identities in T

C

are all equivalent

11

to

identities of the kind � � > as well as to identities of the kind � � ?. Thus an

arbitrary open formula in the signature B

M

is in fa
t a 
onjun
tion of formulae of

the kind (13). Together with what we have shown about the 
onne
tion between

su
h formulae and modal 
onstraints, this implies the 
laim of the proposition. a

Let us now show that this 
orresponden
e

C 7�! T

C

is 
ompatible with building 
onne
tions, where on the left-hand side the 
onne
-

tions are the E-
onne
tions as introdu
ed in [KLWZ04℄, and on the right-hand side

the 
onne
tions are the 
onne
tions of many-sorted theories as introdu
ed in the

present paper. To show this, we need to re
all the de�nition of an E-
onne
tion

(in the present simpli�ed 
ase of 
lasses of Kripke frames).

For E-
onne
tions, we use two-sorted propositional modal formulae. The formulae

of sort 1 are just the standard propositional modal formulae (where, however,

the modal operator � is renamed to �

1

); the formulae of sort 2 are built from

propositional variables

12

of sort 2 and formulae of the form �

E

� where � is a

formula of sort 1, by applying the Boolean 
onne
tives and the modal operator

�

2

.

From the semanti
 side, suppose we are given two 
lasses C

1

; C

2

of Kripke frames.

The 
lass of 
onne
tion frames E(C

1

; C

2

) is formed by all triples F = (F

1

; E

F

;F

2

)

su
h that F

1

= (W

1

; R

1

) 2 C

1

, F

2

= (W

2

; R

2

) 2 C

2

and E

F

� W

2

� W

1

is an

arbitrary binary relation.

An E(C

1

; C

2

)-
onne
tion Kripke model is a 4-tuple M = (F

1

; E

F

;F

2

; V ), where

F = (F

1

; E

F

;F

2

) 2 E(C

1

; C

2

) is a 
onne
tion frame and V is a map asso
iating

with propositional letters of sort i subsets of W

i

(i = 1; 2). The for
ing relation

w j=

M

�, whi
h says that the modal formula � is true in M at world w, is

11

Use Boolean bi-impli
ation and 
omplement to show this.

12

Propositional variables of sort 1 are kept disjoint from propositional variables of sort 2.
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de�ned in the standard way (see [KLWZ04℄), where the only non-obvious 
ase is

the following: for w

2

2 W

2

and for a formula � of sort 1, we have:

w

2

j=

M

�

E

� i� (9w

1

2 W

1

: (w

2

; w

1

) 2 E

F

and w

2

j=

M

�):

Now, E(C

1

; C

2

)-satis�ability of a modal 
onstraint �

1

; : : : ; �

n

; �

1

; : : : ; �

m

is de�ned

as above (but noti
e that the �

i

and the �

j

may be formulae of sort 1 or 2,

indi�erently).

When 
onne
ting the theories 
orresponding to two frame 
lasses, we build the

two-sorted signature B

2

M

: this 
onsists of two renamed 
opies of the signature

B

M

and, in addition, of the new unary fun
tion symbol �

E

of arity S

1

S

2

(where

S

1

; S

2

are the single sorts of the renamed 
opies of B

M

). Again, terms in the

signature B

2

M


an be identi�ed with the two-sorted modal formulae introdu
ed

above; moreover any 
onne
tion frame F = (F

1

; E

F

;F

2

) 
an be turned into a

B

2

M

-stru
ture (whi
h we still 
all B

F

) by interpreting the two sorts by power-

set Boolean algebras, as des
ribed above, and by de�ning �

E

as the fun
tion

asso
iating with X � W

1

the subset of W

2

given by

�

E

(X) := fw

2

2 W

2

j 9w

1

2 W: (w

2

; w

1

) 2 E

F

^ w

1

2 Xg:

We 
an then build the theory T

E(C

1

;C

2

)

, whose axioms are the formulae

(�

1

� >) ^ � � � ^ (�

n

� >) ! (�

1

� ?) _ � � � _ (�

m

� ?); (15)

where �

1

; : : : ; �

n

; �

1

; : : : ; �

m

are the modal 
onstraints that are not satis�able in

E(C

1

; C

2

). As in the proof of Proposition 8.2, it 
an be shown that the problem

of de
iding satis�ability of modal 
onstraints in E(C

1

; C

2

) is equivalent to the

problem of de
iding the universal fragment of the theory T

E(C

1

;C

2

)

.

The following proposition states a pre
ise relationship between E-
onne
tions and

our 
onne
tions of many-sorted theories.

