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Abstract. An important branch of investigation in the field of agents
has been the definition of high level languages for representing effects
of actions, the programs written in such languages being usually called
action programs. Logic programming is an important area in the field
of knowledge representation and some languages for specifying updates
of Logic Programs had been defined. Starting from the update language
Evolp, in this work we propose a new paradigm for reasoning about
actions called Evolp action programs.

We provide translations of some of the most known action description
languages into Evolp action programs, and underline some peculiar fea-
tures of this newly defined paradigm. One such feature is that Evolp
action programs can easily express changes in the rules of the domains,
including rules describing changes.

1 Introduction

In the last years the concept of agent has become central in the field of Artificial
Intelligence. “An agent is just something that acts” [26]. Given the importance
of the concept, ways of representing actions and their effects on the environment
have been studied. A branch of investigation in this topic has been the defini-
tion of high level languages for representing effects of actions [7,12,14, 15], the
programs written in such languages being usually called action programs. Action
programs specify which facts (or fluents) change in the environment after the
execution of a set of actions. Several works exist on the relation between these
action languages and Logic Programming (LP) (e.g. [5,12,21]). However, de-
spite the fact that LP has been successfully used as a language for declaratively
representing knowledge, the mentioned works basically use LP for providing
an operational semantics, and implementation, for action programs. This is so
because normal logic programs, and most of their extensions, have no in-built
means for dealing with changes, something that is quite fundamental for action
languages.
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In recent years some effort was devoted to explore and study the problem of
how to update logic programs with new rules [3, 8, 10, 19, 20, 17]. Here, knowledge
is conveyed by sequences of programs, where each program in a sequence is an
update to the previous ones. For determining the meaning of sequences of logic
programs, rules from previous programs are assumed to hold by inertia after
the updates (given by subsequent programs) unless rejected by some later rule.
LP update languages [2,4,9,19], besides giving meaning to sequences of logic
programs, also provide in-built mechanisms for constructing such sequences. In
other words, LP update languages extend LP by providing means to specify and
reason about rule updates.

In [5] the authors show, by examples, a possible use the LP update language
LUPS [4] for representing effects of actions providing a hint for the possibility
of using LP updates languages as an action description paradigm. However,
the work done does not provide a clear view on how to use LP updates for
representing actions, nor does it establishes an exact relationship between this
new possibility and existing action languages. Thus, the eventual advantages of
the LP update languages approach to actions are still not clear.

The present work tries to clarify these points. This is done by establishing a
formal relationship between one LP update language, namely the Evolp language
[2], and existing action languages, and by clarifying how to use this language for
representing actions in general.

Our investigation starts by, on top of Evolp, defining a new action description
language, called Evolp Action Programs (EAPs), as a macro language for Evolp.
Before developing a complete framework for action description based on LP
updates, in this work we focus on the basic problem in the field, i.e. the prediction
of the possible future states of the world given a complete knowledge of the
current state and the action performed. Our purpose is to check, already at
this stage, the potentiality of an action description language based on the Evolp
paradigm.

We then illustrate the usage of EAPs by an example involving a variant
of the classical Yale Shooting Problem. An important point to clarify is the
comparison of the expressive capabilities of the newly defined language with
that of the existing paradigms. We consider the action languages A [12], B [13]
(which is a subset of the language proposed in [14]), and (the definite fragment
of) C [15]. We provides simple translations of such languages into EAPs, hence
proving that EAPs are at least as expressive as the cited action languages.

Coming to this point, the next natural question is what are the possible
advantages of EAPs. The underlying idea of action frameworks is to describe
dynamic environments. This is usually done by describing rules that specify,
given a set of external actions, how the environment evolves. In a dynamic en-
vironment, however, not only the facts but also the “rules of the game” can
change, in particular the rules describing the changes. The capability of describ-
ing such kind of meta level changes is, in our opinion, an important feature of an
action description language. This capability can be seen as an instance of elabo-
ration tolerance i.e. “the ability to accept changes to a person’s or a computer’s



representation of facts about a subject without having to start all over” [25].
In [15] this capability is seen as a central point in the action descriptions field
and the problem is addressed in the context of the C language. The final words
of [15] are “Finding ways to further increase the degree of elaboration tolerance
of languages for describing actions is a topic of future work”. We address this
topic in the context of EAPs and show EAPs seem, in this sense, more flexi-
ble than other paradigms. Evolp provides specific commands that allow for the
specification of updates to the initial program, but also provides the possibility
to specify updates of these updates commands. We show, by successive elabora-
tions of the Yale shooting problem, how to use this feature to describe updates
of the problem that come along with the evolution of the environment.

