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Abstract. We introduce XOR constraints, and show how they enable
a theorem prover to reason effectively about security critical subsystems
which employ bitwise XOR. Our primary case study is the API of the
IBM 4758 hardware security module. We also show how our technique
can be applied to standard security protocols.

1 Introduction

The application program interfaces (APIs) of several secure cryptographic hard-
ware modules, such as are used in cash machines and electronic payment devices,
have been shown to have subtle flaws which could be used to mount financially lu-
crative attacks, [5,9]. These flaws were, however, only discovered after laborious
hand analysis. This suggests them as promising candidates for formal analysis
in a theorem prover. The APIs can be thought of as defining a set of two-party
protocols, and modelled in a similar way to security protocols, which have at-
tracted a large amount of attention from formal methods researchers in recent
years. However, one key difference is that the specifications of the APIs are at
the concrete bit by bit level, rather than at the abstract level of public or sym-
metric key cryptography. It has been by exploiting bit-level operations in the
APIs that attacks have been found. One example of such an operation is bitwise
exclusive-or (XOR). In the IBM 4758 Common Cryptographic Architecture API,
XOR is used extensively. In an attack discovered by Bond, [5], the self-inverse
property of XOR can be exploited, together with some other coincidences in
the API transaction set, to reveal a customer’s PIN. However, the combinatorial
possibilities caused by the associative, commutative and self-inverse properties
of XOR pose a significant challenge to formal analysis. It this challenge we ad-
dress in the work described in this paper. We introduce XOR constraints, which
state that two terms must be equal modulo XOR. We describe first-order theo-
rem proving in a calculus modified to use these constraints, and show how this
allows models of such APIs to be reasoned with effectively.

In the rest of this paper, we will first, in §2, give some more background in
the field of secure hardware API analysis. In §3, we describe our approach using



XOR constraints. Our results using this method are given in §4. We conclude in
85, with some evaluation and comparison to related work.

2 Background

Hardware security modules (HSMs) are widely used in security critical systems
such as electronic payment and automated teller machine (ATM) networks. They
typically consist of a cryptoprocessor and a small amount of memory inside a
tamper-proof enclosure. They are designed so that should an intruder open the
casing, or insert probes to try to read the memory, it will auto-erase in a matter
of nanoseconds. In a typical application, this tamper-proof memory will be used
to store the master keys for the device. Further keys will then be stored on the
hard drive of a computer connected to the HSM, encrypted under the HSM’s
master key. These keys can then only be used by sending them back into the
HSM, together with some other data, under the application program interface
(API). The API will typically consist of a several dozen key management and
PIN processing commands, and their prescribed responses. Although carefully
designed, various subtle flaws in these APIs have been found, for example by
Bond, [5], and Clulow, [9].

One can think of the API as defining a number of two-party protocols between
a user and the HSM. This suggests that we might profitably employ methods
developed for the analysis of security protocols, e.g. [23,18,3]. However, there
are some important differences in the scenario to be modelled. We are concerned
only with two ‘agents’, the HSM itself and a malicious intruder. The HSM itself
is (usually) ‘stateless’, in the sense that no information inside the HSM changes
during transactions. This means we need only concern ourselves with the knowl-
edge of the intruder, and not with any other information about the state of the
protocol participants. Readers familiar with conventional security protocol anal-
ysis will appreciate that this constitutes a significant simplification of the general
problem. However, there are other aspects which add complexity not normally
considered in standard protocol analysis. In order to look for attacks, we must
analyse the composition of several dozen short two-party protocols, that may be
combined in any order. This is a significant increase in complexity compared to
analysing key exchange protocols, which typically entail half a dozen messages
at most. Additionally, it is not sufficient to model APIs in a ‘perfect encryption’
or free algebra model, where algebraic properties of the crypto functions are
ignored. Most of the attacks that have been found exploit properties of these
functions. The example we look at in this paper is the XOR function, which is
widely used in the Common Cryptographic Architecture (CCA) API of the IBM
47581,

The attacks on the 4758 CCA were first discovered by Bond and Anderson,
[5]. They exploit the way the 4758 constructs keys of different types. The CCA
supports various key types, such as data keys, key encrypting keys, import keys