Proposition 8.3 Let C

1

; C

2

be 
lasses of Kripke frames; T

E(C

1

;C

2

)


oin
ides with

T

C

1

>

T

0

T

C

2

, where T

0

is the theory of semilatti
es.

13

Proof. Both theories T

E(C

1

;C

2

)

and T

C

1

>

T

0

T

C

2

are universal and relative to the

same signature BD

2

, so it is suÆ
ient to show that a �nite set of literals is

satis�able in a model of one of them i� it is satis�able in a model of the other.

First, note that a �nite set of literals is satis�ed in a model of T

E(C

1

;C

2

)

i� it

is satis�ed in a model of the form B

F

, where F = (F

1

; E

F

;F

2

) is su
h that

F

1

2 C

1

and F

2

2 C

2

. This 
an be shown by basi
ally repeating the arguments

used in the proof of Proposition 8.2: every universal B

2

M

-formula is equivalent to


onjun
tion of formulae of the kind (13), and (13) is a logi
al 
onsequen
e of the

13

See Example 2.1.
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theory T

E(C

1

;C

2

)

i� the modal 
onstraint (14) is unsatis�able in frames of the kind

F = (F

1

; E

F

;F

2

) (for F

1

2 C

1

and F

2

2 C

2

), i.e., i� (13) is true in models of the

kind B

F

, where F = (F

1

; E

F

;F

2

) is su
h that F

1

2 C

1

and F

2

2 C

2

.

Clearly, models of the form B

F

for a 
onne
tion frame F = (F

1

; E

F

;F

2

) are

models of T

C

1

>

T

0

T

C

2

. However, the 
onverse is far from being true: in fa
t,

models of T

C

1

>

T

0

T

C

2

may interpret the two sorts S

1

and S

2

by Boolean algebras

that are not powerset Boolean algebras. Moreover, in models of T

C

1

>

T

0

T

C

2

, the


onne
ting diamond �

E

is taken to be any semilatti
e homomorphism and, as

su
h, it need not preserve in�nitary joins (as is the 
ase, on the 
ontrary, for the

interpretation of �

E

in all models of the kind B

F

).

Thus, the key point of the proof is to show that any �nite set of B

2

M

-literals �

satis�able in a model of T

C

1

>

T

0

T

C

2

, is also satis�able in a model of the form B

F

,

where F = (F

1

; E

F

;F

2

) is a 
onne
tion frame su
h that F

1

2 C

1

and F

2

2 C

2

.

We 
an, as usual, repla
e variables with 
onstants and assume � to be 
at, so that

we 
an divide � into three disjoint sets � = �

0

[ �

1

[ �

2

; where �

i

(i = 1; 2) is a

set of literals in the i-th 
opy of the signature B

M

(expanded with free 
onstants),

and �

0

is of the form

�

0

= f�

E

(a

1

) � b

1

; : : : ;�

E

(a

n

) � b

n

g

for free 
onstants a

1

; b

1

; : : : ; a

n

; b

n

.

This observation is not suÆ
ient yet: we need to modify �

0

[�

1

[�

2

further. Let

� be the set of terms of the form

�a

1

u � � � u �a

n

;

where +a

i

is a

i

and �a

i

is a

i

. Noti
e that the equations

a

i

�

G

f� j � 2 �; � v a

i

g

are logi
al 
onsequen
e of the Boolean algebra axioms, and hen
e are always valid

in our models (here � v a

i

means that a

i

(and not a

i

) appears as 
onjun
t in �).

Let

~

�

1

be any set of B

1

M

-literals obtained from �

1

by adding either � � ? or

� 6� ? for every � 2 �. For any � 2 �, introdu
e a new 
onstant 


�

and repla
e

�

0

with

~

�

0

:= f�

E

(�) � 


�

j � 2 �g:

Finally, let

~

�

2

(

~

�

1

) := �

2

[ f


�

� ? j � � ? 2

~

�

1

g [ f(

G

�va

i




�

) � b

i

j i = 1; : : : ; ng:

It is easily seen that �

0

[ �

1

[ �

2

is satis�able in a model of T

C

1

>

T

0

T

C

2

i� there

is a

~

�

1

su
h that

~

�

0

[

~

�

1

[

~

�

2

(

~

�

1

) is satis�able in a model of T

C

1

>

T

0

T

C

2

. The
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same observation applies to satis�ability in models of T

E(C

1

;C

2

)

. So, let us �x a set

~

�

0

[

~

�

1

[

~

�

2

(

~

�

1

), and assume that it is satis�able in a model of T

C

1

>

T

0

T

C

2

. We

must show that it is satis�able in a model of T

E(C

1

;C

2

)

.

