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Abstract

Basically, the connection of two many-sorted theories is obtained by
taking their disjoint union, and then connecting the two parts through
connection functions that must behave like homomorphisms on the shared
signature. We determine conditions under which decidability of the validity
of universal formulae in the component theories transfers to their connec-
tion. In addition, we consider variants of the basic connection scheme.
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1 Introduction

The combination of decision procedures for logical theories arises in many areas of
logic in computer science, such as constraint solving, automated deduction, term
rewriting, modal logics, and description logics. In general, one has two first-order
theories T} and T, over signatures 3; and Y5, for which validity of a certain type
of formulae (e.g., universal, existential positive, etc.) is decidable. These theories
are then combined into a new theory T over a combination ¥ of the signatures
Y1 and Ys5. The question is whether decidability transfers from 77,7, to their
combination 7.

One way of combining the theories T}, T is to build their union 77 UT,. Both the
Nelson-Oppen combination procedure [NO79, Nel84] and combination procedures
for the word problem [Pig74, SS89, Nip91, BT97] address this type of combina-
tion, but for different types of formulae to be decided. Whereas the original
combination procedures were restricted to the case of theories over disjoint signa-
tures, there are now also solutions for the non-disjoint case [DKR94, TR03, BT02,
FGO03, Ghi05, BGT04], but they always require some additional restrictions since
it is easy to see that in the unrestricted case decidability does not transfer. Similar
combination problems have also been investigated in modal logic, where one asks
whether decidability of (relativized) validity transfers from two modal logics to
their fusion [KW91, Spa93, Wol98, BLSWO02]. The approaches in [Ghi05, BGT04]
actually generalize these results from equational theories induced by modal logics
to more general first-order theories satisfying certain model-theoretic restrictions:
the theories T7, T, must be compatible with their shared theory Tj, and this shared
theory must be locally finite (i.e., its finitely generated models are finite). The
theory T; is compatible with the shared theory Ty iff (i) Ty C T;; (ii) Tp has a
model completion T§; and (iii) every model of T; embeds into a model of T; UT}.

In [KLWZ04], a new combination scheme for modal logics, called £-connection,
was introduced, for which decidability transfer is much simpler to show than in
the case of the fusion. Intuitively, the difference between fusion and £-connection
can be explained as follows. A model of the fusion is obtained from two models of
the component logics by identifying their domains. In contrast, a model of the £-
connection consists of two separate models of the component logics together with
certain connecting relations between their domains. There are also differences in
the syntax of the combined logic. In the case of the fusion, the Boolean operators
are shared, and all operators can be applied to each other without restrictions. In
the case of the £-connection, there are two copies of the Boolean operators, and
operators of the different logics cannot be mixed; the only connection between the
two logics are new (diamond) modal operators that are induced by the connecting
relations.

If we want to adapt this approach to the more general setting of combining first-
order theories, then we must consider many-sorted theories since only the sorts



allow us to keep the domains separate and to restrict the way function symbols
can be applied to each other. Let Ti,7T5 be two many-sorted theories that may
share some sorts as well as function and relation symbols. We first build the
disjoint union 77 WT5 of these two theories (by using disjoint copies of the shared
parts), and then connect them by introducing connection functions between the
shared sorts. These connection functions must behave like homomorphisms for
the shared function and predicate symbols, i.e., the axioms stating this are added
to Ty W T5. This corresponds to the fact that the new diamond operators in the
E-connection approach distribute over disjunction and do not change the false
formula L. We call the combined theory obtained this way the connection of T}
and T5.

This kind of connection between theories has already been considered in auto-
mated deduction (see, e.g., [AK97, Zar02]), but only in very restricted cases where
both T and T, are fixed theories (e.g., the theory of sets and the theory of inte-
gers in [Zar02]) and the connection functions have a fixed meaning (like yielding
the length of a list). In categorical logic, this type of connection can be seen as
an instance of a more general co-comma construction in bicategories associated
with theories and syntactic interpretations, see for instance [Zaw95]. However, in
this general setting, computational properties of the combined theories have not
been considered yet.

This paper is a first step towards providing general results on the transfer of
decidability from component theories to their connection. We start by considering
the simplest case where there is just one connection function, and show that
decidability transfers whenever certain model-theoretic conditions are satisfied.
These conditions are weaker than the ones required in [BGT04] for the case of
the union of theories.! In addition, both the combination procedure and its
proof of correctness are much simpler than the ones in [Ghi05, BGTO04]. The
approach easily extends to the case of several connection functions. We will
also consider variants of the general combination scheme where the connection
function must satisfy additional properties (like being surjective, an embedding,
an isomorphism), or where a theory is connected with itself. The first variant
is, for example, interesting since the combination result for the union of theories
shown in [Ghi05] can be obtained from the variant where one has an isomorphism
as connection function. The second case is interesting since it can be used to
reduce the global consequence problem in the modal logic K to propositional
satisfiability, which is a surprising result.

'Our conditions are in general not weaker than the ones in [Ghi05], alhough this is the case
for all the theories we have considered until now.



2 Notation and definitions

In this section, we fix the notation and give some important definitions, in par-
ticular a formal definition of the connection of two theories.

2.1 Many-sorted first-order logic

We use standard many-sorted first-order logic (see, e.g., [Gal86]), but try to avoid
the notational overhead caused by the presence of sorts as much as possible. Thus,
a signature € consists of a non-empty set of sorts S together with a set of function
symbols F and a set of predicate symbols P. The function and predicate symbols
are equipped with arities from S* in the usual way. For example, if the arity of
f € Fis 515595, then this means that the function f takes tuples consisting of an
element of sort S; and an element of sort S, as input, and produces an element of
sort S3. We consider logic with equality, i.e., the set of predicate symbols contains
a symbol =g for equality in every sort S. Usually, we will just use ~ without
explicitly specifying the sort. In this paper we usually assume that signatures are
countable.

Terms and first-order formulae over €2 are defined in the usual way, i.e., they must
respect the arities of function and predicate symbols, and the variables occurring
in them are also equipped with sorts. An Q-atom is a predicate symbol applied
to (sort-conforming) terms, and an Q-literal is an atom or a negated atom. A
ground literal is a literal that does not contain variables. We use the notation
o(z) to express that ¢ is a formula whose free variables are among the ones in the
tuple of variables . An Q-sentence is a formula over Q without free variables.
An Q-theory T is a set of Q-sentences (called the axioms of T'). If T,T" are Q-
theories, then we write (by a sleight abuse of notation) 7" C T' to express that
all the axioms of T" are logical consequences of the axioms of T".

From the semantic side, we have the standard notion of an Q-structure A, which
consists of non-empty and pairwise disjoint domains Ag for every sort S, and
interprets function symbols f and predicate symbols P by functions f# and
predicates P* according to their arities. By A (or sometimes by |A|) we denote
the union of all domains Ag. Validity of a formula ¢ in an Q-structure A (A =
¢), satisfiability, and logical consequence are defined in the usual way. The Q-
structure A is a model of the Q-theory T iff all axioms of T" are valid in A. If

o(z) is a formula with free variables = xq,...,2, and a = ay, ..., a, is a (sort-
conforming) tuple of elements of A, then we write A | ¢(a) to express that ¢(z)
is valid in A under the assignment {z; — ay,...,x, — a,}. Note that ¢(z) is

valid in A iff it is valid under all assignments iff its universal closure is valid in A.

An Q-homomorphism between two -structures A and B is a mapping u: A — B
that is sort-conforming (i.e., maps elements of sort S in A to elements of sort S



in B), and satisfies the condition

(*) AE Alay,...,a,) implies BE A(u(ay),...,p(a,))

for all Q-atoms A(zy,...,x,) and (sort-conforming) elements ay, ..., a, of A. In
case the converse of (x) holds too, p is called an embedding. Note that an embed-
ding is something more than just an injective homomorphism since the stronger
condition must hold not only for the equality predicate, but for all predicate
symbols. If the embedding g is the identity on A, then we say that A is a sub-
structure of B. In case (x) holds for all first order formulae, then  is said to be
an elementary embedding. If the elementary embedding p is the identity on A,
then we say that A is an elementary substructure of B or that B is an elementary
extension of A. An isomorphism is a surjective embedding.

We say that ¥ is a subsignature of Q (written ¥ C Q) iff ¥ is a signature that
can be obtained from 2 by removing some of its sorts and function and predicate
symbols. If ¥ C Q and A is an Q-structure, then the X-reduct of A is the Y-
structure A5 obtained from A by forgetting the interpretations of sorts, function
and predicate symbols from  that do not belong to . Conversely, A is called an
ezpansion of the Y-structure Ajs to the larger signature 2. If 4 : A — Bis an Q-
homomorphism, then the 3-reduct of p is the ¥-homomorphism ps : Ajs — Bs
obtained by restricting p to the sorts that belong to ¥, i.e., by restricting the
mapping to the domain of Ay,

Given a set X of constant symbols not belonging to the signature €2, but each
equipped with a sort from €2, we denote by Q¥ the extension of Q by these new
constants. If A is an Q-structure, then we can view the elements of A as a set
of new constants, where a € Ag has sort S. By interpreting each a € A by
itself, A can also be viewed as an Q4-structure. The positive diagram A{(A)
of A is the set of all ground Q4-atoms that are true in A, the diagram Agq(A)
of A is the set of all ground Q4-literals that are true in A, and the elementary
diagram AL (A) of A is the set of all Q%-sentences that are true in A. The
subscript Q in AL (A), Ag(A) and A§(A) is sometimes omitted if there is no
danger of confusion. Robinson’s diagram theorems [CK90] say that there is a
homomorphism (embedding, elementary embedding) between the Q-structures A
and B iff it is possible to expand B to an Q“-structure in such a way that it
becomes a model of the positive diagram (diagram, elementary diagram) of A.

2.2 Basic connections

In the remainder of this section, we introduce our basic scheme for connecting
many-sorted theories, and illustrate it with the example of £-connections of modal
logics. Let T, T, be theories over the respective signatures €2, €25, and let {2y be
a common subsignature of {2; and ;. We call €y the connecting signature. In



addition, let Ty be an Qy-theory? that is contained in both 7} and T5. We defined
the new theory T >7, T (called the connection of Ty and Ty over Ty) as follows.

The signature Q of T} >4, T> contains the disjoint union €2; W2, of the signatures
Q and €25, where the shared sorts and the shared function and predicate symbols
are appropriately renamed, e.g., by attaching labels 1 and 2. Thus, if S (f, P)
is a sort (function symbol, predicate symbol) contained in both ©; and €5, then
St (ft, P*) for i = 1,2 are its renamed variants in the disjoint union, where the
arities are accordingly renamed. In addition, €2 contains a new function symbol
hg of arity S1S? for every sort S of 2.

The azioms of Ty >, T> are obtained as follows. Given an Q;-formula ¢, its
renamed variant ¢ is obtained by replacing all shared symbols by their renamed
variants with label ¢. The axioms of T} >7, T consist of

{0' |0 e Ti}U{e® |6 € Tr},

together with the universal closures of the formulae

hs(f (21, 2n)) & f2 (s, (21), - - hs, (20)),
Pl(l’l,. .. ,CCn) — PQ(hsl(xl)a' . .,hsn(l’n)),

for every function (predicate) symbol f (P) in Qg of arity Sy ...S,S (Si...Sy).

Since the signatures €2, and {2, have been made disjoint, and since the additional
axioms state that the family of mappings hg behaves like an (g-homomorphism,
it is easy to see that the models of Ty >, T, are formed by triples of the form
(M, M2 BM), where M is a model of T}, M? is a model of T, and A™ is an
Qp-homomorphism

M M‘lgo — M‘QQO

between the respective Qy-reducts.

Example 2.1 The most basic variant of an £-connection [KLWZ04] is an in-
stance of our approach if one translates it into the algebraic setting. The abstract
description systems considered in [KLWZ04], which cover all the usual modal and
description logics, correspond to Boolean-based equational theories [BGT04]. The
theory FE is called Boolean-based equational theory iff its signature X has just one
sort, equality is the only predicate symbol, the set of function symbols contains
the Boolean operators M, L, —, T, L, and its set of axioms consists of identities
(i.e., the universal closures of atoms s ~ t) and contains the Boolean algebra
axioms.

For example, consider the basic modal logic K, where we use only the modal
operator ¢ (since [J can then be defined). The Boolean-based equational theory

2When defining the connection of Ty, Ty, the theory Ty is actually irrelevant; all we need
is its signature )g. However, for our decidability transfer results to hold, Ty and the T; must
satisfy certain model-theoretic properties.



Ex corresponding to K is obtained from the theory of Boolean algebras by adding
the identities O(x Uy) ~ ¢(z) U O(y) and O(L) ~ L.