! http://www-3.ibm.com/security /cryptocards/pcicc.shtml



and export keys. Each type has an associated ‘control vector’ (a public value),
which is XORed against the master key, km, to produce the required key type. So
if data is the control vector for data keys, then all data keys will be stored outside
the 4758 box encrypted under km @ data?. Under the API, only particular types
of keys will be accepted by the HSM for particular operations. For example, data
keys may be used to encrypt given plaintext, but PIN derivation keys may not.
Bond discovered an attack whereby the attacker changes the type of a key he
has by exploiting the properties of XOR. In Bond’s attack, the APT’s Key Part
Import command is used to generate keys with a known difference. The Key
Import command can then be used to change a key of one type to any other
type. This allows a PIN derivation key to be converted to a data key, and then
used to encrypt data, which is a critical flaw: a customer’s PIN is just his account
number encrypted under a PIN derivation key. So, the attack allows a criminal
to generate a PIN for any card number. Recent versions of the CCA manual
(2.41 onwards) give procedural restrictions on the key part import commands
to prevent the attack.

After discovering the attack, Bond made an effort to formalise the problem
and rediscover the attack, using the theorem prover Spass, [26]. He produced
a first-order model with one predicate, P, to indicate that a term was known
outside the box (and therefore available to an intruder). The XOR operation
was modelled by equational axioms giving its associative, commutative and self-
inverse properties. However, SPASS was unable to rediscover the attack, even
after days of run time, and with only the three relevant commands from the API
included in the model. Bond was able to prove that the attack was in the search
space modelled, by inserting various hints and proving intermediate conjectures,
but the combinatorial blow-up caused by the AC and self-inverse properties, and
the fact that the spy can XOR together any two terms he knows to create a new
term, prevented a genuine rediscovery.

Ganapathy et al. have recently attacked the same rediscovery problem using
bounded model checking, [12]. They successfully rediscovered the part of the
attack where a key’s type is changed. However, they included only two of the
APIs commands in their model, so there was very little search involved. Again,
associativity, commutativity and self-inverse were modelled by explicit axioms
in the model.

The aim of the work described in this paper was to develop a framework for
handling XOR that allows the whole of an API to be modelled and reasoned
with effectively. Our approach involved adapting a theorem prover supporting
AC unification (dalac, [25]) to handle constraints specifying equality between
terms modulo XOR. Constraints have been used before in first-order theorem
proving, for a variety of purposes. They provide a natural way of implementing
ordering restrictions, [20], and the basicness restriction, [2], handling AC unifica-
tion, [21, 25], and incorporating the axioms of Abelian groups, [13]. As has been
remarked e.g. in [22], they are an attractive solution for bringing domain knowl-
edge into deduction systems, because they provide a clean separation between

2 We use @ as the infix XOR operator.



the general purpose logic, and the special purpose constraints. Our results using
the XOR constraint framework include a rediscovery of Bond’s attack in a model
formalising the whole of the CCA key-management transaction set. Additionally,
we rediscovered a second, stronger, and more complex attack which, although
already discovered by Bond, had not been previously modelled. We have also
used our XOR constraint technique to rediscover an attack on a variant of the
Needham-Schroeder-Lowe protocol, using XOR, given in [7]. As far as we are
aware, this attack had also not been rediscovered automatically before.

3 XOR Constraints

We will first explain how our work on API analysis suggested the development
of XOR constraints. We then define deduction, redundancy checking and simpli-
fication with XOR constraints. Finally, we discuss some implementation details.

3.1 The Need for XOR Constraints

The attacks we are concerned with on the 4758 CCA all employ the Key Im-
port command. This command is designed to be used, for example, to import
a key from another 4758 unit. Keys are transported between 4758s under ‘key
encrypting keys’, or KEKs. Here is the command as a two-message protocol:

Key Import:

1. User — HSM : { KEY1 |} kgkeryrE, TYPE, { KEK |} kmaimp
2. HSM — User : { KEY1 | xmeoTyPE

We write the master key km and the import control vector ¢mp in lowercase to
show these are values specific to a particular 4758, and other values in caps to
show these are in effect variables; for these, any values (modulo a certain amount
of error checking) can be used. In the above protocol, the HSM does not know
in advance the key required to decrypt the first packet, { KEY1 JkrkeTvpPE. It
must first decrypt the final packet to obtain KFEK, and then XOR this against
TYPE, which is given in the clear. The result can then be used as a key to
decrypt the first packet. It is this XORing together of parts that is exploited in
Bond’s attacks, the first variant of which runs like this, [4, §7.3.4]:

Suppose some corrupt bank insider has seen {| pp [} kekepin, @ PIN deriva-
tion key (pp), encrypted under some key-encrypting key, kek, XORed
against the appropriate control vector, pin. This is the form in which
it would be sent to a 4758 in a bank. Additionally, we suppose that an
attacker has access to, and can tamper with, a ‘key part’ for the key.
Keys are divided into parts to allow two (or more) separate people to
physically transfer key information to another 4758 module. The idea of
dividing the key into parts is that attacks requiring collusion between
multiple employees are considered infeasible. The key parts for the 4758
are combined using XOR. Because of the properties of XOR, no single



officer, in possession of a single key part, has any information about the
value of the final key. Here is the sequence of commands required to
import a two-part key kI = kia & k1b:

Key Part Import(1):
1. Host — HSM : k1, TYPE
2. HSM — Host : {I kla ]}km@kp@TYPE

Key Part Import(2):
1. Host — HSM : {I kla ]}km@kp@TYPE7 klb7 TYPE
2. HSM — Host : {I kla D klb]} km@TYPE

The kp control vector indicates that a key is still only partially complete.
For Bond’s attack, we suppose the attacker is a single corrupt insider
responsible for adding the final key part. So, he has a partial key which
looks like { kek ® k2 |} km@impakp, where k2 is his own key part. Before
addng his own key part, he XORs it against data and pin. The final key
part import command will then yield { kek & data & pinf} km@imp, which
he can use in the Key Import command in the following way:

1. User — HSM : { pp |} keka@pin, data, { kek & data @ pin | pma@imp
2. HSM — User : {] PP ]}km@datu

On receiving message 1, the HSM forms kek & data & pin & data, but
with the self-inverse cancellation of bitwise XOR, this is the same as
kek @ pin. So the encrypted key pp is output successfully, but instead
of being under its correct control vector, as a PIN derivation key, it is
now returned as a data key, allowing the attacker to generate customer’s
PINs using the Encrypt Data command?:

1. User — HSM : { pp } kmpdata, PAN
2. HSM — User : { PAN [},

In order to capture these kinds of attacks, we must model the command
in the way it is implemented, i.e. we must model the HSM constructing the
decryption key for packet 1, KEK @ TYPE, from the other two packets. This
seemingly requires us to abandon the so-called ‘implicit decryption’ assumption
usually used in modelling protocols, [19]. Instead, we must model the decryption
of packet 1 explicitly, like this*:

P(erypt(xkekl @ xtypel, zkl))A
P(xztype2) A P(crypt(km & imp, xkek?2))
— P(crypt(km @ xtype2,
decrypt(xkek2 @ xtype2,
crypt(zkekl ® xtypel, xkl))))

3 PAN stands for ‘personal account number’. Recall that a PIN is just a customer’s
account number encrypted under a PIN derivation key.

4 We follow Bond’s original model, with the P predicate signifying a term known
outside the HSM.



and introduce the cancellation rule:
— decrypt(z1, crypt(zl, 22)) = a2

This brings the attacks into the search space, but only allows them to be found
by forward search through the model. This is because the result of the key
import command will not unify with the result required in the attack (which is
P(crypt(km  data, pp))) until after the equations specifying the self-cancelling
properties of XOR, and the encrypt/decrypt cancellation rule above, have been
applied. To allow this to happen in backwards search, we would have to allow
the cancellation rules to be applied in reverse, which would cause an enormous
blow-up in the search space. When searching forwards, the branching rate is still
very large, since for any terms z and y, if we have P(z) and P(y), we can always
combine these with XOR to produce P(x @ y). We have to search a large space
of these possible combinations in order to derive the terms required to make
attacks.