Now, if

~

�

0

[

~

�

1

[

~

�

2

(

~

�

1

) is satis�able in a model of T

C

1

>

T

0

T

C

2

, then

~

�

1

is

satis�able in a model of T

C

1

and

~

�

2

(

~

�

1

) is satis�able in a model of T

C

2

. By the

de�nition of T

C

i

, it follows that

~

�

i

must be satis�able in a model of the form

B

F

i

, where F

i

= (W

i

; R

i

) 2 C

i

(i = 1; 2). So we simply need to de�ne the

interpretation E

F

of the 
onne
ting relation E in su
h a way that also

~

�

0

is

satis�ed in F = (F

1

; E

F

;F

2

). This is done as follows: pi
k s

1

2 W

1

and s

2

2 W

2

;

we say that (s

2

; s

1

) 2 E

F

i� s

2

2 


B

F

2

�

,

14

where � is the unique element

15

of � su
h

that s

1

2 �

B

F

1

. This implies that, for every � 2 �, we have �

B

F

E

(�

B

F

1

) � 


B

F

2

�

.

For the 
onverse in
lusion, suppose that s

2

2 


B

F

2

�

. Then B

F

2

6j= 


�

� ?. By the

de�nition of

~

�

2

(

~

�

1

) and by the fa
t that either � � ? 2

~

�

1

or � 6� ? 2

~

�

1

, we

have that B

F

1

6j= � � ?. This means that there is some s

1

2 �

B

F

1

; for su
h s

1

we

have that (s

2

; s

1

) 2 E

F

, i.e. that s

2

2 �

B

F

E

(�

B

F

1

). a

The above proposition, together with our main 
ombination result (Theorem 4.1),

and the fa
t that Boolean-based theories are algebrai
ally 
ompatible with respe
t

to the theory of semilatti
es (Example 4.6), immediately entails the following

result:

Corollary 8.4 Let C

1

and C

2

be 
lasses of modal frames. If the modal 
onstraint

problems for C

1

and C

2

are both de
idable, then so is the modal 
onstraint problem

for E(C

1

; C

2

).

This de
idability transfer result 
an be proved dire
tly by an argument similar

to the one we used to prove Proposition 8.3. Noti
e, however, that Theorem 4.1

gives in fa
t more, as it applies to any Boolean-based theory, i.e., also to theories

that are not of the kind T

C

for a 
lass C of Kripke frames.

Let us now turn to E-
onne
tions that 
orrespond to 
onne
tions of theories where

more than the theory of semilatti
es is shared. The frame 
lasses E

d

(C

1

; C

2

) and

E

f

(C

1

; C

2

) are de�ned similarly to E(C

1

; C

2

): the only di�eren
e is that now the


onne
ting relation E is respe
tively taken to be a partial fun
tion and a fun
tion.

For su
h deterministi
 or fun
tional 
onne
tions, we 
an show results that are

analogous to Proposition 8.3.

Proposition 8.5 Let C

1

and C

2

be 
lasses of modal frames.

14

We use t

B

F

2

to denote the interpretation of the ground term t in the stru
ture B

F

2

(and

similarly for F

1

).

15

By the de�nition of �, di�erent elements of � are interpreted by disjoint sets in F

1

, and

the union of the interpretations of all elements of � in F

1

is W

1

.
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1. T

E

d

(C

1

;C

2

)


oin
ides with T

C

1

>

T

0

T

C

2

, where T

0

is the theory of distributive

latti
es with a least element.

2. T

E

f

(C

1

;C

2

)


oin
ides with T

C

1

>

T

0

T

C

2

, where T

0

is the theory of bounded dis-

tributive latti
es.

Proof. Only slight modi�
ations to the proof of Proposition 8.3 are needed. When

building

~

�

2

(

~

�

1

), we add also the atoms 


�

1

u 


�

2

� ?, for �

1

6= �

2

. In the 
ase of

a fun
tional 
onne
tion, we additionally add > �

F

�2�




�

.

To de�ne E

F

, we now pro
eed as follows: �rst, the de�nition domain of the partial

fun
tion E

F

is (

F

�2�




�

)

B

F

2

. Now noti
e that any s

2

in this de�nition domain

belongs to exa
tly one 


B

F

2

�

; moreover, if s

2

2 


B

F

2

�

, then B

F

2

j= 


�

6� ? and thus

B

F

1

j= � 6� ?. Sele
t just one s

1

2 �

B

F

1

and let E

F

(s

2

) := s

1

. This de�nition of

E

F

guarantees that B

F

j= �

E

� � 


�

again holds for all � 2 �. In addition, in the


ase of a fun
tional 
onne
tion, the presen
e of > �

F

�2�




�

in

~

�

2

(

~

�

1

) enfor
es

that the de�nition domain of the partial fun
tion E

F

is the whole domain. a

The algebrai
 
ompatibility of any Boolean-based theory with respe
t to the the-

ory of distributive latti
es with a least element and with respe
t to the theory of

bounded distributive latti
es (see Examples 4.7 and 4.8), now yields the following

de
idability transfer results:

Corollary 8.6 Let C

1

and C

2

be 
lasses of modal frames. If the modal 
onstraint

problems for C

1

and C

2

are both de
idable, then so are the modal 
onstraint prob-

lems for E

d

(C

1

; C

2

) and E

f

(C

1

; C

2

).