Let us illustrate the notion of an £-connection also on this simple example (see
Appendix A for a more general description of £-connections and their relationship
to the notion of a connection introduced in this report). To build the £-connection
of K with itself, one takes two disjoint copies of K, obtained by renaming the
Boolean operators and the diamonds, e.g., into M;, U;, —;, T, L;, O; for i = 1, 2.
The signature of the £-connection contains all these renamed symbols together
with a new symbol ¢. However, it is now a two-sorted signature, where symbols
with index ¢ are applied to elements of sort .S; and yield as results an element of
this sort. The new symbol has arity S;.55.%> The semantics of this £-connection can
be given in terms of Kripke structures. A Kripke structure for the £-connection
consists of two Kripke structures Ky, Ky for K over disjoint domains Wy and W,
together with an additional connecting relation £ C W5 x W;. The symbols with
index 7 are interpreted in K;, and the new symbol ¢ is interpreted as the diamond
operator induced by FE, i.e., for every X C W; we have

OX)={zeWy |FyeW,. (z,y) e EAy € X}.

This interpretation of the new operator implies that it satisfies the usual identities
of a diamond operator, i.e., {(x Uy y) = O(x) s O(y) and O(L;) ~ Lo, and that
these identities are sufficient to characterize its semantics. Thus, the equational
theory corresponding to the £-connection of K with itself consists of these two
axioms, together with the axioms of Fk, and Fk,.

Obviously, this theory is also obtained as the connection of the theory Fg with
itself, if the connecting signature €2y consists of the single sort of Fx, the predicate
symbol =, and the function symbols LI, |. As theory Ty we can take the theory
of semilattices, i.e., the axioms that say that Ll is associative, commutative, and
idempotent, and that L is a unit for LI.

Example 2.2 The previous example can be varied by additionally including M
in the connecting signature, and taking as theory T the theory of distributive
lattices with a least element L. It is easy to see that this corresponds to the case
of an £-connection where the connecting relation E is required to be a partial
function (we call such an £-connection deterministic). Finally, if we additionally
include both M and T in the connecting signature, and take T to be the the-
ory of bounded distributive lattices (i.e., distributive lattices with a least and a
greatest element), then the equational theory obtained through our connection
corresponds to the case of an £-connection where the connecting relation F is a
(total) function (we call such an £-connection functional).

3In the general £-connection scheme, there is also be an inverse diamond operator ¢~ with
arity S».51, but we currently cannot treat this case (see the conclusion for a discussion).



3 Positive algebraic completions and compati-
bility

In order to transfer decidability results from the component theories 77,75 to
their connection 77 >, T, over Tj, the theories Ty, 77, T, must satisfy certain
model-theoretic conditions, which we introduce below. The most important one
is that T has a positive algebraic completion. Before we can define this concept,
we must introduce some notions from model theory.

The formula ¢ is called open iff it does not contain quantifiers; it is called universal
iff it is obtained from an open formula by adding a prefix of universal quantifiers;
and it is called geometric iff it is built from atoms by using conjunction, disjunc-
tion, and existential quantifiers. The latter formulae are called “geometric” in
categorical logic [MR77] since they are preserved under inverse image geometric
morphisms.

The main property of geometric formulae is that they are preserved under ho-
momorphisms in the following sense: if y : A — B is a homomorphism between

Q-structures and ¢(xq, ..., x,) is a geometric formula over €2, then
A ): ¢(a1a"'7an) 1mphes B ): ¢(M(al)aau(an))
for all (sort-conforming) ay, ..., a, € A.

Open formulae are related to embeddings in various way. First, they are pre-
served under building sub- and superstructures, i.e., if A is a substructure of B,
é(x1,...,xy,) is an open formula, and aq,...,a, € A are sort-conforming, then
A E olar,...,a,) it B E ¢(ar,...,a,). The following lemma is well-known
[CK90]:

Lemma 3.1 Two Q-theories T, T" entail the same set of open formulae iff every
model of T can be embedded into a model of T' and vice versa.

Proof. The direction from right to left follows from the fact that open formulae
are preserved under building substructures.

For the other direction, assume that 7" and 7" entail the same set of open formulae,
and take any model M of T (for T' the argument is symmetric). First observe
that 7" U A(M) is consistent. Otherwise, by compactness of first-order logic,
T" E ¢(a) for some ground sentence ¢(a) with additional free constants a from
M that is false in M. Since a consists of free constants, it follows that 7" |= ¢(z),
and consequently T' = ¢(z) by assumption. Since T = ¢(z) iff T = Va.¢(z), this
is a contradiction since ¢(a) is false in M.

Now, let N be a model of T"UA(M). Thus, N is a model of ", and by Robinson’s
diagram theorem, M can be embedded into . =



Since a theory entails an open formula iff it entails its universal closure, the
lemma also says that two theories T, T" entail the same universal sentences iff
every model of T' can be embedded into a model of 7" and vice versa.

The theory T is a universal theory iff its axioms are universal sentences; it is a
geometric theory iff it can be axiomatized by using universal closures of geometric
sequents, where a geometric sequent is an implication between two geometric
formulae. Note that any universal theory is geometric since open formulae are
conjunctions of clauses and clauses can be rewritten as geometric sequents.

Definition 3.2 Let T be a universal and T a geometric theory over 2. We say
that T* 1s a positive algebraic completion of T iff the following properties hold:

1. TCT*
2. every model of T embeds into a model of T*;*

3. for every geometric formula ¢(z) there is an open geometric formula ¢*(x)

such that T* = ¢ «» ¢*.

It can be shown that the models of T* are exactly the algebraically closed models
of T (see Appendix B below). In particular, this means that the positive algebraic
completion of 1" is unique, provided that it exists.

When trying to show that Property 3 of Definition 3.2 holds for given theo-
ries T, T*, then it is sufficient to consider simple existential formulae ¢(x), i.e.,
formulae that are obtained from conjunctions of atoms by adding an existen-
tial quantifier prefix. In fact, any geometric formula ¢ can be normalized to a
disjunction ¢; V ...V ¢, of simple existential formulae ¢; by using distributiv-
ity of conjunction and existential quantification over disjunction. In addition, if
T* = ¢; <> ¢f for geometric open formulae ¢f (i = 1,...,n), then ¢f V...V ¢F
is also a geometric open formula and T* = (¢ V...V ¢,) <> (@] V...V @F).

The following lemma will turn out to be useful later on.

Lemma 3.3 Assume that T, T* satisfy Property 1 and 2 of Definition 3.2. If ¢(x)
is a simple existential formula and ¢*(z) is an open formula, then T* = ¢ — ¢*

iff T = ¢ — o*.

This is an immediate consequence of the fact that ¢ — ¢* is then equivalent to
an open formula, and hence Lemma 3.1 applies.

The first ingredient of our combinability condition is the following notion of com-
patibility, which is a variant of analogous compatibility conditions introduced in
[Ghi05, BGTO04] for the case of the union of theories.

Yequivalently, T and T* entail the same universal sentences.

10



Definition 3.4 Let Ty C T be theories over the respective signatures g C €.
We say that T is Ty-algebraically compatible iff Ty is universal, has a positive
algebraic completion T, and every model of T embeds into a model of T'U T .

The second ingredient is that Ty must be locally finite, i.e., all finitely generated
models of Ty are finite. To be more precise, we need the following effective variant
of local finiteness defined in [Ghi05, BGT04].

Definition 3.5 Let Ty be a universal theory over the finite signature Qqy. Then
Ty is called effectively locally finite iff for every tuple of variables x, one can
effectively determine terms t(z), ..., tx(x) such that, for every further term u(zx),
we have that Ty |Eu = t; for somei=1,... k.

4 The main combination results

We are interested in deciding the universal fragments of our theories, i.e., validity
of universal formulae (or, equivalently open formulae) in a theory T'. This is the
decision problem also treated by the Nelson-Oppen combination method (albeit
for the union of theories). It is well know that this problem is equivalent to the
problem of deciding whether a set of literals is satisfiable in some model of T'.
We call such a set of literals a constraint.

By introducing new free constants (i.e., constants not occurring in the axioms
of the theory), we can assume without loss of generality that such constraints
contain no variables. In addition, we can transform any ground constraint into
an equisatisfiable set of ground flat literals, i.e., literals of the form

ar flay,...,a,), Play,...,a,), or =P(ay,..., a,),

where a,ay,...,a, are (sort-conforming) free constants, f is a function symbol,
and P is a predicate symbol (possibly also equality).

In the following, we first treat the case of a basic connection, as introduced
in Section 2. Then, we show that the combination result can be extended to
connections with several connection functions, possibly going in both directions.
Finally, we give examples of theories satisfying our combinability conditions.

4.1 Basic connections

In this subsection we show under what conditions decidability of the universal
fragments of T, T, transfers to their connection 77 >7, T5.

11



Theorem 4.1 Let Ty, T, T5 be theories over the respective signatures g, 2y, Qa,
where 2y is a common subsignature of Q1 and Q. Assume that Ty C Ty and
Ty C T5, that Ty is universal and locally finite, and that Ty is Ty-algebraically
compatible. Then the decidability of the universal fragments of Ty and Ty entails
the decidability of the universal fragment of T\ >1,T5.

To prove the theorem, we consider a finite set I' of ground flat literals over the
signature Q of Ty >7, T, (with additional free constants), and show how it can be
tested for satisfiability in 77 >, T5. Since all literals in ' are flat, we can divide
" into three disjoint sets I' = I'o UTy U 'y, where T'; (i = 1,2) is a set of literals
in the signature €; (expanded with free constants), and T'g is of the form

[y = {h(a1> ~ by, h(an> ~ bn}

for free constants ay, by, ..., ay,,by,.

Proposition 4.2 The constraint I' = I'y U 'y U Ty is satisfiable in Ty >1, T iff
there exists a triple (A, B,v) such that

1. A is an Qo-model of Ty, which is generated by {as', ... a’t};

y U I

2. B is an Qo-model of Ty, which is generated by {b5, ... bE};

3. v:A— Bis an Qy-homomorphism such that U(af) = bf forj=1,...,n;

4. Ty U Aq,(A) is satisfiable in Ty;
5. Ty U Aq,(B) is satisfiable in Ts.

Proof. The only-if direction is simple. In fact, as noted in Section 2, a model M
of Ty >7, Ty is given by a triple (M, M2 hM), where M! is a model of T}, M?
is a model of T, and AM : ./\/l|1QO — M‘QQO is an Qp-homomorphism between the
respective Qp-reducts. Assume that this model M satisfies I'. We can take as
A the substructure of M|IQO generated by (the interpretations of) aq,...,a,, as
B the substructure of M‘QQO generated by (the interpretations of) by, ..., b,, and

as homomorphism v the restriction of A to A. Tt is easy to see that the triple
(A, B,v) obtained this way satisfies 1.-5. of the proposition.

Conversely, assume that (A, B,v) is a triple satisfying 1.—5. of the proposition.
Because of 4. and 5., there is an Q;-model N of T} satisfying T'; UAq,(A) and an
Qy-model N of T; satisfying T's U Aq, (B). By Robinson’s diagram theorem, N’
has A as an Qg-substructure and A" has B as an Qy-substructure. We assume
without loss of generality that A is at most countable and that N is a model
of T, UT}. The latter assumption is by Ty-algebraic compatibility of 75, and the

12



former assumption is by the Lowenheim-Skolem theorem since our signatures are
at most countable. Let us enumerate the elements of N as

C1,C2y .« .y CnyCpgty -

where we assume that ¢; = ai* (i = 1,...,n), i.e., c1,...,c, are generators of A.
We define an increasing sequence of sort-conforming functions vy : {c1,...cx} —
N" (for k > n) such that, for every ground Qi *_atom A we have

0o F Aler,. . ) implies NG A(vg(er), ..., viler)).

We first take v, to be v. To define vy (for k > n), let us consider the conjunction

W(c, ..., cnscnir) of the Q3+ _atoms that are true in ¢ this conjunction
is finite (modulo taking representative terms, thanks to local finiteness of Tj). Let
&(x1, ..., x,) be Jxp1.0(2, ..., 2n, Tye ) and let ¢*(24,. .., x,) be a geometric

open formula such that T | ¢ + ¢*.

By Lemma 3.3, Ty = ¢ — ¢, and thus we have Ny, [ ¢*(c1,...,c) and
also Mo, | &"(vi(cr), ..., vk(cx)) by the induction hypothesis. Since Mg is a
model of 7§, there is a b such that N, = (v(cr),. .., vi(cr), b) for some b. We
now obtain the desired extension vy, of v by setting vyy1(cry1) := b. Taking
Voo = Uan Vi, we finally obtain a homomorphism v, : \Iﬂo — |’§’20 such that
the triple (N, N, v) is a model of T} >7, T that satisfies To U T U . -

The above proof uses the assumption that Tj is locally finite. By using heavier
model-theoretic machinery, one can also prove the proposition without using local
finiteness of Ty (see Appendix C below). However, since the proof of Theorem 4.1
needs this assumption anyway (see below), we gave the above proof since it is
simpler.