Our solution is to introduce XOR constraints to state that in the key import
command, the key used to encrypt the first packet, and the key derived by the
HSM from the other packets, must be equal modulo XOR. This allows us to use
implicit encryption. The clause to model the command now looks like this:

P(erypt(zl, k1)), P(xtype), P(crypt(km @ imp, xkek2))
— P(erypt(km @ xtype, vkl))
IF xkek2 @ xtype =xor xl

Semantically, the constraints are a restriction on the universally quantified vari-
ables in the clauses. Rather than generating instantiations to solve the con-
straints directly, we allow the search to proceed normally, but check after each
deduction that the constraints remain soluble. Note that the output of the new
form of the command will now unify with terms in a backwards search from the
goal. To encourage this, we employ the ‘basic strategy’, [2], which seems highly
effective for these problems.

3.2 Deduction with XOR Constraints

We employ the constrained resolution/paramodulation calculus of [25], with the
addition of XOR constraints. The XOR constraints of two resolving clauses are
combined in the resolvent using logical AND, just like the pre-existing ordering
constraints and substitution constraints. When generating new inferences we ap-
ply the substitution required for the inference to the constraints before checking
for solubility. Because of the self-cancelling property of XOR, this amounts to
checking whether the constraint is ground and has been solved, or whether there
are still variables at positions which could solve the constraint. More formally,
solubility of an XOR constraint s1 & ...® s, =xor t1 S ... B t, is checked like
this:



1. If any of s1,..., Sm,t1,...,t, contain variables, the constraint is regarded as
soluble.

2. Ifall s1,...,8m,t1,...,t, are ground, then first discard zeros, and then count
up the number of occurrences of each term in the set {s1,..., Sm,t1,...,tn}.
If all terms occur an even number of times, the constraint is soluble. If not,
it is insoluble.

Only inferences producing clauses with soluble constraints are permitted. These
simple syntactic checks can be made very quickly. Note that condition 1 may al-
low us to keep some clauses with constraints which cannot be solved. We do not
attempt to check that, in the theory in question, the variable may eventually be
instantiated to a value which satisfies the constraint. However, we will certainly
only discard genuinely insoluble constraints, thereby preserving completeness.
We can eliminate some further insoluble sets of XOR constraints by a simple
pairwise check for inconsistency. If two constraints, both attached to the same
clause, equate the same variables to different ground terms, then they are incon-
sistent and the clause can be pruned away. Again, this check may allow some
insoluble constraints through, but it is quick to perform, preserves completeness
and seems useful in practice.

3.3 Subsumption with XOR Constraints

Simplification and checking for redundancy are of paramount importance in
practical theorem proving. Modifications to the resolution/paramodulation cal-
culus which prevent the use of subsumption checking rules are usually useless
in practice, whatever their apparent theoretical advantages. The use of XOR
constraints allows subsumption checking, though with the following restriction:
the solutions of the constraints in a clause that is subsumed must be a subset
of the solutions of the clause we retain. For XOR constraints, this occurs just
when:

1. The more general clause has no XOR constraint, or

2. The XOR constraints of the subsumed clause and the subsuming clause are
identical (modulo AC), after any substitution required to make the sub-
sumption has been applied to the XOR constraint.

This is similar to the standard rule for subsumption in the constrained cal-
culus, [25, §5.1]. To see why condition 2 is not only sufficient but necessary to
ensure that all solutions of some constraint, 73, are solutions of another, T5,
the reader is invited to write down two identical constraints, and then add a
single variable or ground term to either. Immediately it is possible to construct
solutions of the first which are not solutions of the second, and vice versa.

In practice, many checks for subsumption are ruled out because of incom-
patible XOR constraints. Fortunately, the check can be made quite quickly (see
§3.5, below).



3.4 Simplification with XOR Constraints

Reduction of newly produced clauses by demodulation, clausal simplification,
etc. is also permissible for XOR-constrained clauses. In our implementation,
we only allow demodulation by clauses with no XOR constraint, since in our
experiments, it seems to be only these clauses we would like to use.