The rest of the paper is structured as follows. In section 2 we review some
background and notation. In section 3 we define the syntax and semantics of
Evolp action programs, and we illustrate the usage of EAPs by an example in-
volving a variant of the classical Yale Shooting Problem. In section 4 we establish
the relationship between EAPs and the languages A, B and C. In section 5 we
discuss the possibility of updating the EAPs, and provide an example of such
feature. Finally, in section 6, we conclude and trace a route for future develop-
ments. To facilitate the reading, and given that some of the results have proofs
of some length, instead of presenting proofs along with the text, we expose them
all in appendix A.

2 Background and notation

In this section we briefly recall syntax and semantics of Dynamic Logic Programs
[1], and the syntax and semantics for Evolp [2]. We also recall some basic notions
and notation for action description languages. For a more detailed background
on action languages see e.g. [12].

2.1 Dynamic logic programs and Evolp

The main idea of logic programs updates is to update a logic program by an-
other logic program or by a sequence of logic programs, also called Dynamic
Logic Programs (DLPs). The initial program of a DLP corresponds to the initial
knowledge of a given (dynamic) domain, and the subsequent ones to successive
updates of the domain. To represent negative information in logic programs and
their updates, following [3] we allow for default negation not A not only in the
premises of rules but also in their heads i.e., we use generalized logic programs
(GLPs) [22].

A language L is any set of propositional atoms. A literal in £ is either an
atom of £ or the negation of an atom. In general, given any set of atoms F, we
denote by Fy, the set of literals over F. Given a literal F, if F' = @, where @ is
an atom, by not F we denote the negative literal not Q). Viceversa, if F' = not Q,
by not F we denote the atom . A GLP defined over a propositional language
L is a set of rules of the form F <« Body, where F' is a literal in £, and Body



is a set of literals in £.! An interpretation I over a language L is any set of
literals in £ such that, for each atom A, either A € [ or not A € I. We say
a set of literals Body is true in an interpretation I (or that I satisfies Body)
iff Body C I. In this paper we will use programs containing variables. As usual
when programming within the stable models semantics, a program with variables
stands for the propositional program obtained as the set of all possible ground
instantiations of the rules.

Two rules 7 and 1 are conflicting (denoted by 7 <1 1) iff the head of 7 is
the atom A and the head of 7 is not A, or viceversa. A Dynamic Logic Program
over a language L is a sequence P, @ ... @ P, (also denoted @P/™) where the
P;s are GLPs defined over L. The refined stable model semantics of such a DLP,
defined in [1], assigns to each sequence P; @...® P, a set of stable models (that
is proven there to coincide with the stable models semantics when the sequence
is formed by a single normal [11] or generalized program [22]). The rationale for
the definition of a stable model M of a DLP is made in accordance with the
causal rejection principle [10,19]: If the body of a rule in a given update is true
in M, then that rule rejects all rules in previous updates that are conflicting
with it. Such rejected rules are ignored in the computation of the stable model.
In the refined semantics for DLPs a rule may also reject conflicting rules that
belong to the same update. Formally, the set of rejected rules of a DLP @P™
given an interpretation M is:

RejS(@P",M)={r |7€P: I3ne€Pji<j, tan A Body(n) C M}

Moreover, an atom A is assumed false by default if there is no rule, in none
of the programs in the DLP, with head A and a true body in the interpretation
M. Formally:

Default(®P]", M) = {not A| A A« Bodye| )P, ABodyC M}

If ®P/™ is clear from the context, we omit it as first argument of the above
functions.

Definition 1. Let @P™ be a DLP over language L and M an interpretation.
M is a refined stable model of ®P]™ iff

M = least ((UH \RejS(M)> U Default(M))

where least(P) denotes the least Herbrand model of the definite program [23]
obtained by considering each negative literal not A in P as a new atom.