To conclude the proof of Theorem 4.1, we describe a non-deterministic decision
procedure that effectively guesses an appropriate triple (A, B, v) and then checks
whether it satisfies 1.-5. of Proposition 4.2. To guess an ()g-model of T} that
is generated by a finite set X, one uses effective local finiteness of Tj to obtain
an effective bound on the size of such a model and guesses an (y-structure that
satisfies this size bound.

Once the Qq-structures A, B are given, one can build their diagrams, and use the
decision procedures for 77 and 75 to check whether 4. and 5. of Proposition 4.2
are satisfied. If the answer is yes, then A, B are also models of Tj: in fact, if for
instance I'y U Ag,(A) is satisfiable in the model M of T}, then M has A as a
substructure, and this implies A = T, because Ty is universal and Ty C 7.

Finally, one can guess a mapping v : A — B that satisfies I/(af) = bﬁ and
then use the diagrams of A, B to check whether v satisfies the homomorphism
condition (x).
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4.2 Two-side connections

The proof of Proposition 4.2 basically shows that our decidability transfer result
can easily be extended to the case of several connection functions, possibly going
in both directions. For simplicity, we examine only the case of two connection
functions, going in the two opposite directions.

The theory T} >7,<T5 is defined as the union of Ty >, Ty and T3 >7, T1. Thus, a
model of T} >7,<T5 is a 4-tuple given by a model M' of T}, a model M? of T
and two homomorphisms

M /\/l|190 — M‘QQO and gv /\/l|290 — M‘lgo

among the respective Qp-reducts.

Theorem 4.3 Let Ty, T1,T5 be theories over the respective signatures g, €2y, Qo
where Qg is a common subsignature of 0y and Qy. Assume that Ty C 17 and
Ty C T, that Ty is universal and locally finite, and that Ty, Ty are both Ty-
algebraically compatible. Then the decidability of the universal fragments of Ty
and T, entails the decidability of the universal fragment of Ty >, <Th.

To prove the Theorem, notice that any finite set of ground flat literals (with free
constants) T' to be tested for Ty >7,< Th-consistency can be divided into four
disjoint sets

[=0,U,ul’; Uy,
where I'; (i = 1,2) are sets of literals in the signature ; (expanded with free
constants), and

01 = {h(a) ~ br,...,h(a,) ~ b} and Oy = {g(t}) ~ al,...,g(b,) ~ al,}.

m m

Theorem 4.3 is an easy consequence of the following proposition.

Proposition 4.4 The constraint I' = ©,U0,UT Ul is satisfiable in Ty >7,<Th
iff there exist two triples (A, B,v) and (A', B',v'") such that

1. A is a Qy-model of Ty that is generated by {af, ..., a7}, B is a Qq-model of
Ty which is generated by {b5, ... b8} and v : A — B is a Qg-homomorphism
such that U(af) = bf forall j=1,...,n;

2. A is a Qo-model of Ty that is generated by {a\™,... a. "}, B is a Q-
model of Ty that is generated by {b’lB,,...,b;nB’} and 2 B — A’ is a
Qo-homomorphism such that I/I(b;B,) = a;A’ forallj=1,...,m;

3. Ty U A, (A) UAgq, (A') is satisfiable in Ty, and
[y UAq, (B) U Aq,(B') is satisfiable in T,.

14



Proof. The only-if direction is again simple. To proof the if direction, assume that
for some v : A — Band p: B — A, the set of literals T’y U Aq, (A) U Aq, (A') is
satisfiable in an Q;-model A’ of T}, and the set of literals I's U Aq, (B) U Aq,(B')
is satisfiable in an Qy-model N’ of T5. By Robinson’s diagram theorem, N’ has
A and A" as Qg-substructures, and N has B and B’ as Qg-substructures. We
assume without loss of generality that A" and N are at most countable models
of Ty UTy and Ty U Ty, respectively.

Now, an argument identical to the one used in the proof of Proposition 4.2 yields
the homomorphisms

. 1 1 o 1 1
Voo : Nigy — Njg, and v Njg — N,

which are needed in order to obtain a full model of T} >5,<T5. =

It should be clear how to adapt this proof to the case of more than one connection
function going in each direction.

4.3 Examples

When trying to axiomatize the positive algebraic completion 7§ of a given univer-
sal theory Ty, it is sufficient to produce for every simple existential formula ¢(z)
an appropriate geometric and open formula ¢*(z). Take as theory T§ the one
axiomatized by Tj together with the formulae ¢ <> ¢* for every simple existential
formula ¢. In order to complete the job, it is sufficient to show that every model
of Ty embeds into a model of 7. It should also be noted that one can without
loss of generality restrict the attention to simple existential formulae with just
one existential quantifier since more than one quantifier can then be treated by
iterated elimination of single quantifiers.

In the next example we encounter a special case where the formulae ¢ < ¢*
are already valid in Tj. In this case, we have T, = T, and thus the model-
embedding condition is trivially satisfied. In addition, any theory 7" with Ty C T
is Ty-algebraically compatible.

Example 4.5 Recall from [BGT04] the definition of a Gaussian theory. Let us
call a conjunction of atoms an e-formula. The universal theory Ty is Gaussian
iff for every e-formula ¢(z, y) it is possible to compute an e-formula ¢ (z) and a
term s(x, z) with fresh variables z such that

To E ¢(z,y) < (Y(2) A 3z.(y = s(z, 2))). (1)

Any Gaussian theory Tj is its own positive algebraic completion. In fact, it is
easy to see that (1) implies Ty | (Fy.¢(z,y)) < ¥(z), and thus the comment
given above this example applies.

15



As a consequence, our combination result applies to all the examples of effectively
locally finite Gaussian theories given in [BGT04] (e.g., Boolean algebras, vector
spaces over a finite field, empty theory over a signature whose sets of predicates
consists of & and whose set of function symbols is empty): if the universal theory
Ty is effectively locally finite and Gaussian, and 77,75 are arbitrary theories
containing T, and with decidable universal fragment, then the universal fragment
of Ty >, T; is also decidable.

Example 4.6 Let T, be the theory of semilattices (see Example 2.1). This theory
is obviously effectively locally finite. In the following, we use the disequation s C ¢
as an abbreviation for the equation s LIt =~ t. Obviously, any equation s &~ t can
be expressed by the disequations s Ct At C s.

The theory Ty has a positive algebraic completion, which can be axiomatized
as follows. Let ¢(x) be a simple existential formula with just one existential
quantifier. Using the fact that z;U. ..Uz, C zis equivalent to z;y C zA... Az, C 2,
it is easy to see that ¢(z) is equivalent to a formula of the form

Fy(WEL) A AYEE) A EsiUy) A A(um EsnUy)),  (2)

where ¢;, s, u;, are terms not involving y. Let ¢*(x) be the formula

;\7\ ;i CsjUt;), (3)

and let T be obtained from 7y by adding to it the universal closures of all
formulae ¢ < ¢*.

We prove that T is contained in the theory of Boolean algebras. In fact, the
system of disequations (2) is equivalent, in the theory of Boolean algebras, to

Fy(WEL)AAYEt)A (i M=s1 TY) A A(up M5, Ey), (4
and hence to
(ur M=sy Tty M M) Ao A (U Sy Tt ML T ). (5)

Finally, it is easy to see that (5) and (3) are equivalent.

It is well-known that every semilattice embeds into a Boolean algebra. This can,
for example, be shown as follows. Given a semilattice S = (S, L, 1), just consider
the Boolean algebra B = (2°,N, S, U, 0, U) given by the dual of the usual Boolean
algebra formed by the powerset of S: this means that as join in B we take the
intersection of sets, as the least element S, as the meet the union of sets, as the
greatest element (), and as the negation operation the set complement. It is easy
to see that the map associating with s € S the set {s' | s C s'} is a semilattice
embedding from § into B.

This shows that Tj is the positive algebraic completion of 7j. In addition, this
implies that any Boolean-based theory 7' is Tj-algebraically compatible since 7§
is contained in 7. Consequently, Theorem 4.1 covers the case of a basic &-
connection, as introduced in Example 2.1 (see Appendix A for details).
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Example 4.7 Let us now turn to Example 2.2, i.e., to connections over the
theory Ty of distributive lattices with a least element L. This theory is obviously
effectively locally finite, and it has a positive algebraic completion, which can be
obtained as follows. Every term is equivalent modulo Ty both to (i) a term that
is a (possibly empty) finite join of (non-empty) finite meets of variables, and to
(ii) a term that is a (non-empty) finite meet of (possibly empty) finite joins of
variables. A simple existential formula with just one existential quantifier ¢(z)
is then easily seen to be equivalent to a formula of the form

39-(/_\(?/ C u) A /\(tj My Cz) A\ CyUwg)), (6)

? J

where w;, t;, v, wy, are terms not involving y. Let ¢*(z) be the formula

/\(Uk Euil_lwk)/\/\(vkl_ltj E wkl_lzj), (7)
i,k 7,k

and let 7] be obtained from Tj by adding to it the universal closures of all
formulae ¢ < ¢*.

We prove that Tj is contained in the theory of Boolean algebras. In fact, the
system of disequations (6) is equivalent, in the theory of Boolean algebras, to

3\ S u) A AW E 02 A\ M € ) (8)

? J

and hence to

/\(Uk M —wg C ow;) A /\(vk M —wy C =t U z5). 9)
ik ik

Finally, it is easy to see that (9) and (7) are equivalent.

Since every distributive lattice with least element embeds into a Boolean algebra,”
this shows that 7§ is the positive algebraic completion of 7j. In addition, this
implies that any Boolean-based equational theory 7" is Ty-algebraically compatible
since Tj; is contained in 7. Consequently, Theorem 4.1 covers the case of a basic
deterministic £-connection, as introduced in Example 2.2 (see Appendix A for
details).

Example 4.8 The previous example can be sleightly varied, by considering the
theory T of bounded distributive lattices (i.e., distributive lattices with a least
and a greatest element). Let us prove that its positive algebraic completion is the
theory T axiomatized by Ty together with the (universal closure of the) formula

Jy.((zMNy=0)A(zUy=~1)).

Tt is well-known that distributive lattices with least and greatest elements embed into
Boolean algebras, and it is easy to embed a distributive lattice with least element into one with
least and greatest elements by just adding a greatest element.
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Thus, T} is simply the theory of Boolean algebras, formulated in a complement-
free signature. Since every bounded distributive lattice embeds into a Boolean
algebra, and since the theory of Boolean algebras coincides with its own positive
algebraic completion because it is Gaussian (see Example 4.5), it is sufficient to
show that every e-formula ¢ in the signature of Boolean algebras is equivalent to
an e-formula in the complement-free subsignature. In fact, we can assume that
¢ is a conjunction of identities of the form

AT U UT, Uy U Uy
these identities are in turn trivially equivalent to the inequations
351|_|"'|_|35nE@/1|—|"'|—|yma

which can obviously be transformed into identities between term in the complement-
free subsignature.

Again this implies that every Boolean-based equational theory is Ty-compatible
and that Theorem 4.1 covers the case of a basic functional £-connection, as
introduced in Example 2.2 (see again Appendix A for details).

Example 4.9 Here we give an example with a non-functional signature. Let Tj
be the (obviously locally finite) theory of partial orders (posets). The positive
algebraic completion Ty of Tj is the theory axiomatized by Ty together with the

axioms

Jo.(N(@ T a) A N\ T )« \b; Ca),

i j irj

where 7, j range over a finite index set and a;, b; are variables.
To embed a model (P, C) of Ty into a model of T}, just take the poset of downward
closet subsets of (P,C). A downward closed subset of P is a set X C P such that
xr € X and y C z imply y € X. These sets are ordered by set inclusion. It is easy
to see that this yields a model of Tj7. In fact, it is enough to show that, given
downward closed sets A;, B; satisfying A\, ;(B; £ 4;), there is a downward closed
set X such that A;(X T A;) AA;(B; E X). Since the union of downward closed
sets is again downward closed, we can take the union of the B; as the set X. The
embedding of (P,C) into downward closed sets is obtained by associating with
a € P the cone al :={b| b C a}. It is easy to see that a C o' iff a] C d'|.
In order to obtain a Tj-algebraically compatible theory, we consider again the
theory T of semilattices, but now we assume that the symbol C belongs to the
signature, and satisfies the axiom x C y <> 2 Ay = y. The theory T is Tj-
algebraically compatible since every model of 7" is a model of Tj: in fact

Elx.(/\(x Ca;) A /\(bj C z))

is equivalent (in the theory T') to

Elx(/\(x Coa) A (I_l b; C x)),

)
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i.e., to
A b € @)
v
and thus to A, ;(b; C a;).
Other theories that extend T, (and are hence Ty-algebraically compatible) are
theories that extend the theory of total orders, as is easily seen.