3.5 Implementation

Our prototype implementation is in dalac, [25], which uses the constrained basic
calculus we require. It also supports AC-unification, implemented via constraints.
We store XOR constraints in a normal form, v1 ® ... ® vy =xor t1 D ... D ty,
where the v; are pure variables, and the ¢; are atoms or complex terms. After
an inference, we apply the required substitution to the XOR constraint, and
then re-normalise it, by first moving any non-variables from the v; to the right
hand side of the equality, and then by removing from the ¢; any occurrences of
the identity element for XOR, and any pairs of identical ground terms. We also
order the v; and t; according to some arbitrary total ordering. After the sim-
plification, our checks for solubility described in §3.2 can be readily performed.
Additionally, keeping the constraints in a normal form speeds up the check for
identical constraints required in §3.3.

4 Results

We present first our results on the command set of the 4758 API. Then, we
present results from experiments using XOR constraints in the modelling of a
standard key-exchange protocol, which has an attack that can only be found
when the properties of XOR are taken into account. All the model files and re-
sults are available via http at http://homepages.inf.ed.ac.uk/gsteel/xor/

4.1 The 4758 CCA Attacks

Our model for the first variant of Bond’s attack includes all the symmetric
key management commands in the 4758 CCA API, except those which do not
output keys (MAC Generate, MAC Verify and Key Test). We employ XOR
constraints to model any command in which the HSM must decrypt a packet
using a key formed by XOR. In the 4758 CCA, the Key Import command and
the Key Translate command require XOR, constraints. The XOR operation is
modelled by an operator (*) which is declared to be AC. We add the following
two equations to the model to define an identity element for the XOR operation:

zl xid = z1

zlxxl =1id



These properties of the XOR function are also implicitly modelled by the
way we check the solubility of XOR constraints, as described in §3.2. However,
the XOR constraints will only account for these properties when the XOR can-
cellation happens during a command being executed by the HSM. We have to
add these equations to allow for the possibility of the attacker doing his own
manipulations outside the HSM.

The intruder in our model is given the initial knowledge specified by Bond
(see §3.1), along with some other public terms such as the values of all the control
vectors. We chose a precedence ordering which set the P predicate largest, the
XOR operator smallest, and put the key and control vector identifiers in a set
of symbols of equal precedence in between. The conjecture is that a term of the
form { PAN} ppx, i.e. a PIN, may become public. dalac finds the attack in just
under 1 second®, generating 162 new clauses for a model with 21 initial clauses.

We also modelled the second, stronger variant of Bond’s attack, the key
import/export attack, described in [4, §7.3.5]. This attack does not require the
intruder to have seen a PIN derivation key being sent to the 4758 under attack,
nor does it require him to have access to a key part for that PDK. Instead, he
converts a PDK already imported for use on the box into a data key by first
creating a pair of import/export keys with a known difference. The cleartext
value of these keys is unknown — they are generated by a process known as ‘key
conjuring’, [4, §7.2.3], where random values are tried until one is accepted by
the HSM. We approximate this by explicitly adding the conjured parts to the
model. The idea is to export the PDK under the exporter key, then to re-import
it under the importer key to turn it into a data key, using the same XOR trick
as in the previous attack. In fact, in this attack, the ‘trick’ must be used twice:
once to create the related import export pair from conjured key parts, and once
to use it to change the type of the PDK. In our model for this experiment, in
addition to the conjured key parts, we include in the intruder’s initial knowledge
a PIN derivation key encrypted under km & pin (instead of kek & pin, as before).
The attack is found after 1.47 seconds, and the generation of 601 clauses in a
model with 23 initial clauses.

As a further experiment, we modelled the attack exhibited by IBM engineers
in their response to Bond’s discovery, described in [9, p. 54]. This attack requires
that we take into account the fact that the true value of the ‘data’ control vector
is 0. This we model with the additional rule:

P(crypt(zk * data, x)) — P(crypt(xk,x))

1 The attack is quite simple, and is found in 0.2 seconds after generating 229
clauses from an initial theory of 21 clauses.