Having defined the meaning of sequences of programs, we are left with the
problem of how to come up with those sequences. This is the subject of LP update

! Note that, by defining rule bodies as sets, the order and number of occurrences of
literals do not matter.



languages [2,4, 9, 19]. Among the existing languages, Evolp [2] uses a particulary
simple syntax, which extends the usual syntax of GLPs by introducing the special
predicate assert/1. Given any language £, the language L,ssert 1S recursively
defined as follows: every atom in L is also in Lyssert; for any rule 7 over Lyssert,
the atom assert(r) is in Lgssert; nothing else is in Lyssert. An Evolp program
over L is any GLP over Lyssert- An Fvolp sequence is a sequence (or DLP) of
Evolp programs. The rules of an Evolp program are called Fvolp rules.

Intuitively an expression assert(7) stands for “update the program with the
rule 77. Notice the possibility in the language to nest an assert expression in
another. The intuition behind the Evolp semantics is quite simple. Starting from
the initial Evolp sequence @P™ we compute the set, SM(BP™), of the stable
models of @P™. Then, for any element M in SM(PP™), we update the initial
sequence with the program P, ;1 consisting of the set of rules 7 such that the
atom assert(r) belongs to M. In this way we obtain the sequence ®P/™ @ Py, 1.
Since SM(@P™) contains, in general, several models we may have different lines
of evolution. The process continues by obtaining the various SM(SP ) and,
with them, various @PZ"H. Intuitively, the program starts at step 1 already
containing the sequence @P/". Then it updates itself with the rules asserted
at step 1, thus obtaining step 2. Then, again, it updates itself with the rules
asserted at this step, and so on. The evolution of any Evolp sequence can also
be influenced by external events. An external event is itself an Evolp program.
If, at a given step n, the programs receives the external update F,, the rules
in E,, are added to the last self update for the purpose of computing the stable
models determining the next evolution but, in the successive step n+ 1 they are
no longer considered (that’s why they are called events). Formally:

Definition 2. Let n and m be natural numbers. An evolution interpretation
of length n, of an evolving logic program @®P]" is any finite sequence M =
My, ... , M, of interpretations over Lyssert- The evolution trace associated with
M and ®&P" is the sequence P1 & ...Pp, & Ppy1 ... © Ppyn_1, where, for
1<i<n

Poyi = {7 | assert(t) € Mp+i—1}

Definition 3 (Evolving stable models). Let ®P and GE be any Evolp
sequences, and M = My, ..., M, be an evolving interpretation of length n. Let
P ® ...® Pyyn_1 be the evolution trace associated with M and ®P™. We say
that M is an evolving stable model of P with event sequence GE at step n
iff My, is a refined stable model of the program Py & ... & (P U Ey) for any k,
withm<k<m+n-—1.

2.2 Action languages

The purpose of an action language is to provide ways of describing how an
environment evolves given a set of external actions. A specific environment that
can be modified through external actions is called an action domain. To any
action domain we associate a pair of sets of atoms F and A. We call the elements



of F fluent atoms or simply fluents, and the elements of A action atoms or
simply actions. Basically, the fluents are the observables in the environment and
the actions are, clearly, the external actions. A fluent literal (resp. action literal)
is an element of F, (resp. an element of Ar). In the following, we will use the
letter () to denote a fluent atom, the letter F' to denote a fluent literal, and the
letter A to denote an action atom. A state of the world (or simply a state) is
any interpretation over F. We say a fluent literal F is true at a given state s iff
F belongs to s. Given a set (or, by abuse of notation, a conjunction) of fluent
literals Cond we say s satisfies Cond, and write s |= Cond, iff Cond C s.

Each action language provides ways to describe action domains through sets
of expression called action programs. Usually, the semantics of an action program
is defined in terms of a transition system, i.e. a function whose argument is any
pair (s, K), where s is a state of the world and K is a subset of .4, and whose
value is any set of states of the world. Intuitively, given the current state of the
world, a transition system specifies which are the possible resulting states after
simultaneously performing all actions in K.

Two kinds of expressions that are common within action description lan-
guages are static and dynamic rules. The static rules basically describe the rules
of the domain, while dynamic rules describe effects of actions. A dynamic rule
has a set of preconditions, namely conditions that have to be satisfied in the
present state in order to have a particular effect in the future state, and post-
conditions describing such an effect.

In the following we will consider three existing action languages, namely:
A, B and C. The language A [13] is very simple. It only allows dynamic rules of
the form

A causes F if Cond

where Cond is a conjunction of fluent literals. Such a rule intuitively means:
performing the action A causes F' to be true in the next state if Cond is true in
the current state. The language B [13] is an extension of A which also considers
static rules. In B, static rules are expressions of the form

F if Body

where Body is a conjunction of fluent literals. Intuitively, such a rule means: if
Body is true in the current state, then F' is also true in the current state. A
fundamental notion, in both A and B, is fluent inertia [13]. A fluent F is inertial
if its truth value is preserved from a state to another, unless it is changed by
the (direct or indirect) effect of an action. Hereafter a program written in the
language B will be called a B program.