5 A variant of the connection scheme

Here we consider a slightly different combination scheme where a theory T is
connected with itself w.r.t. a subtheory Ty. Let Ty C T be theories over the
respective signatures 2y C 2. We use 7L, to denote the theory whose models
are models M of T" endowed with a homomorphism h : Mg, — Mq,. Thus,
the signature Q' of T-r, is obtained from the signature Q of T' by adding a new
function symbol hg of arity SS for every sort S of ;. The axioms of 7.y, are
obtained from the axioms of T by adding

hs(f(xr,. o osan)) = fhs (21), - b, (2n),
P(xl, e ,xn) — P(hsl(%)a ) hSn(xn))a

for every function (predicate) symbol f (P) in Qg of arity Sy ...S,S (Si...Su).

Example 5.1 An interesting example of a theory obtained as such a connection
is the theory Fx corresponding to the basic modal logic K. In fact, let T" be the
theory of Boolean algebras, and Tj the theory of semilattices over the signature
Qp as defined in Example 2.1. If we use the symbol ¢ for the connection function,
then 7.7, is exactly the theory Ek.

5.1 A non-deterministic combination procedure

In this subsection we state the main decidability transfer result. The approach is
analogous to the one chosen in Section 4, and it leads to a non-deterministic com-
bination procedure. In the next subsection we show that, under certain additional
restrictions, this non-deterministic procedure can be replaced by a deterministic
one.

Theorem 5.2 Let Ty, T be theories over the respective signatures gy, €2, where
Qo 18 a subsignature of Q2. Assume that Ty C T, that Ty is universal and locally
finite, and that T is Ty-algebraically compatible. Then the decidability of the
universal fragment of T entails the decidability of the universal fragment of T, .
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To prove the theorem, we consider a finite set ['UT'y of ground flat literals over the
signature Q' of T-1,, where I is a set of literals in the signature Q of 7' (expanded
with free constants), and Ty is of the form

[y = {h(al) R bla S h(an) R bn}

The theorem is an easy consequence of the following proposition, whose proof is
similar to the one of Proposition 4.2.

Proposition 5.3 The constraint I' U L'y s satisfiable in Tsr, iff there exists a
triple (A, B,v) such that

1. A is an Qo-model of Ty, which is generated by {af, ..., a’};

Y n )

2. B is an Qo-model of Ty, which is generated by {V5,... bE};
3. v:A— Bis an Qy-homomorphism such that U(af) = bf forj=1,...,n;

4. TUAq,(A) UAq,(B) is satisfiable in T.

Proof. The only-if direction is again simple. To proof the if direction, assume
that there is a triple (A, B, v) satisfying 1.—4. of the proposition. In particular,
this means that T'U Aq, (A) U Ag, (B) is satisfiable in a model N of T. We can
assume without loss of generality that N is an at most countable model of TUTj.
By Robinson’s diagram theorem, A, B are Qg-substructures of A/. Using the same
argument as in the proof of Proposition 4.2, we can extend the {2p-homomorphism
v: A — Btoan Qp-endomorphism vy : Njg, = Ng,. The pair (N, v) yields a
model of 7.7, that satisfies I' U T'y. =

Obviously, this proposition gives rise to a non-deterministic decision procedure
for the universal fragment of 7.7, , which is analogous to the one described in the
proof of Theorem 4.1

Applied to the connection of BA with itself w.r.t. the theory of semilattices consid-
ered in Example 5.1, the proof of Theorem 5.2 shows that deciding the universal
theory of Fx can be reduced to deciding the universal theory of BA. It is well-
known that deciding the universal theory of Fk is equivalent to deciding global
consequence in K, and that deciding the universal theory of BA is equivalent
to propositional reasoning. Thus, we have shown the (rather surprising) result
that the global consequence problem in K can be reduced to purely propositional
reasoning. However, if we directly apply the non-deterministic combination algo-
rithm suggested by Proposition 5.3, then the complexity of the obtained decision
procedure is worse then the known ExpTime-complexity [Spa93] of the prob-
lem. The deterministic combination procedure described below overcomes this
problem.
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5.2 A deterministic combination procedure

As pointed out in [Opp80], Nelson-Oppen style combination procedures can be
made deterministic in the presence of a certain convexity condition. Let T be
a theory over the signature €2, and let 2y be a subsignature of (2. Following
[Tin03], we say that T is Qg-convez iff every finite set of ground QX -literals (using
additional free constants from X) T-entailing a disjunction of n > 1 Qf -atoms,
already T-entails one of the disjuncts. Note that universal Horn (2-theories are
always Q-convex. In particular, this means that equational theories (like BA) are
convex w.r.t. any subsignature.

Let Ty C T be theories over the respective signatures €2y, {2, where €2 is a sub-
signature of Q. If T is Qy-convex, then Theorem 5.2 can be shown with the help
of a deterministic combination procedure. (The same is actually also true for
Theorem 4.1 and Theorem 4.3, but this will not explicitly be shown here.)

Let ' U Ty be a finite set of ground flat literals (with free constants) in the
signature of T.7,; suppose also that I' does not contain the symbol h and that
Ty = {h(ay) = by,...,h(a,) = b,}. We say that T" is T'g-saturated iff for every
Qo-atom A(zy,...,2,), TUT E A(ay,...,a,) implies A(by,...,b,) € T.

Theorem 5.4 Let Ty, T be theories over the respective signatures gy, €2, where
Qo is a subsignature of Q. Assume that Ty C T, that Ty is universal and locally
finite, and that T is Qqy-convex and Ty-algebraically compatible. Then the following
deterministic procedure decides whether I'UT\ is satisfiable in Tsr, (where T',T
are as above):

1. Ty-saturate I';

2. check whether the T'y-saturated set T obtained this way 1s satisfiable in T.

Proof. The saturation process (and thus the procedure) terminates because Ty is
locally finite (it should be clear that saturation is done modulo Tp). In addition,
if 'UT is satisfied in a model M of T- 7, then the reduct of M to the signature

Q obviously satisfies r.

Conversely, if the I'g-saturated set T is satisfiable in T, then we use T to construct
a triple (A, B, v) satisfying 1.-4 of Proposition 5.3. Since I' is satisfiable in T
and T is Qy-convex, the following two finite® sets of literals are both satisfiable
in Ty (where a abbreviate ay,...,a, and let b abbreviate by, ..., b,):

r
r

{A(a) [TUT E A(@)} U {-A(a) | TUT & A(a)},
{A) |TUT EA®)} U {~AQ) | TUT = A®)},

IS]

S

6Tt goes without saying that “finiteness” here means “finiteness modulo Tp;” see the definition
of local finiteness.
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where A(z) ranges over Qp-atoms (modulo Tp). In fact, assume (without loss of
generality) that [, is not satisfiable in 7. This means that

TUfA() [TUT FA@}E /A,

TUT = A(a)

Since Ty C T and T is Q-convex, this implies that T U {A(a) | TUT = A(a)} =
A'(a) for some Qp-atom A’(z) such that TUT &= A'(a). However, T'U {A(a) |
TUT = A(a)} = A'(a) obviously implies TUT = A’(a), which yields the desired

contradiction.

Pick a pair of models of T satisfying I', and [',, and let A, B be their (-
substructures generated by (the interpretations of) a and b, respectively. Since
Tp is universal, A and B are models of T;. Moreover, by construction, for every Qo-
atom A(x) we have that TUT' = A(a) iff A = A(a) and, similarly, TUT = A(b) iff
B = A(b). As a consequence, the I'p-saturatedness of T' and Robinson’s diagram
theorem guarantee that the map associating b; with a; can be extended to a
homomorphism v : A — B.

It remains to show that T'UAq, (A)UAg, (B) is satisfiable in T’ (since I' C T, this
implies that I' U Ag, (A) U Aq, (B) is satisfiable in T"). Taking into consideration
the Qqg-convexity of T and the fact that T is satisfiable in T, satisfiability of
TUAq, (A)UAq, (B) in T means that for no atom A(a) false in A (A(b) false in B)
we have that TUTUA (A)UAS (B) k= A(a) (TUTUA (A)UAE (B) = A(D)).T
However, as remarked above, TUL' |= A(a) holds iff A = A(a) holds (and similarly
for B). This means that TUfUAgo(.A) UAS, (B) is the same theory as TUT. But
then the claim that “for no atom A(a) false in A (or A(b) false in B) we have that
TUuT E Ala) (TU r = A(b))” becomes trivial, once again because Turl = A(a)
is equivalent to A = A(a) (TUT k= A(b) is equivalent to B = A(b)). -

Example 5.1 (continued) Let us come back to the connection of T := BA
with itself w.r.t. the theory Ty of semilattices, which yields as combined theory
the equational theory Fk corresponding to the basic modal logic K. In this
case, checking during the saturation process whether T UT |= A(a) amounts
to checking whether a propositional formula ¢r (whose size is linear in the size
of T') implies a propositional formula of the form ; < 1y, where 1,1y are
disjunctions of the propositional variables from a. Since propositional reasoning
can be done in time exponential in the number of propositional variables, and
there are only exponentially many different formulae of the form ¢, < 5, the
saturation process needs at most exponential time. The size of the T'p-saturated
set. I' may be exponential in the size of I', but it still contains only the free
constants a. Consequently, testing satisfiability of I in 7" is again a propositional

"Recall that Ago (A) denotes the positive diagram of A, i.e., it consists of those atoms true
in A. Also note that =A(a) € Aq, (A) \A$O (A) iff the atom A(a) is false in A.
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reasoning problem that can be done in time exponential in the number of free
constants a.

Consequently, we have shown that Theorem 5.4 yields an ExpTime decision pro-
cedure for the global consequence relation in K, which thus matches the known
worst-case complexity of the problem.

6 Conditions on the connection functions

Until now, we have considered connection functions that are arbitrary homomor-
phisms. In this section we impose the additional conditions that the connection
functions be surjective, embeddings, or isomorphisms: in this way, we obtain new
combined theories, which we denote by T} >3 Ty, Tt >7, 15, T} >§§0" 15, respec-
tively. This defines the combined theories in a model-theoretic way. One can also
give an axiomatic description of Ty >7""T5, T >4, Ts, and Ty >§§0° T,. For example,
the axioms of T >4, T, are obtained from the ones of T} >7, T, by adding axioms
expressing that h is surjective, i.e., for every sort S in {2y we add the axiom

Vy.Jx.hg(x) =y,

where 2 is a variable of sort S and y a variable of sort S2.

For these combined theories one can show combination results that are analo-
gous to Theorem 4.1: one just needs different compatibility conditions. To treat
embeddings and isomorphisms, we use the compatibility condition introduced in
[Ghi05, BGT04] for the case of unions of theories. Following [Ghi05, BGT04], we
call this condition Ty-compatibility in the following.

In order to define this notion of compatiblity, we need to introduce the notion
of a model completion. The definition given below differs from the one given
in [Ghi05, BGT04]. However, the two notions can be shown to be equivalent
(see Proposition 9.6 in Appendix B below). The reason for giving an alternative
formulation is that it makes the connection between a model completion and a
positive algebraic completion more transparent.

Definition 6.1 Let T be a universal Q-theory and let T* be an Q-theory. We
say that T* is a model completion of T iff the following conditions are satisfied:

(i) T C T
(ii) every model of T embeds into a model of T*;

(iii) for every formula ¢(x) there is an open formula ¢*(x) such that
T E ¢ < o~
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It can be shown that models of T are just the existentially closed models of T
(see [CK90] or Appendix B below).

Definition 6.2 Let Ty C T be theories over the respective signatures 2y C €.
We say that T' 1s Ty-compatible iff Ty is universal, has a model completion Tj,
and every model of T' embeds into a model of T'UT{.

6.1 Embeddings as connection functions

Let us first investigate the case of connection functions that are embeddings.

Theorem 6.3 Let Ty, T1, T, be theories over the respective signatures gy, €2y, Qo
where 2y is a common subsignature of Q1 and Q. Assume that Ty C Ty and
Ty C Ty, and that Ty is universal and locally finite. If Ty is Ty-compatible, then
the decidability the universal fragments of Ty and Ty entails the decidability of the
universal fragment of Ty >3 T.