Together, these results represent a qualitative improvement over the previous
efforts to reason with XOR, described in §2. We have found stronger, and more
complex attacks on the whole command set, while Bond’s original model, and the
Ganapathy et al. model, both required hints and/or simplifications to discover

5 Running under Linux 2.4.20 on a 2GHz Pentium 4 machine.
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even part of the original, shorter attack. We believe it is the XOR constraints
that make the difference, and to investigate this, we tried a version of the model
without them, modelling the key import command with explicit encryption and
decryption, as described in §3.1. If we model only the commands required for
the attack, dalac finds the attack after about 5 minutes, generating more than
10 000 clauses. If the whole command set is used, the attack is not found after
more than 24 hours run-time. This supports the hypothesis that it is the XOR
constraints that are making the difference.

4.2 Attacking a Variant of the Needham—Schroeder—Lowe Protocol

In [7], Chevalier et al. exhibit a variant of the well known Needham—Schroeder—
Lowe protocol, [17], which uses XOR to bind Bob’s identifier to Alice’s nonce in
message 2. They show that this protocol can be attacked, but only when the AC
and self-inverse properties of XOR are taken into account. We were keen to see
if our XOR constraints could be more generally applied to security problems,
so we formalised this protocol. Our model for the protocol is based on the first-
order model devised by Jacquemard, Rusinowitch and Vigneron, [14]. They also
used dalac, since the model uses AC unification to deal with the set of intruder
knowledge, and to model the set of states of agents. The protocol in question
runs like this:

1. A= B:{ Na, A} puvkcp
2. BHAZ{]NAEBB,NB]}pubKA
3. A-)B:{INB]}pubKB

To attack the protocol, we assume Alice starts a session with our intruder, I,
who is accepted as an honest agent. He forwards on the nonce and identifier to
the victim, Bob, after XORing the nonce against B and I. He can now carry
out Lowe’s classic man-in-the middle attack:

1. A—1 :{INAaA]}pubK[

1.1, — B :{INA@B@I,A]}pubKB

2/. B*)IA:{INAGBB@I@B7NB]};D’UJ7KA
2. I— A :{INAEBBEBI@BaNBI}pubKA
3. A—1T :{INB]}pubKI

3./ IA — B :{]NB]}pubKB

In our model, we use an XOR constraint to model the fact that A will accept
message 2 from B only if, after XORing it against the identifier for B, it is
equal to the nonce she sent to B in message 1. In the Jacquemard et. al model,
agents move into a state of waiting for an appropriate response at the same
time as they send a message. So in this protocol, a single clause models A
sending a message 1 containing nonce N4, and moving into a state of waiting
for a response containing N4 @ B. We simply change the clause so that A is
waiting for a response containing some fresh variable X, and add the constraint
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X & B =x0or Na. We also allow the intruder to XOR arbitrary terms he knows
against each other to generate new ones, and allow him to send these terms in
messages.

These modifications bring the attack into the search space, but we are faced
with the usual XOR problem: there are simply too many ways the spy can
combine terms together. However, we can fix this problem using the same trick
Jacquemard et al. used for modelling intruder knowledge: use AC unification.
In all protocols, it will only pay the intruder to consider the self-inverse prop-
erties of XOR when he is trying to fool other agents. This we model with XOR
constraints, which take into account self-inverse. Now XOR is just an AC com-
binator, equivalent to the set combinator used in the model to collect together
terms. When faking a message, the spy simply picks a term from his knowledge
by unification, and we allow the XOR constraints mechanism to check whether
this term is satisfactory when the combinator is considered to be XOR.

Using this model, dalac finds the attack presented in [7] in 12.35 seconds,
deriving 1652 clauses. This is in the middle of the range of times reported in [§],
where dalac was used to find flaws in a number of protocols in a free algebra
model. One should bear in mind that the first-order model had by then evolved
a little from the one reported in [14], and hardware used was probably slower
(details are not given in the paper). Even so, we have succeeded in automatically
discovering a protocol attack in a model using XOR. We compare this to related
work in the next section.

5 Conclusions

In the experiments we have performed, the use of XOR constraints has greatly
improved the performance of the theorem prover on the problems examined. In
the analysis of the 4758 CCA API, the greatest benefit seems to come from the
fact that XOR constraints allow us to use a goal-directed search, via the basic
strategy, in a model where explicit encryption and decryption would otherwise
prevent this. Experiments with using a positive strategy on the same models
yielded no proofs after 24 hours run-time. For the protocol considered in §4.2,
the benefit is that by considering the self-inverse properties of XOR only in the
constraints, we can treat XOR as a standard AC combinator, and so use AC
unification to build the terms we need to satisfy the constraints. Again, running
dalac on a model where XOR, terms must be built up explicitly yields no proofs
after hours of run-time.