The semantics of B is defined in terms of a transition system, as sketched
above. For introducing the particular transition function that, given a state s
and a set of actions K, determines the possible resulting states according to B,
we first consider the set D(s, K) of fluents literals that are true as a (direct)
consequence of actions. Any literal F' is a direct consequence of state s and
actions K if it is in the head of a dynamic rule A causes F' if Cond such that
A € K and Cond is true in s. Then a state s’ is a possible resulting states from



s iff any fluent literal in s is an element of D(s, K) or is a true literal in s (that
followed by inertia) or is a consequence of a static rule:

Definition 4. Let P be any B program with set of fluents F, let R be the set
of all static rules in P, and let s be a state and K any set of actions. Moreover,
let D(s, K) be the following set of literals

D(s,K)={F:3 A causes F if Cond € P sit. Ac K N s Cond}
and let RYT be the logic program:
RIP = {F — Body : F if Body € R}
A state s’ is a resulting state from s given P and the set of actions K iff
s’ =least(sN s’ UD(s, K) UREP)
where least(P) is as in Definition 1

For a detailed explanation of A and B see e.g. [13].
Static and dynamic rules are also the ingredients of the action language C
[15, 16]. Static rules in C are of the form

caused J if H
while dynamic rules are of the form
caused J if H after O

where J and H are formulae such that any literal in them is a fluent literal, and
O is any formula such that any literal in it is a fluent or an action literal. The for-
mula O is the precondition of the dynamic rule and the static rule caused J if H
is its postcondition. The semantic of C is based on causal theories[15]. Causal
theories are sets of rules of the form caused J if H, each such rule meaning:
If H is true this is an explanation for J. A basic principle of causal theories
is that something is true iff it is caused by something else. Given any action
program P, a state s and a set of actions K, we consider the causal theory T
given by the static rules of P and the postconditions of the dynamic rules whose
preconditions are true in s U K. Then s’ is a possible resulting state iff it is a
causal model of T'.

3 Evolp action programs

As we have seen, Evolp and action description languages share the idea of a sys-
tem that evolves. In both, the evolution is influenced by external events (respec-
tively, updates and actions). Evolp is actually a programming language devised
for representing any kind of computational problem, while action description
languages are devised for the specific purpose of describing actions. A natural



idea is then to develop special kind of Evolp sequences for representing actions,
and then compare such kind of programs with existing action description lan-
guages. We will develop one such kind of programs, and call them FEvolp Action
Programs (EAPs).

Following the underlying notions of Evolp, we use the basic construct assert
for defining special-purpose macros. As it happens with other action description
languages, EAPs are defined over a set of fluents F and a set of actions A.
In EAPs, a state of the world is any interpretation over F. To describe action
domains we use an initial Evolp sequence, I ® D. The Evolp program D contains
the description of the environment, while I contains some initial declarations, as
it will be clarified later. As in B and C, EAPs contain static and dynamic rules.

A static rule over (F,.A) is simply an Evolp rule of the form

F «— Body.

where F' is a fluent literal and Body is a set of fluent literals.
A dynamic rule over (F,.A) is a (macro) expression

effect(r) — Cond.

where 7 is any static rule F' «— Body and Cond is any set of fluent or action
literals. The intuitive meaning of such a rule is that the static rule 7 has to
be considered only in those states whose predecessor satisfies condition Cond.
Since some of the conditions literals in Cond may be action atoms, such a rule
may describe the effect of a given set of actions under some conditions. Such an
expression stands for the following set of Evolp rules:

F — Body, event(F «— Body). (1)
assert(event(F «— Body)) « Cond. (2)
assert(not event(F «— Body)) «— event(T), not assert(event(F «— Body))(3)

where event(F < Body) is a new literal. Let us see how the above set of rules
fits with its intended intuitive meaning. Rule (1) is not applicable whenever
event(F' «— Body) is false. If at some step n, the conditions Cond are satisfied,
then, by rule (2), event(F «— Body) becomes true at step n + 1. Hence, at step
n + 1, rule (1) will play the same role as static rule F' «+ Body. If at step n + 1
Cond is no longer satisfied, then, by rule (3) the literal event(F < Body) will
become false again, and then rule (1) will be again not effective.