As usual, in order to prove the Theorem, we consider a finite set I' of ground flat
literals over the signature €2 of 71 >%" T, (with additional free constants), and
show how it can be tested for satisfiability in T} >%"T5. Since all literals in T" are
flat, we can divide I" into three disjoint sets ' = Ty UT; UTy, where T'; (i = 1, 2)
is a set of literals in the signature €2; (expanded with free constants), and Ty is
of the form

Lo ={h(ar) = by,...,h(a,) =~ by}

for free constants a,by,...,a,,b,. Theorem 6.3 easily follows from the next
proposition:

Proposition 6.4 The constraint I' = To U 'y U Ty is satisfiable in Ty >T7 Ty iff
there exists a triple (A, B,v) such that

1. A is an Qo-model of Ty, which is generated by {af, ..., a’};

2. B is an Qo-model of Ty, which is generated by {V5,... bE};

3. v:A— Bis an Qy-embedding such that I/(a;‘) =05 forj=1,...,n;
4. Ty U Aq,(A) is satisfiable in Ty;

5. To U Aq,(B) is satisfiable in Ts.
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Proof. Again, the only-if direction is simple. Conversely, assume that (A, B, v)
is a triple satisfying 1.-5. of the proposition. Because of 4. and 5, there is an
Q;-model N of Ty satisfying I'; U Agq,(A) and an Qy-model N of Ty satisfying
[y U Ag,(B). By Robinson’s diagram theorem, N’ has A as an Qy-substructure
and N has B as an Qgy-substructure. As in the proof of Proposition 4.2, we
assume without loss of generality that N is at most countable and that N is a
model of T, U Tj. Let us enumerate the elements of N as

C1,C2y .« .y CnyCpgty -

where we assume that ¢; = ai* (i = 1,...,n), i.e., c1,...,c, are generators of A.
We define an increasing sequence of sort-conforming functions vy : {c1,...cx} —
N" (for k > n) such that, for every ground Qi literal A we have

0 F Alcr, ..., cp) implies Ng, | A(v(er), ... vi(er))

Since this condition is asked for literals and not just for atoms, it follows that the
mappings v are injective.

We first take v, to be v. To define vy (for k > n), let us consider the conjunction
U(er, ..., CnyCagr) Of the Qécl"”’c”“}—literals that are true in Vg, : this conjunction
is finite (modulo taking representative terms, thanks to local finiteness of Tp).
Let ¢(xq,...,2,) be Jxp1.0(x, ..., 2n, 2y ) and let ¢*(zq, ..., 2,) be an open
formula such that T§ = ¢ < ¢*.

By (i) and (ii) of Definition 6.1, Lemma 3.1, and the fact that ¢ — ¢* is equivalent
to an open formula, we have Ty = ¢ — ¢*. This implies 'M\IQO E o*(c1y. .., Cr),
and thus V¢, | ¢*(vi(cr), ..., vk(cx)) by the induction hypothesis. Since NG
is a model of Ty and T§ E ¢* — ¢, there is an element b of "50 such that

0o F V(wi(er), ..., vi(er), b). We now obtain the desired extension g1 of v
by setting vg11(cg11) = b. Taking v = Uy, vk, we finally obtain an embedding
Voo : N, =+ Nj§, such that the triple (N, N",v) is a model of T} >4 T that
satisfies Ty UT; U T's. =

6.2 Surjective connections

To treat Ty >7, T>, we must dualize the notions “algebraic completion” and
“algebraic compatibility”. These notions are based on co-geometric formulae,
which the dual of geometric formulae in the sense that existential quantification
is replaced by universal quantification. A co-geometric formula is a formula
built from atoms by using conjunction, disjunction and universal quantification.
Similarly, a co-geometric theory is a theory axiomatized by (universal closure of)
implications of co-geometric formulae.
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Definition 6.5 Let T be a universal Q-theory, and let T* be an Q-theory. We
say that T* is a positive co-algebraic completion of T iff the following conditions
are satisfied:

(i) T CT*
(i) every model of T embeds into a model of T*;

(iii) for every co-geometric formula ¢(x) there is an open co-geometric formula
o*(z) such that

T E ¢ < o~

The new notion of compatibility defined below differs from the one introduced
in Section 3 in that positive algebraic completions are replaced by positive co-
algebraic completions.

Definition 6.6 Let Ty C T be theories over the respective signatures g C €.
We say that T is Ty-co-algebraically compatible iff Ty is universal, has a positive
co-algebraic completion T}, and every model of T' embeds into a model of T UT} .

If the prerequisites of Theorem 4.1 hold and 77 is additionally T,-co-algebraically
compatible, then decidability of the universal fragment transfers from 77,75 to
T >§~0 T.

Theorem 6.7 Let Ty, T, T> be theories over the respective signatures g, 2y, s,
where 2y is a common subsignature of Q1 and Q. Assume that Ty C Ty and
Ty C T5, that Ty is universal and locally finite, that T\ is Ty-co-algebraically
compatible, and that Ty is Ty-algebraically compatible. Then the decidability of the
universal fragments of Ty and Ty entails the decidability of the universal fragment
of Ty >%, Ts.

To prove the theorem, let I' = I'gyUI'y UI'y be a finite set of ground flat literals over
the signature Q of Ty >4, T (with additional free constants), where T'; (i = 1,2)
is a set of literals in the signature §2; (expanded with free constants), and I’y is
of the form

{h(ay) = by, ..., h(a,) =~ by},

for free constants ay,by,...,a,,b,. The following proposition, whose formula-
tion is identical to the formulation of Proposition 4.2, immediately entails Theo-
rem 6.7.

Proposition 6.8 The constraint I' = I'o U I'y U Ty is satisfiable in Ty >3, Ts iff
there exists a triple (A, B,v) such that
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1. A is an Qo-model of Ty, which is generated by {af, ..., a’};
. B is an Qo-model of Ty, which is generated by {05, ... bE};
v:A— Bis an Qy-homomorphism such that I/(af) = bf forj=1,...,n;

. Ty U Aq,(A) is satisfiable in T} ;

O R S

. Ty U Aq,(B) is satisfiable in T,.

Proof. The only-if direction is again simple. The proof of the if direction requires
now a back-and-forth argument. Suppose we are given A, B, v as in 1.-5. of
the proposition, and let N’ be an ;-model of T} satisfying I'y U Aq,(A), and
N be an Qs-model of Ty satisfying I's U Ag,(B). We can assume without loss
of generality that A/, N are both at most countable, that N’ is a model of the
positive co-algebraic completion of Tp, and that N is a model of the positive
algebraic completion of T,. By Robinson’s diagram theorem, N’ has A as an
Qo-substructure, and N has B as an p-substructure. Let us enumerate the
elements of N’ as

C1,C3y -, Cok g1y - - -

and the elements of N as
dy,dy, ... dop, ...

(here we prefer, for uniformity, both lists to be infinite, so we may tolerate repeti-
tions in each list). We define an increasing sequence of sort-conforming surjective
mappings v : Sy — T}, such that:

e S is a finite subset of N’ including all the elements from A as well as ¢zj41,
for 25 +1 < k;

e T} is a finite subset of N" including all the elements from B as well as dy;,
for 25 < k;

e for all Qp-atoms C'(z) we have
Ny b Cla) implies A, = Cl1n(0) (10)
for every tuple a from Sj.
Once this is settled, N7 and N together with the surjective homomorphism

Voo = Upsp, Uk give, as usual, the desired model of T} >4 T satisfying I'.

We first take 1 to be v. To define vy (k > 0), we distinguish the case in which k
is even from the case in which £ is odd. In the latter case, we proceed as in the
proof of Proposition 4.2. As to the former case, let b = dy;, and let a be a tuple
collecting all the elements from Sj,_;. We want to find a suitable a € N’ in order
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to extend v, by defining vy (a) := b. For this purpose, it is sufficient to show that
N FEVy.o(a,y), where ¢(z,y) is the disjunction of all atoms C'(x,y) such that
N" B C(vg—1(a),b). In fact, if N }= Vy.¢(a, y), then there is a (sort-conforming)
a € N’ such that N7 E —¢(a,a), and we can set vi(a) := b. Assume that C
is an atom such that N = C(a,a), but N = Clvk(a,a)) = C(vg-1(a),b).
However, this means that C(z,y) occurs as a disjunct in ¢(z,y), and thus N’ |=
—¢(a,a) implies that N | =C'(a, a), which is a contradiction to our assumption
that N, F C(a, a).

To show that N [ Vy.¢(a, y), we consider the positive co-algebraic completion T
of Ty. In this theory, Yy.¢(x, y) <> ¢*(z) is provable for some (co-)geometric open
formula® ¢*(z). As usual, the implication ¢*(z) — Vy.4(z,y) must already hold
in Ty because Ty and its co-algebraic completion 7§ entail the same open formulae,
and ¢*(z) — Vy.¢(z,y) is equivalent to the open formula ¢*(z) — ¢(z,y).

Since N is a model of T, and T; E Vy.é(x,y) — ¢*(z), it is enough to prove
that N £ ¢*(a). However, N | Vy.¢(vk—1(a),y), by the definition of ¢. Since
N"is amodel of T, and T = ¢*(z) — Vy.¢(z, y), this implies N = ¢* (vp_1(a)).
Finally, the induction hypothesis on the validity of (10) yields N7 £ ¢*(a). -

The following example shows that there are natural examples of theories T, ad-
mitting both a positive algebraic and a positive co-algebraic completion.

Example 6.9 Consider the theory of join semilattices with a greatest element.
These are join semilattices as introduced in Example 4.6, but endowed with a
further element T such that x U T = T holds for all . The positive algebraic
completion of this theory is axiomatized as in Example 4.6 above. In order to
axiomatize the co-algebraic completion of this theory, we need a theory that
allows us to eliminate the universal quantifier from formulae Vy.¢(z,y) of the
form

Vy.(yEt) V-V Cty) Vi EsiUy) V-V (up Es,Uy)),  (11)

where ¢;, s;, u;, are terms not involving y. Let ¢*(x) be the formula

n

\(ti=T)v \/(uj Cs;), (12)

=1

and let 7§ be obtained from 7j by adding to it the universal closures of the
sentences ¢ <> ¢*. The theory Tj is included in the theory BA* of atomless
Boolean algebras (recall that a Boolean algebra is said to be atomless iff it does
not have non-zero minimal elements): the axioms of 7 are in fact provable in
BA*, as it is evident from the quantifier elimination procedure for BA* (see, e.g.,
[GZ02]). Since every join semilattice with a greatest element embeds into an

8In the open case, geometric and co-geometric formulae trivially coincide.
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atomless Boolean algebra,’ this shows both that Ty is the positive co-algebraic
completion of Ty, and that the theory of Boolean algebras is co-algebraically
compatible with the theory of join semilattices with a greatest element.

Since the formulation of Proposition 6.8 coincides with the one of Proposition 4.2,
we know that the universal fragments of T} >n 1o and Ty >¢, T5 coincide if the
conditions of Theorem 6.7 are satisfied.

Corollary 6.10 Let Ty, T1, T, be theories over the respective signatures €2, 21, 2o,
where 2y is a common subsignature of Q1 and Q. Assume that Ty C Ty and
Ty C Ty, that Ty is uniwversal and locally finite, that T is Ty-co-algebraically com-
patible, and that Ty is Ty-algebraically compatible. Then the universal fragment
of Ty >1, Ty coincides with the universal fragment of Ty >7, Ts.

6.3 Isomorphisms as connection functions

Finally, let us consider the problem of deciding the universal fragment of T} >§§0"
Ts.

Theorem 6.11 Let Ty, Ty, T be theories over the respective signatures g, €21, Qs,
where 2y is a common subsignature of Q1 and Q. Assume that Ty C Ty and
Ty C Ty, that Ty is universal and locally finite, and that Ty, Ty are both Ty-
compatible. Then the decidability of the universal fragments of Ty and Ty entails
the decidability of the universal fragment of T >§§0" T5.

To prove the theorem, let I' = T'gUT"; UT'; be a finite set of ground flat literals over
the signature Q of Ty >%°T, (with additional free constants), where I'; (i = 1,2)
is a set of literals in the signature €2; (expanded with free constants), and Ty is

of the form
{h(al) ~ bl, ceey h(an) ~ bn},

for free constants a,by,...,a,,b,. The following proposition, whose formula-
tion is identical to the formulation of Proposition 6.4, immediately entails Theo-
rem 6.11.

Proposition 6.12 The constraint I' = TqU 'y Uy is satisfiable in Ty >§§0" T iff
there exists a triple (A, B,v) such that

90One can embed a join semilattice with greatest element into a bounded distributive lattice
by taking the dual of the lattice of non-empty upward closed subsets; that bounded distributive
lattices embed into Boolean algebras, and that Boolean algebras embed into atomless Boolean
algebras are standard lattice-theoretic facts.
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1. A is an Qo-model of Ty, which is generated by {af, ..., a’};
. B is an Qo-model of Ty, which is generated by {05, ... bE};
v: A= Bis an Qq-embedding such that I/(af) =0 forj=1,...,n;

. Ty U Aq,(A) is satisfiable in T';

O RS

. Ty U Aq,(B) is satisfiable in T,.