9 Appendix B: Theory Completions

In this Appendix we develop some model theory 
on
erning our notions of 
omple-

tions of a theory T . Su
h model theory gives further insight into some important

ingredients of the paper, although it is not needed in order to understand and

justify our 
ombination pro
edures. We shall re
all 
lassi
al well-known results

for model 
ompletions and show how they 
an be adapted to the 
ase of positive

algebrai
 
ompletions.

16

Let us 
all a model M of a theory T :

- algebrai
ally 
losed i� every senten
e of the kind 9x(A

1

(a; x) ^ � � � ^ A

n

(a; x))

whi
h is satis�ed in some N �M su
h that N j= T , is satis�ed inM itself

(here a are parameters from M and the A

i

(y; x) are atoms);

16

Similar adaptations 
an be done also for the 
oalgebrai
 
ompletions 
ase, but we do not

insist on them, for simpli
ity.
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- existentially 
losed i� every senten
e of the kind 9x(A

1

(a; x) ^ � � � ^ A

n

(a; x))

whi
h is satis�ed in some N �M su
h that N j= T , is satis�ed inM itself

(here a are parameters from M and the A

i

(y; x) are literals).

The following Lemma is taken from [CK90℄:

Lemma 9.1 If T is universal, then every model M of T embeds into a model of

T whi
h is existentially (hen
e also algebrai
ally) 
losed.

Proof. Take a well-order f�

i

g

i<�

of the existential senten
es with parameters

from M. De�ne a �rst 
hain fM

i

g

i

of models of T , by letting M

i

to be an

extension of

S

j<i

M

j

in whi
h �

i

is true (if this extension does not exists, M

i

is just

S

j<i

M

j

). Now let M

1

be

S

j<�

M

j

; repeating the 
onstru
tion,

17

we

produ
e a 
ountable 
hain M � M

1

� M

2

� � � � . The union of this 
hain is

the desired existentially 
losed extension of M (noti
e that this argument works

be
ause T is preserved under union of 
hains, being universal). a

Proposition 9.2 Suppose that T has a positive algebrai
 (model) 
ompletion T

�

;

then the models of T

�

are pre
isely those models of T whi
h are algebrai
ally (resp.

existentially) 
losed.

Proof. We show the proof just for the 
ase of the positive algebrai
 
ompletion T

�

(the other 
ase being analogous and well-known [CK90℄). Re
all that, a

ording

to De�nition 3.2 and Lemma 3.3, for every geometri
 formula �(x) there is a

geometri
 open formula �

�

(x) su
h that T j= �! �

�

and T

�

j= �

�

! �.

Suppose thatM j= T

�

, that N �M is an extension ofM whi
h is also a model

of T . Let �(a) be a geometri
 senten
e with parameters a from M whi
h is true

in N . Then we have N j= �

�

(a) and alsoM j= �

�

(a) (be
ause �

�

is open); asM

is a model of T

�

, this implies that M j= �(a).

Conversely, suppose thatM is algebrai
ally 
losed as a model of T and let �(a) be

a geometri
 senten
e with parameters inM su
h thatM j= �

�

(a). By de�nition

3.2(ii), M 
an be embedded into a model N of T

�

. Sin
e �

�

is open and sin
e

T

�

j= �

�

! �, in N we have N j= �(a) and also M j= �(a), be
ause M is

algebrai
ally 
losed. ThusM j= �$ �

�

holds for all geometri
 � (the impli
ation

� ! �

�

being already a logi
al 
onsequen
e of T ). It is now easy to show that

M j= T

�

: let �

1

! �

2

be a geometri
 sequent in the axiomatization of T

�

. We

have that M j= �

1

! �

2

i� M j= �

�

1

! �

�

2

; however, from T

�

j= �

1

! �

2

, we

get T

�

j= �

�

1

! �

�

2

, hen
e also T j= �

�

1

! �

�

2

, be
ause T and T

�

agree on open

formulae (see De�nition 6.1(i)-(ii) and Lemma 3.1). Sin
eM j= T ,M j= �

�

1

! �

�

2

follows; 
onsequently we have M j= �

1

! �

2

(i.e. M j= T

�

). a

17

The 
onstru
tion needs to be repeated, in order to take 
are of existential formulae with

parameters from jM

1

j n jMj.
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Noti
e that Proposition 9.2 implies that T

�

, when it exists, is unique. Clearly not

all universal theories T have a positive algebrai
 or a model 
ompletion: there is

no general guarantee, for instan
e, that the 
lass of algebrai
ally or existentially


losed models of T is elementary (i.e. that it is the 
lass of the models of some

�rst order theory at all).