Besides static and dynamic rules, we still need another ingredient to complete
our construction. As we have seen in the description of the B language, a notable
concept is fluent inertia. This idea is not explicit in Evolp where the rules (and
not the fluents) are preserved by inertia. Nevertheless, we can show how to obtain
fluent inertia by using macro programming in Evolp. An inertial declaration over
(F,A)is a (macro) expression inertial (K), where K C F. The intended intuitive
meaning of such an expression is that the fluents in K are inertial. Before defining
what this expression stands for, we state that the above mentioned program I
is always of the form initialize(F), where initialize(F) stands for the set of



rules Q « prev(Q), where @ is any fluent in F, and prev(Q) are new atoms
not in F U A. The inertial declaration inertial(K) stands for the set (where Q
ranges over K):

assert(prev(Q)) «— Q. assert(not prev(Q)) — not Q.

Let us consider the behaviour of this macro. If we do not declare @ as an
inertial fluent, the rule @ <« prev(Q) has no effect. If we declare @ as an inertial
literal, prev(Q) is true in the current state iff in the previous state @) was true.
Hence, in this case, @ is true in the current state unless there is a static or dy-
namic rule that rejects such assumption. Viceversa, if () was false in the previous
state, then @ is true in the current one iff it is derived by a static or dynamic
rule. We are now ready to formalize the syntax of Evolp action programs.

Definition 5. Let F and A be two disjoint sets of propositional atoms. An
Evolp action program (EAP) over (F, A) is any Evolp sequence I & D, where
I = Initialize(F), and D is any set with static and dynamic rules, and inertial
declarations over (F, A)

Given an Evolp action program I @ D, the initial state of the world s (which,
as stated above, is an interpretation over F) is passed to the program together
with the set K of the actions performed at s, as part of an external event. A
resulting state is the last element of any evolving stable model of I & D given
the event s U K restricted to the set of fluent literals. I.e:

Definition 6. Let I & D be any EAP over (F, A), and s a state of the world.
Then s’ is a resulting state from s given I ® D and the set of actions K iff there
exists an evolving stable model My, My of I® D given the external events sUK, ()
such that s’ =z Ms (where by 8" =5 Ma we simply mean s' N Fry = MaNFrit).

This definition can be easily generalized to sequences of set of actions.

Definition 7. Let I & D be any EAP and s a state of the world. Then s’ is a

resulting state from s given I ® D and the sequence of sets of actions Ky ..., K,
iff there exists an evolving stable model M, ..., My 1 of I&D given the external
events (sUK1),..., Kn,0 such that 8 =5 M.

Since EAPs are based on the Evolp semantics, which in turn is an extension
of the stable model semantics for normal logic programs, we can easily prove
that the complexity of the computation of the two semantics is the same.

Theorem 1. Let I & D be any EAP over (F,A), s a state of the world and
K C A. To find a resulting state s' from s given I & D and the set of actions K
is an NP-complete problem.

It is important to notice that, if the initial state s does not satisfies the static
rules of the EAP, the correspondent Evolp sequence has no stable model, and
hence there will be no successor state. This is, in our opinion, a good result: The



initial state is just a state as any other. It would be strange if such state would
not satisfy the rules of the domain. If this situation occurs, most likely either
the translation of the rules, or the one of the state, presents some errors. From
now onwards we will assume that the initial state satisfies the static rules of the
domain.

To illustrate EAPs, we now show an example of their usage by elaborating
on probably the most famous example of reasoning about actions. The presented
elaboration highlights some important features of EAPs, viz. the possibility of
handling non-deterministic effects of actions, non-inertial fluents, non-executable
actions, and effects of actions lasting for just one state.

Ezample 1 (An elaboration of the Yale shooting problem). In the original Yale
shooting problem [27], there is a single-shot gun which is initially unloaded, and
a turkey which is initially alive. One can load the gun and shoot the turkey. If
one shoots, the gun becomes unloaded and the turkey dies. We consider a slightly
more complex scenario where there are several turkeys, and where the shooting
action refers to a specific turkey. Each time one shoots as specific turkey, one
either hits and kills the bird, or misses it. Moreover, the gun becomes unloaded
and there is a bang. It is not possible to shoot with an unloaded gun. We also
add the property that any turkey moves iff it is not dead.