Proof. To prove the if direction, we must extend v to an isomorphism between the
Qop-reducts of N', N, where N, N are at most countable models of the diagrams
of A, B and of T1 UT}, ToUTF, respectively. The back-and-forth argument used in
the proof of Proposition 6.8 can be easily adapted to the present case: it sufficient
to ask in condition (10) for truth of ground Qg*-literals rather than just atoms to
be preserved.

In the case of k£ being odd, one can proceed as in the proof of Proposition 6.4. In
the case of k being even, one must adapt the construction given in Proposition 6.8
appropriately to the stronger condition. We leave this simple adaptation to the
reader. -

Since the formulation of Proposition 6.12 coincides with the one of Proposi-
tion 6.4, we know that the universal fragments of T} >%" T and T} >§§0" 15
coincide if the conditions of Theorem 6.11 are satisfied.

Corollary 6.13 Let Ty, T1, T, be theories over the respective signatures $2g, (21, €2,
where Qg is a common subsignature of 0y and Qy. Assume that Ty C 17 and
Ty C Ty, that Ty s universal and locally finite, and that Ty, Ty are Ty-compatible.
Then the universal fragment of Ty >3 Ty coincides with the universal fragment
of Ty >3 Th.

It is easy to see that the problem of deciding the universal fragment of T} >§fo" 15
is interreducable in polynomial time with the problem of deciding the universal
fragment of 77 UT;. Consequently, the proof of Theorem 6.11 yields an alternative
proof of the combination result in [Ghi05].

The main reason for this is that there is a close connection between models of
T, UTy and T} >§§0° T,. In fact, if M is a model of T} U Ty, then it can be turned
into a model (M, M2 v) of Ty >%° T, by taking as M" the reduct of M to €,
as M? the reduct of M to €, and as isomorphism v the identity mapping on
the domain of the reduct of M to €. Conversely, if (M, M? v) is a model of
Ty >§§0" T,, then one can turn it into a model of 77 UT, by adapting the well-known
fusion construction [TR03] to the many-sorted case.
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Now, given a conjunction I' of (sort-conforming) literals to be tested for sat-
isfiability in T} >§§0" T,, we can simply remove the connection function h and
the superscripts introduced through the renaming done in the construction of
Ty >§§0" T3, and test the resulting conjunction I of literals for satisfiability in
T, UT,. If M is a model of T} U T satisfying I, then it is easy to see that
the corresponding model (M', M? v) of Ty >%° T, satisfies T'. Conversely, if
(M, M2, v) is a model of Ty >°T, satisfying T', then it is easy to see that the
model M of 77 UT, obtained from this model by applying the fusion construction
satisfies I7.

Conversely, given a conjunction I' of flat ground literals to be tested for satisfia-
bility in 77 UT5, we can partition [ into I' = 'y UT'y where I'; is over the signature
Q, and 'y is over the signature (25. For every free constant ¢ occurring in T', we
introduce two free constants ¢' and ¢?>. We replace ¢ in I'; by ¢! and ¢ in T'y by
c2, and also do the appropriate renamings of the shared function and predicate
symbols. In addition, we add the identity ¢* ~ h(c!) for each free constant ¢ oc-
curring in I'. Let " be the conjunction of literals over the signature of T} >§§0" T
obtained this way. Again, it is easy to see that T" is satisfiable in T} U Ty iff T is

satisfiable in Ty >50T,.

7 Conclusion

We have introduced a new scheme for combining many-sorted theories, and have
shown under which conditions decidability of the universal fragment of the com-
ponent theories transfers to their combination. Though this kind of combination
has been considered before in restricted cases [KLWZ04, AK97, Zar(02], it has not
been investigated in the general algebraic setting considered here.

In contrast to the results in [KLWZ04], our results are not restricted to Boolean-
based equational theories [BGT04]. However, our results do not imply the alge-
braic counterpart of the more general combination results in [KLWZ04]: there,
a connecting relation E (see Example 2.1) introduces two connection function:
the diamond operators induced by E and its inverse E~!'. These two connection
functions are not unrelated, but they are not inverses of each other (as functions).
An important topic for future work is to try to extend our framework such that
it can also handle this type of a connection.
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8 Appendix A: £-connections

The purpose of this appendix is to give a more detailed comparison between
the notion of an £-connections, as introduced in [KLWZ04], and our notion of a
connection of many-sorted theories.

First of all, [KLWZ04] consider connections that are more general than ours, in
the sense that more complex modalities (n-ary modalities, inverse modalities,
Boolean combinations of modalities, counting modalities, etc.) can be used as
connection functions. Using such sophisticated modalities as connection function
is, currently, beyond the scope of our methods, but they will be the subject of
future research.

Here, we will content ourselves with examining the special case of plain unary
modalities as connection functions, which is the most basic case of an £-connection
considered in [KLWZ04]. However, even with this restriction, there are still sig-
nificant differences between our approach and the approach in [KLWZ04]. The
main difference is that, seen from the modal logic point of view, our approach
for defining the connection is syntactic (or algebraic), in the sense that we con-
sider an equational axiomatization of the logic. In contrast, in [KLWZ04] the
emphasis is on the model-theoretic side, meaning that £-connections are defined
at the semantic level as enrichments of suitable Kripke-like structures. Because
of this difference, it is not a priori clear that our results specialize to decidability
transfer results for £-connections defined in the framework of [KLWZ04] (even
within the limitation to plain unary modalities as connection functions). In this
appendix, we show that this is indeed the case (but this proof turns out to be
not entirely trivial). To simplify matters further, we will not consider abstract
description systems (as used in [KLWZ04]) in their full generality, but restrict our
considerations to normal modal logics and to standard uni-modal Kripke frames
(most of these further restrictions are, however, without loss of generality; they
are assumed just for the sake of simplicity).

Propositional modal formulae are built using the Boolean connectives and a dia-
mond operator ¢. A Kripke frame is a pair F = (W, R), where W is a non-empty
set, the set of possible worlds, and R is a binary relation on W, the transition
relation. A Kripke model is a triple M = (W, R, V), where (W, R) is a Kripke
frame and V is a map, called valuation, associating with each propositional letter
a subset of W. The forcing relation w =™ «a, which expresses that the modal
formula « is true in the Kripke model M at world w, is defined in the standard

way (see, e.g., [BARVO01]).

For a given class of Kripke frames C, the modal constraint problem for C is the
problem of deciding whether a finite set of modal formulae is satisfiable w.r.t. a
set of global constraints.!?

!0This is the kind of problem considered in [KLWZ04], where satisfiability of an A-Box con-
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Definition 8.1 A modal constraint is a pair of finite sets of modal formulae,
written as oy, ..., B, ..y fm (nym > 0); we say that such a modal constraint
is satisfiable in a Kripke model M = (W, R, V') iff there are worlds wy, ..., wy, €
W such that

1. wy ):'M Bl,---,wm ):M Bm;

2. for allv € W and for all i = 1,...,n, we have v EM a;.

The modal constraint oy, ..., o, B, ..., B, is satisfiable in a class of Kripke
frames C iff it is satisfiable in some M = (W, R, V), for (W,R) € C.

Thus, the satisfiability of a modal constraint aq,...,a,; 51, . .., 3, means that
there is a model in which the §; are satisfied in some worlds w;, and in which
ai,...,a, hold globally, i.e., in every world.

In order to algebraize the above decision problem, let us introduce the signature
By this is the single-sorted signature obtained by expanding the signature of
Boolean algebras by a new unary operator that we still call ¢. Notice that there
is an obvious bijective correspondence in this way between modal formulae and
terms of the signature By, (thus, from now on, we identify modal formulae and
terms of the signature B)s). Also, a Kripke frame F = (W, R) can be converted
into a Bys-structure called Bz as follows: we take as underlying Boolean algebra
the powerset Boolean algebra P(W) and interpret ¢ as the function associating
with X C W the subset of W given by

<>(X) = {UJQEW | E|w1 ew. (wg,wl) 6R/\w1 EX}

Valuations V' of F correspond in an obvious way to assignments of variables to
elements of P(W). It is easy to see that, for any modal formula 6, we have
w EWREY) 9 iff w belongs to the set obtained by evaluating the term 6 in Bx
under the assignment V.

With every class of Kripke frames C we associate the Bj;-theory 7¢ whose axioms
are the formulae

(ag=T)AN--ANlapy=T) = (fixeL)V---V(Bn=xl), (13)

where aq,...,a,; P, ..., By are the modal constraints that are not satisfiable in
C. If F is a Kripke frame in C, then the corresponding Bj;-structure Br is a
model of 7.

taining many individual constants, with respect to a given T-Box, is taken into consideration.
Notice that, by contrast, relativized satisfiability as traditionally intended in modal logic con-
cerns local satisfiability of just one formula with respect to a global constraint formed by a
finite set of formulae.
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Proposition 8.2 The problem of deciding satisfiability of modal constraints in C
18 equivalent to the problem of deciding the universal fragment of the theory Te.

Proof. First, notice that a modal constraint

al,...,an;ﬁl,...,ﬁm (14)

is unsatisfiable in C iff the formula (13) is a logical consequence of 7¢. In fact,
if (14) is unsatisfiable in C, then (13) is an axiom of 7¢. Conversely, if (14) is
satisfiable in a frame F = (W, R) € C, then (13) cannot be a logical consequence
of 7¢, because it it is easy to see that it is then false in the Bj,-structure Br.

Given that, it is sufficient to observe that identities in 7¢ are all equivalent!! to
identities of the kind o & T as well as to identities of the kind 5 ~ L. Thus an
arbitrary open formula in the signature B); is in fact a conjunction of formulae of
the kind (13). Together with what we have shown about the connection between
such formulae and modal constraints, this implies the claim of the proposition.

Let us now show that this correspondence
C—T;

is compatible with building connections, where on the left-hand side the connec-
tions are the £-connections as introduced in [KLWZ04], and on the right-hand side
the connections are the connections of many-sorted theories as introduced in the
present paper. To show this, we need to recall the definition of an £-connection
(in the present simplified case of classes of Kripke frames).

For £-connections, we use two-sorted propositional modal formulae. The formulae
of sort 1 are just the standard propositional modal formulae (where, however,
the modal operator ¢ is renamed to ¢;); the formulae of sort 2 are built from
propositional variables'? of sort 2 and formulae of the form {p¢ where ¢ is a
formula of sort 1, by applying the Boolean connectives and the modal operator

Oa.

From the semantic side, suppose we are given two classes Cy, Cy of Kripke frames.
The class of connection frames £ (Cy, Cs) is formed by all triples F = (Fy, E¥, F5)
such that F, = (W1, Ry) € Ci, Fo = (Wo, Ry) € Cy and E7 C W, x W) is an
arbitrary binary relation.

An £(Cy,Cy)-connection Kripke model is a 4-tuple M = (Fy, E¥, 55, V), where
F = (F,E7,F) € £(Cy,Cy) is a connection frame and V' is a map associating
with propositional letters of sort i subsets of W; (i = 1,2). The forcing relation
w EM «a, which says that the modal formula a is true in M at world w, is

1 Use Boolean bi-implication and complement to show this.
2Propositional variables of sort 1 are kept disjoint from propositional variables of sort 2.
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defined in the standard way (see [KLWZ04]), where the only non-obvious case is
the following: for wy € W5 and for a formula « of sort 1, we have:

wy EM Opa iff (Jw, € Wi (wo,wy) € BT and wy EM ).

Now, £(Cy, Cs)-satisfiability of a modal constraint aq, ..., ap; B, ..., By is defined
as above (but notice that the a; and the §; may be formulae of sort 1 or 2,
indifferently).

When connecting the theories corresponding to two frame classes, we build the
two-sorted signature B3,: this consists of two renamed copies of the signature
By and, in addition, of the new unary function symbol g of arity S;Ss (where
S1, S, are the single sorts of the renamed copies of Bjs). Again, terms in the
signature B2, can be identified with the two-sorted modal formulae introduced
above; moreover any connection frame F = (F;, E¥,F;) can be turned into a
B2,-structure (which we still call Br) by interpreting the two sorts by power-
set Boolean algebras, as described above, and by defining ¢ as the function
associating with X C W, the subset of W5 given by

<>E(X> = {lUQ e W, | Jw; € W. (wg,lUl) € Ef/\wl € X}
We can then build the theory ¢, ¢,), whose axioms are the formulae
(g =T)AN-ANlapy=T) = (i L)V---V(Bn=1), (15)

where aq,...,ay; 01, ..., 0, are the modal constraints that are not satisfiable in
E(C1,Cs). As in the proof of Proposition 8.2, it can be shown that the problem
of deciding satisfiability of modal constraints in £(Cy,Cs) is equivalent to the
problem of deciding the universal fragment of the theory Tg(c, c,)-

The following proposition states a precise relationship between £-connections and
our connections of many-sorted theories.