9.1 Model Completions

A 
lassi
al result [CK90℄ says that a universal theory T has a model 
ompletion i�

T has the amalgamation property and the 
lass of the existentially 
losed models

of T is an elementary 
lass. We shall re
all here the proof of this result and in

next subse
tions we show how a similar statement 
an be proved for the 
ase of

positive algebrai
 
ompletions.

We say that a theory T has the amalgamation property (AP for short) i� for every

tripleM;N

1

;N

2

of models of T , for every pair of embeddings �

1

:M�!N

1

and

�

2

:M�!N

2

, there are a further model N of T , and embeddings �

1

: N

1

�! N

and �

2

: N

2

�! N su
h that the square

N

2

N

--

�

2

M N

1

--

�

1

?

?

�

2

?

?

�

1


ommutes.

Proposition 9.3 If the universal 
-theory T has a model 
ompletion T

�

, then

T has AP .

Proof. Given embeddings �

1

: M �! N

1

and �

2

: M �! N

2

, we 
an freely

suppose that N

1

;N

2

are models of T

�

and that �

1

; �

2

are in
lusions. By diagrams

theorems, it is suÆ
ient to show the 
onsisten
y of T [�(N

1

)[�(N

2

). Suppose

this is not 
onsistent; by 
ompa
tness there are �

1

(m;n

1

); �

2

(m;n

2

), su
h that

T [f�

1

(m;n

1

); �

2

(m;n

2

)g is in
onsistent. Here: a) m are parameters fromM; b)

n

1

; n

2

are parameters from N

1

;N

2

(not belonging to the image of �

1

; �

2

, respe
-

tively); 
) �

1

(m;n

1

) is a 
onjun
tion of ground literals true in N

1

; d) �

2

(m;n

2

) is

a 
onjun
tion of ground literals true in N

2

. Let �(m) be 9y�

1

(m; y) and re
all

from De�nition 6.1 that there is an open formula �

�

su
h that T

�

j= �

�

$ �.

We 
onsequently have N

1

j= �

�

(m); sin
e �

�

(m) is open, we get that it is true in

M and in N

2

too. The latter is a model of T

�

, hen
e N

2

j= �(m), 
ontradi
tion

be
ause T [ f�(m); �

2

(m;n

2

)g is in
onsistent. a
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Lemma 9.4 Suppose that the universal 
-theory T has AP and that T

�

� T is

an extension of T (in the same signature of T ) whose models are all existentially


losed for T . Then T

�

admits quanti�er elimination.

Proof. Let �(x) be an existential formula: it is suÆ
ient to show that �(x) is

equivalent modulo T

�

to a quanti�er free formula �

�

(x). For new 
onstants a


onsider the set of senten
es

� := T

�

[ f�(a)g [ f: (a) j is quanti�er free and T

�

j=  (a)! �(a)g:

If � is in
onsistent, then we have T

�

j= �(a)!  

1

(a)_ � � � _ 

n

(a) for quanti�er-

free  

i

implying �, so that we 
an take the disjun
tion of su
h  

i

as �

�

.

Consequently it suÆ
es to show that � 
annot be 
onsistent. Suppose it is and

let M be a model of it. Let A be the substru
ture of M generated by the a; we

distinguish two 
ases, depending on whether we have T

�

[�(A) j= �(a) or not.

If we do not have T

�

[�(A) j= �(a), then we 
an build a modelN of T

�


ontaining

A as a substru
ture and falsifying �(a). By AP , there is a 
ommon extension N

0

ofM and N (over A); sin
eM j= �(a) and �(a) is existential, N

0

j= �(a), whi
h


annot be be
ause N is existentially 
losed (it is a model of T

�

) and N 6j= �(a).

If we have T

�

[ �(A) j= �(a), for some quanti�er-free senten
e  (a) true in A

we have that T

�

j=  (a)! �(a). A

ording to the de�nition of �, : (a) is true

in M and also in A (be
ause it is quanti�er-free), 
ontradi
tion. a

Theorem 9.5 Let T be a universal theory; then T has a model 
ompletion i� it

has AP and the 
lass of existentially 
losed models of T is elementary.