In the early nineties, Longley and Rigby were the first to look at the prob-
lem of automatically analysing the key-management schemes presented by HSM
APIs, [16]. They searched for attacks by querying a PROLOG database of API
rules with terms that an attacker might try to obtain. They did not consider any
algebraic properties of the cryptofunctions used, however. In §2, we mentioned
more recent related work by Ganapathy et al., which did consider the properties
of XOR. In §4.1, we showed how our results have improved on theirs, by allowing
attack discovery even when the whole symmetric-key management command set
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is modelled, and by discovering the more complex key import/export attack,
which had not been modelled before.

In the field of security protocol analysis, several researchers have recently
started to consider algebraic properties of crypto functions, such as XOR. The
decidability of insecurity for protocols using XOR, provided the number of ses-
sions is bounded, has been shown in [7] and [10]. Their decision procedures for
insecurity are, however, purely theoretical. We can relate decidability of inse-
curity for APIs, specified in the way we have shown in this paper, to these
decidability results: first, observe that if we bind the number of times each API
command can be executed, there are a bound number of ways these commands
can be chosen and ordered. Consider each command as a two message protocol,
as we have suggested in this paper. Consider each choice and ordering of the
commands as a complete protocol. Then a bound API specifies a set of bound
protocols. We can now augment an NP decision procedure for XOR protocols
by first guessing a protocol from our set. Unfortunately, this is not quite enough
to settle the question of decidability, since we also have to change the formalism
for protocols to allow for steps like the Key Import command, where a key used
for decryption must be generated using XOR in the same step. Delaune and
Jacquemard have proposed a decidability procedure for protocols with explicit
encryption and decryption, which we could adapt to such API commands, [11].
Unfortunately, they have so far been unable to show whether the XOR operation
can be covered by their results. We suspect that one of these works could indeed
be adapted to show decidability of insecurity for bound API transaction sets.
However, for the moment, it remains an open question.

In further work, we plan to improve the performance of the prover when
handling XOR constraints. We have observed that in our proof searches, often
very early a clause is derived containing just P(z1) A ... A P(z,,) =, and an
XOR constraint 1 @ ... D T, =xor t1 D ... D t,, with all the terms ¢; needed
to solve the constraint available in the domain of P. However, it still takes a
long time to finally resolve this to the empty clause, since there are still many
ways the XOR combination rule, P(z) A P(y) = P(x@®y), can be applied to the
clause. We discovered this by using viz, our tool for visualising first-order proof
search, [24]. The output from wviz for the first 4758 attack is given in Figure 1.
Note that viz produces output in scalable vector graphics (SVG) format, which is
designed to be viewed interactively in a viewer supporting zooming and panning.
However, for small proofs, even a straight printout of the search space can be
revealing, as in this case. The nodes on the graph are clauses, and the edges mark
logical dependency. Nodes on the ‘critical path’, i.e. ones used in the proof, are
diamond-shaped. The nodes are coloured to indicate when they were generated
in the search. Darker nodes were generated first, and lighter nodes generated
later. The circle we have added to the diagram surrounds Clause 50, a clause of
the form we have just described, which appears like this in the dalac output:

Clause 50: P(x1), P(x2) => \
IF x1 * x2 =x data * pin * k2
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Clause 50 is eventually solved to give the proof, but we can see from Figure 1 that
most of the work in the proof search is just to find the terms requires to solve
Clause 50’s XOR constraint (this is what is happening in the large collection of
nodes in the bottom portion of the diagram). Finding the combination of API
commands required to effect the attack takes a relatively small amount of search
(in the top of the diagram). To address this problem, we could perhaps employ
our AC unification trick again somehow, or use a specialised ‘terminator’ tactic,
[1], to try to finish off these clauses.

There are many other electronic payment and banking APIs waiting to be
formalised. They pose more challenges, such as reasoning about the relative
complexity of breaking different crypto functions. We will be continuing our
research in this area.
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