Proposition 8.3 Let C,Cy be classes of Kripke frames; Tec, c,) coincides with
Te, >1, Te,, where Ty is the theory of semilattices.'®

Proof. Both theories T¢(c, ¢,) and T¢, >7, Te, are universal and relative to the
same signature BD?, so it is sufficient to show that a finite set of literals is
satisfiable in a model of one of them iff it is satisfiable in a model of the other.
First, note that a finite set of literals is satisfied in a model of T, ¢, iff it
is satisfied in a model of the form Br, where F = (F,E¥,F;) is such that
Fi € Cy and F, € Cy. This can be shown by basically repeating the arguments
used in the proof of Proposition 8.2: every universal B3,-formula is equivalent to
conjunction of formulae of the kind (13), and (13) is a logical consequence of the

13Gee Example 2.1.
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theory Te(c, ¢, iff the modal constraint (14) is unsatisfiable in frames of the kind
F = (F,E7,F) (for F| € C; and F, € Cy), i.e., iff (13) is true in models of the
kind Bz, where F = (F;, EZ, F,) is such that F; € C; and F, € Cs.

Clearly, models of the form Br for a connection frame F = (F;, X, F,) are
models of T, >p, Te,. However, the converse is far from being true: in fact,
models of T¢, >7, T, may interpret the two sorts S; and S, by Boolean algebras
that are not powerset Boolean algebras. Moreover, in models of T¢, >7, T¢,, the
connecting diamond {p is taken to be any semilattice homomorphism and, as
such, it need not preserve infinitary joins (as is the case, on the contrary, for the
interpretation of Qg in all models of the kind Br).

Thus, the key point of the proof is to show that any finite set of B3,-literals T
satisfiable in a model of T¢, >7, T¢,, is also satisfiable in a model of the form By,
where F = (F,, EZ, F,) is a connection frame such that F; € C; and F;, € Cs.

We can, as usual, replace variables with constants and assume I" to be flat, so that
we can divide I into three disjoint sets I' = T UT'; Uy, where I'; (i = 1,2) is a
set of literals in the i-th copy of the signature B), (expanded with free constants),
and T’y is of the form

FO = {OE(CH) ~ bl, .. .,<>E(Cln> =~ bn}

for free constants ay, by, ..., a,,b,.

This observation is not sufficient yet: we need to modify I'yUT'; Ul further. Let
O be the set of terms of the form

+a; M --- 1M +a,,
where +a; is a; and —a; is @;. Notice that the equations
a~| |{010€0, 0C a}

are logical consequence of the Boolean algebra axioms, and hence are always valid
in our models (here 6 C a; means that a; (and not @;) appears as conjunct in 6).

Let Ty be any set of B} -literals obtained from T'; by adding either § ~ L or
0 % L for every # € ©. For any 0 € O, introduce a new constant ¢y and replace
I'y with .

1—‘0 = {<>E‘(9> ~ Cy | 0 e @}

Finally, let

Ty(Ty) =T U{cp~ L0~ LeT}U{(]| |co) mbi|i=1,...,n}.

0Ca;

It is easily seen that I'g U Ty U T is satisfiable in a model of T¢, >7, Te, iff there
is a 'y such that T'o UTy UT9(I'y) is satisfiable in a model of T¢, >7, T¢,. The
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same observation applies to satisfiability in models of T¢(c, ¢,). So, let us fix a set
[oUT; UL (Ty), and assume that it is satisfiable in a model of T¢, >7, T¢,. We
must show that it is satisfiable in a model of T¢(c, ¢,)-

Now, if Ty UT; U f‘g(f‘l) is satisfiable in a model of T¢, >, T¢,, then T, is
satisfiable in a model of Tp, and T'y(T';) is satisfiable in a model of T,. By the
definition of T¢,, it follows that f‘i must be satisfiable in a model of the form
Bz, where F; = (W;,R;) € C; (i = 1,2). So we simply need to define the
interpretation EZ of the connecting relation E in such a way that also Iy is
satisfied in F = (Fy, EZ, ). This is done as follows: pick s; € W, and s, € Wh;
we say that (sq,51) € EZ iff 55 € cfﬁ 4 where @ is the unique element'® of © such
that s; € #571. This implies that, for every # € ©, we have ng(QBﬂ) C cfﬁ.
For the converse inclusion, suppose that sy € cfﬁ. Then By, = cp ~ L. By the
definition of f‘g(f‘l) and by the fact that either § ~ 1L € Ty or 6 % L € Ty, we
have that Bx, ~ 0 ~ L. This means that there is some s; € §571; for such s; we
have that (sq,51) € E7, i.e. that s, € Q57 (6571). =

The above proposition, together with our main combination result (Theorem 4.1),
and the fact that Boolean-based theories are algebraically compatible with respect
to the theory of semilattices (Example 4.6), immediately entails the following
result:

Corollary 8.4 Let Cy and Csy be classes of modal frames. If the modal constraint
problems for C1 and Cy are both decidable, then so is the modal constraint problem

fO’/' g(Cl, Cz)

This decidability transfer result can be proved directly by an argument similar
to the one we used to prove Proposition 8.3. Notice, however, that Theorem 4.1
gives in fact more, as it applies to any Boolean-based theory, i.e., also to theories
that are not of the kind 7¢ for a class C of Kripke frames.

Let us now turn to £-connections that correspond to connections of theories where
more than the theory of semilattices is shared. The frame classes £,4(C,Cy) and
E¢(Cy,Cy) are defined similarly to £(Cy,Cy): the only difference is that now the
connecting relation E is respectively taken to be a partial function and a function.
For such deterministic or functional connections, we can show results that are
analogous to Proposition 8.3.

Proposition 8.5 Let C; and Cy be classes of modal frames.

4We use t572 to denote the interpretation of the ground term ¢ in the structure Bz, (and
similarly for 7).

5By the definition of O, different elements of © are interpreted by disjoint sets in Fi, and
the union of the interpretations of all elements of © in Fy is W;.
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1. Tgycy,c0) coincides with Te, >7, Te,, where Ty is the theory of distributive
lattices with a least element.

2. Tep(cy 00) coincides with Te, >1, Te,, where Ty s the theory of bounded dis-
tributive lattices.

Proof. Only slight modifications to the proof of Proposition 8.3 are needed. When
building I'y(T';), we add also the atoms ¢y, My, & L, for O; # 0. In the case of
a functional connection, we additionally add T ~ | |,.¢ co-

To define E7, we now proceed as follows: first, the definition domain of the partial
function B% is (| Jpeq co)72. Now notice that any s, in this definition domain

belongs to exactly one ¢, *; moreover, if s, € cfﬁ, then Br, = ¢p % L and thus
Bz, E 0% L. Select just one s; € 0571 and let E”(sy) := s;. This definition of
E7 guarantees that Br = Orf ~ ¢y again holds for all # € ©. In addition, in the
case of a functional connection, the presence of T ~ | ],.q co in ', ('y) enforces
that the definition domain of the partial function E7 is the whole domain. -

Fa

The algebraic compatibility of any Boolean-based theory with respect to the the-
ory of distributive lattices with a least element and with respect to the theory of
bounded distributive lattices (see Examples 4.7 and 4.8), now yields the following
decidability transfer results:

Corollary 8.6 Let C; and Cy be classes of modal frames. If the modal constraint
problems for C1 and Cy are both decidable, then so are the modal constraint prob-
lems for £4(Cy,C2) and E(Cy,Cy).

9 Appendix B: Theory Completions

In this Appendix we develop some model theory concerning our notions of comple-
tions of a theory T'. Such model theory gives further insight into some important
ingredients of the paper, although it is not needed in order to understand and
justify our combination procedures. We shall recall classical well-known results
for model completions and show how they can be adapted to the case of positive
algebraic completions.!®

Let us call a model M of a theory T

- algebraically closed iff every sentence of the kind Jz(A;(a,z) A -+ A Ap(a,x))
which is satisfied in some N' O M such that N |= T is satisfied in M itself
(here a are parameters from M and the A;(y,z) are atoms);

16Similar adaptations can be done also for the coalgebraic completions case, but we do not
insist on them, for simplicity.
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- ezistentially closed iff every sentence of the kind Jz(A;(a,z) A--- A A,(a,z))
which is satisfied in some N' O M such that N |= T, is satisfied in M itself
(here a are parameters from M and the A;(y,z) are literals).

The following Lemma is taken from [CK90]:

Lemma 9.1 If T is universal, then every model M of T embeds into a model of
T which is existentially (hence also algebraically) closed.

Proof. Take a well-order {¢;};-, of the existential sentences with parameters
from M. Define a first chain {M;}; of models of T, by letting M, to be an
extension of (J;_; M; in which ¢; is true (if this extension does not exists, M;
is just Uj<i M;). Now let M; be Uj<a M ; repeating the construction,'” we
produce a countable chain M C M; C My C ---. The union of this chain is
the desired existentially closed extension of M (notice that this argument works

because T is preserved under union of chains, being universal). =

Proposition 9.2 Suppose that T has a positive algebraic (model) completion T*;
then the models of T* are precisely those models of T which are algebraically (resp.
existentially) closed.

Proof. We show the proof just for the case of the positive algebraic completion T
(the other case being analogous and well-known [CK90]). Recall that, according
to Definition 3.2 and Lemma 3.3, for every geometric formula ¢(z) there is a
geometric open formula ¢*(x) such that T | ¢ — ¢* and T* | ¢* — ¢.

Suppose that M = T*, that N’ D M is an extension of M which is also a model
of T. Let ¢(a) be a geometric sentence with parameters a from M which is true
in V. Then we have N | ¢*(a) and also M = ¢*(a) (because ¢* is open); as M
is a model of T*, this implies that M = ¢(a).

Conversely, suppose that M is algebraically closed as a model of T and let ¢(a) be
a geometric sentence with parameters in M such that M = ¢*(a). By definition
3.2(ii), M can be embedded into a model N of T*. Since ¢* is open and since
T* = ¢* — ¢, in N we have N' | ¢(a) and also M E ¢(a), because M is
algebraically closed. Thus M = ¢ <> ¢* holds for all geometric ¢ (the implication
® — ¢* being already a logical consequence of T'). It is now easy to show that
M = T*: let ¢1 — ¢ be a geometric sequent in the axiomatization of T%. We
have that M | ¢; — ¢ iff M = ¢7 — ¢%; however, from T* E ¢ — @9, we
get T* = @] — @3, hence also T | ¢} — ¢35, because T and T* agree on open
formulae (see Definition 6.1(i)-(ii) and Lemma 3.1). Since M =T, M E ¢} — ¢}
follows; consequently we have M = ¢1 — ¢ (i.e. M |=T%). =

"The construction needs to be repeated, in order to take care of existential formulae with
parameters from | M|\ |M|.
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Notice that Proposition 9.2 implies that T, when it exists, is unique. Clearly not
all universal theories T" have a positive algebraic or a model completion: there is
no general guarantee, for instance, that the class of algebraically or existentially
closed models of T is elementary (i.e. that it is the class of the models of some
first order theory at all).

9.1 Model Completions

A classical result [CK90] says that a universal theory T has a model completion iff
T has the amalgamation property and the class of the existentially closed models
of T"is an elementary class. We shall recall here the proof of this result and in
next subsections we show how a similar statement can be proved for the case of
positive algebraic completions.

We say that a theory T has the amalgamation property (AP for short) iff for every
triple M, N, N5 of models of T', for every pair of embeddings 1, : M — N7 and
o : M — N, there are a further model N of T, and embeddings v; : Ny — N
and v, : Ny — N such that the square

M 1 Nl
H2 141
NQ ’T’ N

commutes.

Proposition 9.3 If the universal Q-theory T has a model completion T*, then
T has AP.

Proof. Given embeddings p; : M — N; and s : M — N>, we can freely
suppose that N, Ny are models of T* and that i, o are inclusions. By diagrams
theorems, it is sufficient to show the consistency of TUA(N7)UA(N5). Suppose
this is not consistent; by compactness there are 0(m,n,),0>(m,n,), such that
TU{0:(m,n,),0:(m,n,)} is inconsistent. Here: a) m are parameters from M; b)
n,,n, are parameters from Ny, Ny (not belonging to the image of p, p12, respec-
tively); ¢) 01(m, n,) is a conjunction of ground literals true in Ny; d) Os(m, n,) is
a conjunction of ground literals true in N3. Let ¢(m) be Jyh;(m,y) and recall
from Definition 6.1 that there is an open formula ¢* such that T*_): oF > o¢.
We consequently have N &= ¢*(m); since ¢*(m) is open, we get that it is true in
M and in N, too. The latter is a model of T*, hence N> = ¢(m), contradiction
because T'U {¢p(m), 02(m, n,)} is inconsistent. -
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Lemma 9.4 Suppose that the universal Q-theory T has AP and that T* O T is
an extension of T (in the same signature of T') whose models are all existentially
closed for T'. Then T* admits quantifier elimination.