Proof. One side is 
overed by Propositions 9.2 and 9.3 and the other side by

Lemmas 9.4 and 9.1. a

We �nally re
all that the de�nition of a model 
ompletion given in De�nition 6.1

above agrees with the standard de�nition used e.g. in most textbooks and a also

in [Ghi05, BGT04℄:

18

Proposition 9.6 Let T be a universal 
-theory and let T

�

be a further 
-theory

extending T . We have that T

�

is a model 
ompletion of T i� the following two


onditions are satis�ed: (i) every model of T embeds into a model of T

�

; (ii) for

every 
-stru
ture A whi
h is a model of T , we have that T

�

[�(A) is a 
omplete




jAj

-theory.

18

For a slightly di�erent proof of Proposition 9.6 (whi
h is nevertheless well-known), see

[Ghi03℄, Appendix B. The alternative de�nition suggested by Proposition 9.6 is a
tually prefer-

able, be
ause it 
onveniently applies also to theories whi
h might not be universal. We adopted

De�nition 6.1, just to make it parallel to De�nition 3.2.
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Proof. The left-to-right side is trivial (just observe that ground formulae are

preserved by both sub- and super-stru
tures). For the other side, suppose that

T

�

[�(A) is a 
omplete �

jAj

-theory for every A whi
h is a model of T

�

. We want

to apply Lemma 9.4, so we need to show that all models of T

�

are existentially


losed and that T enjoys AP .

The former is shown as follows: let M be a model of T

�

and let N � M be

a model of T in whi
h a 
ertain existential formula (with parameters from M)

�(m) is true. Sin
e models of T embeds into models of T

�

, we 
an suppose that

N j= T

�

. But then, N and M itself are both extensions of M to a model of T

�

,

when
e they are both models of the 
omplete theory T

�

[ �(M), whi
h means

that �(m) is true in M (sin
e it is true in N ).

We �nally show that AP holds for T . Given embeddings �

1

: M �! N

1

and

�

2

: M �! N

2

(to be amalgamated), we 
an freely suppose that N

1

;N

2

are

models of T

�

and that �

1

; �

2

are in
lusions. Both N

1

and N

2

are then models of

the 
omplete theory T

�

[ �(M), hen
e the union of their elementary diagrams

(in the signature of T expanded with the 
onstants jMj) is 
onsistent: any model

of su
h union gives a model of T amalgamating M

1

and M

2

over M. a

9.2 Positive Algebrai
 Completions

We wish to get a result analogous to Theorem 9.5 for the 
ase of positive algebrai



ompletions. To this aim, we need to identify the semanti
 properties playing the

role of amalgamation in our 
ontext.

We say that a theory T has the inje
tion-transfer property (IT for short) i� for

every triple M;N

1

;N

2

of models of T , for every homomorphism � : M �! N

2

and for every embedding � : M �! N

1

, there are a further model N of T , an

embedding �

0

: N

2

�! N and a homomorphism �

0

: N

1

�! N su
h that the

square

N

2

N

--

�

0

M N

1

--

�

?

�

?

�

0


ommutes.

Proposition 9.7 If the universal 
-theory T has a positive algebrai
 
ompletion

T

�

, then T has IT .
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Proof. Let � : M �! N

2

be a homomorphism and let � : M �! N

1

be an

embedding (M;N

1

;N

2

are supposed to be models of T ); by De�nition 3.2(ii), we


an freely suppose that N

2

is a model of T

�

. By diagrams theorems, it is suÆ
ient

to show the 
onsisten
y of T [�

+

(N

1

)[�(N

2

). Suppose this is not 
onsistent; by


ompa
tness there are �

1

(m;n

1

); �

2

(m;n

2

), su
h that T [ f�

1

(m;n

1

); �

2

(m;n

2

)g

is in
onsistent. Here: a) m are parameters from M; b) n

1

; n

2

are parameters

from N

1

;N

2

(not belonging to the image of �; �, respe
tively); 
) �

1

(m;n

1

) is a


onjun
tion of ground atoms true in N

1

; d) �(m;n

2

) is a 
onjun
tion of ground

literals true in N

2

. Let �(m) be 9y�

1

(m; y); we have N

1

j= �

�

(m), as �(m) !

�

�

(m) is a logi
al 
onsequen
e of T (see Lemma 3.1). Sin
e �

�

(m) is geometri


and open, we get that it is true inM and in N

2

too. The latter is a model of T

�

,

hen
e N

2

j= �(m), 
ontradi
tion be
ause T [f�(m); �

2

(m;n

2

)g is in
onsistent. a

Propositions 9.2 and 9.7 
an be inverted, in the following sense:

Theorem 9.8 Let T be a universal theory; then T has a positive algebrai
 
om-

pletion i� it has IT and the 
lass of algebrai
ally 
losed models of T is elementary.

Proof. One side is 
overed by Propositions 9.2 and 9.7. Suppose now that T

has IT and that there is a �rst-order theory T

0

(in prin
iple, not ne
essarily a

geometri
 one) su
h that the models of T

0

are exa
tly the algebrai
ally 
losed

models of T . Let �(x) be a geometri
 formula and let a be free 
onstants. De�ne

� as the set of geometri
, open and ground formulae in 


a

(here 
 is obviously

the signature of T ) whi
h are logi
al 
onsequen
es of T

0

[ f�(a)g.

We �rst 
laim that �[T

0

j= �(a). Let in fa
tM be a model of T

0

[�. Let �

�

(a)

be the set of negative ground 


a

-literals whi
h are true in M. By the de�nition

of �, the set T

0

[�

�

(a)[f�(a)g is 
onsistent and hen
e has a model N . Let A be

the substru
ture of N generated by the a (noti
e that A is a model of T be
ause

T is universal): if we apply diagrams theorems and IT , we get a 
ommutative

square

M N

0
--

A N

--

?

�

?

�

0

FromN j= �(a), we getN

0

j= �(a) (be
ause � is geometri
) and �nallyM j= �(a)

be
ause M is algebrai
ally 
losed. This ends the proof of the 
laim.

From the 
laim and 
ompa
tness, we realize that for every geometri
 �, there is

a geometri
 open �

�

su
h that

T

0

j= �! �

�

and T

0

j= �

�

! �:
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Let T

�

be the extension of T axiomatized by the universal 
losure of the geometri


sequents �! �

�

and �

�

! � (we have T � T

�

� T

0

). As every model of T embeds

into a model of T

0

by Lemma 9.1, 
ondition (ii) of De�nition 3.2 is satis�ed; sin
e


ondition (iii) 
omes dire
tly from the 
onstru
tion, T

�

is a positive algebrai



ompletion of T . a

10 Appendix C: Alternative Proofs

Here we give alternative proofs of some relevant Propositions from Se
tions 4 and

5, relying on some slightly deeper model theoreti
 ma
hinery.

19

The main feature

of these alternative proofs is that they do not use use either lo
al �niteness of T

0

or 
ountability of the involved signatures.

We �rst need the following extended IT property whi
h is an interesting 
onse-

quen
e of T

0

-algebrai
 
ompatibility:

Proposition 10.1 Let T

0

� T be theories in signatures 


0

� 
 su
h that T is

T

0

-algebrai
ally 
ompatible. Let A; C be 


0

-stru
tures whi
h are models of T

0

and

let M be a 
-stru
tures whi
h is a models of T ; for every 


0

-homomorphism � :

A �!M

j


0

and for every 


0

-embedding � : A �! C, there are a further 
-model

N of T , an 
-embedding �

0

:M�!N and a 


0

-homomorphism �

0

: C �! N

j


0

su
h that the square

C N

j


0

-

�

0

A M

j


0

-

�

?

?

�

?

?

�

0

j


0


ommutes. Moreover, if M j= T [ T

�

0

, then the embedding �

0


an be taken to be

elementary.

Proof. Similarly to the proof of Proposition 9.7, we need to show that T [

�

+




0

(C) [�




(M) is 
onsistent. Again, if this is not the 
ase, we have that there

are �

1

(a; 
); �

2

(a;m), su
h that T [ f�

1

(a; 
); �

2

(a;m)g is in
onsistent. Here: a)

a are parameters from A; b) 
;m are parameters from C;M (not belonging to

the image of �; �, respe
tively); 
) �

1

(a; 
) is a 
onjun
tion of ground 


a;


0

-atoms

19

Similar alternative proofs 
an be given also for the relevant Propositions from Se
tion 6, but

we do not insist on them. Moreover, the experien
ed model-theorist will realize that further

alternative proofs 
an be obtained by using the 
umbersome formalism of saturated/spe
ial

models.
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true in C; d) �(a;m) is a 
onjun
tion of ground 


a;m

-literals true inM. Let �(a)

be 9y�

1

(a; y); we have C j= �

�

(a), as �(a) ! �

�

(a) is a logi
al 
onsequen
e of

T

0

. Sin
e �

�

(a) is geometri
 and open, we get that it is true in A and in M

too. The latter 
an be embedded into a model M

0

of T [ T

�

0

, hen
e M

0

j= �(a),


ontradi
tion be
ause T[f�(a); �

2

(a;m)g was supposed to be in
onsistent (noti
e

that M

0

j= �

2

(a;m) follows from M j= �

2

(a;m) be
ause �

2

is open).