Proof. Let ¢(x) be an existential formula: it is sufficient to show that ¢(z) is
equivalent modulo T* to a quantifier free formula ¢*(z). For new constants a
consider the set of sentences

© = T*"U{s(a)} U{=(a) |9 is quantifier free and T* = ¥(a) — ¢(a)}.

If © is inconsistent, then we have T* |= ¢(a) — ¢1(a) V- -V ¢, (a) for quantifier-
free 1); implying ¢, so that we can take the disjunction of such v; as ¢*.

Consequently it suffices to show that © cannot be consistent. Suppose it is and
let M be a model of it. Let A be the substructure of M generated by the a; we
distinguish two cases, depending on whether we have T* U A(A) = ¢(a) or not.

If we do not have T*UA(A) = ¢(a), then we can build a model N of T* containing
A as a substructure and falsifying ¢(a). By AP, there is a common extension N’
of M and N (over A); since M = ¢(a) and ¢(a) is existential, N’ = ¢(a), which
cannot be because N is existentially closed (it is a model of 7*) and N [~ ¢(a).

If we have T* U A(A) = ¢(a), for some quantifier-free sentence ¢ (a) true in A
we have that T* = ¢(a) — ¢(a). According to the definition of ©, —¢(a) is true
in M and also in A (because it is quantifier-free), contradiction. -

Theorem 9.5 Let T be a universal theory, then T has a model completion iff it
has AP and the class of existentially closed models of T is elementary.

Proof. One side is covered by Propositions 9.2 and 9.3 and the other side by
Lemmas 9.4 and 9.1. -

We finally recall that the definition of a model completion given in Definition 6.1
above agrees with the standard definition used e.g. in most textbooks and a also
in [Ghi05, BGT04]:'8

Proposition 9.6 Let T be a universal Q-theory and let T* be a further Q)-theory
extending T'. We have that T* is a model completion of T iff the following two
conditions are satisfied: (i) every model of T embeds into a model of T*; (ii) for
every Q-structure A which is a model of T, we have that T*UA(A) is a complete
QM _theory.

18For a slightly different proof of Proposition 9.6 (which is nevertheless well-known), see
[Ghi03], Appendix B. The alternative definition suggested by Proposition 9.6 is actually prefer-
able, because it conveniently applies also to theories which might not be universal. We adopted
Definition 6.1, just to make it parallel to Definition 3.2.
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Proof. The left-to-right side is trivial (just observe that ground formulae are
preserved by both sub- and super-structures). For the other side, suppose that
T*UA(A) is a complete S4-theory for every A which is a model of 7*. We want
to apply Lemma 9.4, so we need to show that all models of T are existentially
closed and that T enjoys AP.

The former is shown as follows: let M be a model of T* and let NV O M be
a model of T" in which a certain existential formula (with parameters from M)
¢(m) is true. Since models of T embeds into models of T*, we can suppose that
N E T*. But then, N" and M itself are both extensions of M to a model of T*,
whence they are both models of the complete theory T* U A(M), which means
that ¢(m) is true in M (since it is true in ).

We finally show that AP holds for T. Given embeddings u; : M — N; and
po : M — N3 (to be amalgamated), we can freely suppose that Ni, Ny are
models of T* and that s, 1o are inclusions. Both A, and N5 are then models of
the complete theory T* U A(M), hence the union of their elementary diagrams
(in the signature of T' expanded with the constants |M]) is consistent: any model
of such union gives a model of T amalgamating M; and M, over M. -

9.2 Positive Algebraic Completions

We wish to get a result analogous to Theorem 9.5 for the case of positive algebraic
completions. To this aim, we need to identify the semantic properties playing the
role of amalgamation in our context.

We say that a theory T has the injection-transfer property (IT for short) iff for
every triple M, N7, N5 of models of T, for every homomorphism p : M — N5
and for every embedding ¢ : M — N, there are a further model NV of T, an
embedding ¢/ : N5 — N and a homomorphism ' : A7 — N such that the
square

M%/\ﬂ

commutes.

Proposition 9.7 If the universal Q-theory T has a positive algebraic completion
T*, then T has IT.
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Proof. Let p : M — N5 be a homomorphism and let + : M — A be an
embedding (M, N7, N3 are supposed to be models of T'); by Definition 3.2(ii), we
can freely suppose that N5 is a model of T*. By diagrams theorems, it is sufficient
to show the consistency of TUAY(N7)UA(N>). Suppose this is not consistent; by
compactness there are 6, (m,n,), 02(m, n,), such that T°U {6, (m, n,), 62(m,n,)}
is inconsistent. Here: a) m are parameters from M; b) n,,n, are parameters
from N7, N2 (not belonging to the image of ¢, 1, respectively); ¢) 61(m,n,) is a
conjunction of ground atoms true in Ny; d) 0(m,n,) is a conjunction of ground
literals true in Ns. Let ¢(m) be Jybdi(m,y); we have N} = ¢*(m), as ¢(m) —
¢*(m) is a logical consequence of T (see Lemma 3.1). Since ¢*(m) is geometric
and open, we get that it is true in M and in N5 too. The latter is a model of T*,
hence N3 | ¢(m), contradiction because T'U {¢(m), 02(m, n,)} is inconsistent. -

Propositions 9.2 and 9.7 can be inverted, in the following sense:

Theorem 9.8 Let T be a universal theory; then T has a positive algebraic com-
pletion iff it has I'T and the class of algebraically closed models of T is elementary.

Proof. One side is covered by Propositions 9.2 and 9.7. Suppose now that T
has IT and that there is a first-order theory 7" (in principle, not necessarily a
geometric one) such that the models of T" are exactly the algebraically closed
models of T. Let ¢(x) be a geometric formula and let a be free constants. Define
[ as the set of geometric, open and ground formulae in Q2 (here € is obviously
the signature of T') which are logical consequences of 7" U {¢(a)}.

We first claim that TUT" = ¢(a). Let in fact M be a model of 7"UT". Let A~ (a)
be the set of negative ground Q2-literals which are true in M. By the definition
of T, the set T"UA ™ (a) U{#(a)} is consistent and hence has a model A'. Let A be
the substructure of A" generated by the a (notice that A is a model of T because
T is universal): if we apply diagrams theorems and IT, we get a commutative
square

A N
H w
M— N

From N = ¢(a), we get N’ = ¢(a) (because ¢ is geometric) and finally M = ¢(a)
because M is algebraically closed. This ends the proof of the claim.

From the claim and compactness, we realize that for every geometric ¢, there is
a geometric open ¢* such that

T"E¢—¢* and T Eo" — o.
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Let T™ be the extension of T" axiomatized by the universal closure of the geometric
sequents ¢ — ¢* and ¢* — ¢ (we have T C T* C T"). As every model of T"embeds
into a model of 7" by Lemma 9.1, condition (ii) of Definition 3.2 is satisfied; since
condition (iii) comes directly from the construction, T* is a positive algebraic
completion of T'. =

10 Appendix C: Alternative Proofs

Here we give alternative proofs of some relevant Propositions from Sections 4 and
5, relying on some slightly deeper model theoretic machinery.!” The main feature
of these alternative proofs is that they do not use use either local finiteness of Tg
or countability of the involved signatures.

We first need the following extended I'T property which is an interesting conse-
quence of Ty-algebraic compatibility:

Proposition 10.1 Let Ty, C T be theories in signatures 2o C Q such that T is
Ty-algebraically compatible. Let A,C be Qq-structures which are models of Ty and
let M be a Q-structures which is a models of T'; for every Qg-homomorphism yu :
A — Mq, and for every Qy-embedding 1 : A — C, there are a further Q-model
N of T, an Q-embedding /' : M — N and a Qo-homomorphism ' : C — Njq,
such that the square

A Mo,
L LTQO
C / MQO

commutes. Moreover, if M = T UTy, then the embedding (' can be taken to be
elementary.

Proof. Similarly to the proof of Proposition 9.7, we need to show that T U
Ag (C) U Ag(M) is consistent. Again, if this is not the case, we have that there
are 01(a,c),02(a,m), such that T U {0;(a,c),02(a, m)} is inconsistent. Here: a)
a are parameters from A; b) ¢,m are parameters from C, M (not belonging to
the image of ¢, u, respectively); ¢) 0;(a,c) is a conjunction of ground Qg*“-atoms

19Gimilar alternative proofs can be given also for the relevant Propositions from Section 6, but
we do not insist on them. Moreover, the experienced model-theorist will realize that further
alternative proofs can be obtained by using the cumbersome formalism of saturated/special
models.
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true in C; d) f(a,m) is a conjunction of ground Q%2-literals true in M. Let ¢(a)
be Jyb;(a,y); we have C | ¢*(a), as ¢p(a) — ¢*(a) is a logical consequence of
Ty. Since ¢*(a) is geometric and open, we get that it is true in A and in M
too. The latter can be embedded into a model Mg of T U T, hence My | ¢(a),
contradiction because TU{¢(a), 2(a, m)} was supposed to be inconsistent (notice
that Mg | 02(a, m) follows from M |= 65(a, m) because 6, is open).

In case M is a model of TUT{, we can replace A (M) by the elementary diagram
A§ (M) of M and get an elementary /, because there is no need of considering
the extension M. =

Let us now give an alternative proof of Proposition 4.2. Such an alternative
proof is indeed quite simple, from the information we have now: from the data
1-5 of Proposition 4.2, we can get a {2g-homomorphism v : A — B among a €)g-
substructure A of a model N’ of T} and a Qy-substructure B of a model N of Ts.
Proposition 4.2 is proved if we build an extension of v to a €25-homomorphism
NT% — Njg,, where Nq, is a suitable Qy-superstructure of . But such
extension is immediately provided by an application of Proposition 10.1: take as

¢ the inclusion of A into N’ and as p the composition of v with the inclusion of
B into N =

Similar arguments (but iterations are needed!) give alternative proofs of the
remaining relevant Propositions from Sections 4 and 5.

An alternative proof of Proposition 4.4 is as follows. We are given models
N, MO of Ty, T, respectively; N° has Qg-substructures A, A’, whereas M has
Qo-substructures B, 5. We are also given ()g-homomorphisms v : A — B and
p: B — A. We can freely suppose that N'°, M? are models of T too, by the
algebraic compatibility assumptions.

The Proposition is proved, if we succeed in producing elementary extensions
N>® M= of N, M endowed with Qy-homomorphisms

00 ., 00 00 00 . 00 00
14 : ‘QO — M|907 1% . M|QO — |QO

extending v and pu, respectively. To this aim, we define elementary chains of
models

N C N1 C---
MO C M! C---
as well as homomorphisms
E . ark k+1 . J J
14 . |QO —> M‘QO ) M] . M|QO —> MQO

(k> 0,7 >1)such that v C v* C ¥t and u C p/ C 17" (once this is settled,?
it is sufficient to take unions in order to get the desired N'°°, M v>® ;). All

20Recall the elementary chain theorem [CK90], according to which the union of an elementary
chain of models is elementarily equivalent to each member of the chain.
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these data can be easily built by using Proposition 10.1. For instance, to get M;
and 1y it is sufficient to fill the square

A—> M‘QO

|Qo M\Qo
\Qo

where the top horizontal morphism is the composite of v with the inclusion B C
My, (notice that we can get an elementary embedding M® < M’, since M” =
Ty UTy). To get N7 and piy it is sufficient to fill the square

/ 0
B — 10

1
M‘QO —> |QO
|90

where the top horizontal morphism is the composite of ¢ with the inclusion A’ C
/\/'IQ and the left vertical morphism is the composite inclusion B’ C M, C /\/11
For the inductive cases, the same argument can be applied. —

An alternative proof of Proposition 5.3 is as follows. Here we are given a
model M of T endowed with a pair of {2g-substructures A, 5; we are also given
a Qo-homomorphism v : A — B. Again we can suppose that M = T UTj.

The Proposition is proved, if we succeed in producing an elementary extension
M of M endowed with an Qy-homomorphism

v MG, — Mg,
extending v. To this aim, we define an elementary chain of models
M C M C
as well as homomorphisms
Mlﬂo Mff;rol’

(k > 0) such that v C v*¥ C vk*1 (once this is settled, it is sufficient to take
unions in order to get the desired M and v*°). To get M; and 1 it is sufficient
to fill the square
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.A — M'OQO

0 1
M'QO —>0 M'QO

120

where the top horizontal morphism is the composite of v with the inclusion B C
M?QO. To get inductively My, and v, one proceeds similarly. —
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