In 
aseM is a model of T[T

�

0

, we 
an repla
e �




(M) by the elementary diagram

�

e




(M) of M and get an elementary �

0

, be
ause there is no need of 
onsidering

the extension M

0

. a

Let us now give an alternative proof of Proposition 4.2. Su
h an alternative

proof is indeed quite simple, from the information we have now: from the data

1-5 of Proposition 4.2, we 
an get a 


0

-homomorphism � : A �! B among a 


0

-

substru
ture A of a model N

0

of T

1

and a 


0

-substru
ture B of a model N

00

of T

2

.

Proposition 4.2 is proved if we build an extension of � to a 


0

-homomorphism

N

0

j


0

�! N

j


0

, where N

j


0

is a suitable 


2

-superstru
ture of N

00

. But su
h

extension is immediately provided by an appli
ation of Proposition 10.1: take as

� the in
lusion of A into N

0

and as � the 
omposition of � with the in
lusion of

B into N

00

. a

Similar arguments (but iterations are needed!) give alternative proofs of the

remaining relevant Propositions from Se
tions 4 and 5.

An alternative proof of Proposition 4.4 is as follows. We are given models

N

0

;M

0

of T

1

; T

2

respe
tively; N

0

has 


0

-substru
tures A;A

0

, whereas M

0

has




0

-substru
tures B;B

0

. We are also given 


0

-homomorphisms � : A �! B and

� : B

0

�! A

0

. We 
an freely suppose that N

0

;M

0

are models of T

�

0

too, by the

algebrai
 
ompatibility assumptions.

The Proposition is proved, if we su

eed in produ
ing elementary extensions

N

1

;M

1

of N ;M endowed with 


0

-homomorphisms

�

1

: N

1

j


0

�!M

1

j


0

; �

1

:M

1

j


0

�! N

1

j


0

extending � and �, respe
tively. To this aim, we de�ne elementary 
hains of

models

N

0

� N

1

� � � �

M

0

�M

1

� � � �

as well as homomorphisms

�

k

: N

k

j


0

�!M

k+1

j


0

; �

j

:M

j

j


0

�! N

j

j


0

(k � 0, j � 1) su
h that � � �

k

� �

k+1

and � � �

j

� �

j+1

(on
e this is settled,

20

it is suÆ
ient to take unions in order to get the desired N

1

;M

1

; �

1

; �

1

). All

20

Re
all the elementary 
hain theorem [CK90℄, a

ording to whi
h the union of an elementary


hain of models is elementarily equivalent to ea
h member of the 
hain.
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these data 
an be easily built by using Proposition 10.1. For instan
e, to getM

1

and �

0

it is suÆ
ient to �ll the square

N

0

j


0

M

1

j


0

-

�

0

j


0

A M

0

j


0

-

?

?

?

?

where the top horizontal morphism is the 
omposite of � with the in
lusion B �

M

0

j


0

(noti
e that we 
an get an elementary embedding M

0

,!M

0

, sin
e M

0

j=

T

�

0

[ T

2

). To get N

1

and �

1

it is suÆ
ient to �ll the square

M

1

j


0

N

1

j


0

-

�

1

j


0

B

0

N

0

j


0

-

?

?

?

?

where the top horizontal morphism is the 
omposite of � with the in
lusion A

0

�

N

0

j


0

and the left verti
al morphism is the 
omposite in
lusion B

0

� M

0

� M

1

.

For the indu
tive 
ases, the same argument 
an be applied. a

An alternative proof of Proposition 5.3 is as follows. Here we are given a

model M of T endowed with a pair of 


0

-substru
tures A;B; we are also given

a 


0

-homomorphism � : A �! B. Again we 
an suppose that M j= T [ T

�

0

.

The Proposition is proved, if we su

eed in produ
ing an elementary extension

M

1

of M endowed with an 


0

-homomorphism

�

1

:M

1

j


0

�!M

1

j


0

;

extending �. To this aim, we de�ne an elementary 
hain of models

M

0

�M

1

� � � �

as well as homomorphisms

�

k

:M

k

j


0

�!M

k+1

j


0

;

(k � 0) su
h that � � �

k

� �

k+1

(on
e this is settled, it is suÆ
ient to take

unions in order to get the desiredM

1

and �

1

). To getM

1

and �

0

it is suÆ
ient

to �ll the square
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M

0

j


0

M

1

j


0

-

�

0

j


0

A M

0

j


0

-

?

?

?

?

where the top horizontal morphism is the 
omposite of � with the in
lusion B �

M

0

j


0

. To get indu
tively M

k+1

and �

k

, one pro
eeds similarly. a
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