For expressing that an action is not executable under some conditions, we
make use of a well known behaviour of the stable model semantics. Suppose a
given EAP contains a dynamic rules of the form effect(u «— not u) «— Cond,
where u is a literal which does not appear elsewhere (in the following, for repre-
senting such rules, we use the notation effect(L) <« Cond). With such a rule, if
Cond is true in the current state, then there is no resulting state. This happens
because, as it is well known, programs containing u < not v and no other rules
for u, have no stable models.

To represent the problem, we consider the fluents dead(X), moving(X),
hit(X), missed(X), loaded, bang, plus the auxiliary fluent u, and the actions
shoot(X) and load (where the Xs range over the various turkeys). The fluents
dead(X) and loaded are inertial fluents, since their truth value should remain
unchanged until modified by some action effect. The fluents missed(X), hit(X)
and bang are not inertial. The problem is encoded by the EAP I & D, where

I = initialize(dead(X), moving(X), missed(X), hit(X), loaded, bang, u)

and D is the following set of expressions

effect(L) « shoot(X), not loaded inertial(loaded)
moving(X) < not dead(X) inertial(dead(X))
effect(dead(X) «— hit(X)) < shoot(X) effect(loaded) « load

effect (hit(X) <« not missed(X)) « shoot(X) effect(bang) «— shoot(X)
effect(missed(X) < not hit(X)) « shoot(X) effect(not loaded) «— shoot(X)

Let us analyze this EAP. The first rule encodes the impossibility to execute
the action shoot(X) when the gun is unloaded. The static rule moving(X) «



not dead(X) implies that, for any turkey X, moving(X) is true if dead(X) is
false. Since this is the only rule for moving(X), it further holds that moving(X)
is true iff dead(X) is false. Notice that declaring moving(tk) as inertial, would
result, in our description, in the possibility of having a moving dead turkey! This
is why fluents moving(X) have not been declared as inertial. In fact, suppose we
insert inertial(moving(X)) in the EAP above. Suppose further that moving(tk)
is true at state s, that one shoots at tk and kills it. Since moving(tk) is an inertial
fluent, in the resulting state dead(tk) is true, but moving(tk) remains true by
inertia. Also notable is how effects that last only for one state, like the noise
provoked by the shoot, are easily encoded. The last three dynamic rules on the
left encode a non deterministic behaviour: each shoot action can either hit and
kill a turkey, or miss it.

To see how this EAP encodes the desired behaviour of this domain, consider
the following example of evolution. In this example, to lightening the notation,
we omit the negative literals belonging to interpretations. Let us consider the
initial state {} (which means that all fluents are false). The state will remain
unchanged until some action is performed. If one load the gun, the program is
updated with the external event {load}. In the unique successor state, the fluent
loaded is true and nothing else changes. The truth value of loaded remains then
unchanged (by inertia) until some other action is performed. The same applies
to fluents dead(X). The fluents bang, missed(X), and hit(X) remain false by
default. If one shoots at a specific turkey, say Smith, and the program is updated
with the event shoot(smith), several things happen. First, loaded becomes false,
and bang becomes true, as an effect of the action. Moreover, the rules:

hit(smith) < not missed(smith).
missed(smith) < not hit(smith).
dead(smith) < hit(smith).

are considered as rules of the domain for one state. As a consequence, there are
two possible resulting states. In the first one, missed(smith) is true, and all
the others fluents are false. In the second one hit(smith) is true, missed(smith)
is false and, by the rule dead(smith) «— hit(smith), the fluent dead(smith)
becomes true. In both the resulting states, nothing happens to the truth value
of the fluents dead(X), hit(X), and dead(X) for X # smith.

4 Relationship to existing action languages

In this section we show embeddings into EAPs of the action languages B and
(the definite fragment of) C2. We will assume that the considered initial states
are consistent wrt. the static rules of the program, i.e. if the body of a static
rule is true in the considered state, the head is true as well.

2 The embedding of language A is not explicitly exposed here since A is a (proper)
subset of the B language.



Let us consider first the B language. The basic ideas of static and dynamic
rules are very similar in B and in EAPs. The main difference between the two is
that in B all the fluents are inertial, whilst in EAPs only those that are declared
as such are inertial. The translation of B into EAPs is then straightforward: All
fluents are declared as inertial and then the syntax of static and dynamic rules is
adapted. In the following we use, with abuse of notation, Body and C'ond both
for conjunctions of literals and for sets of literals.

Definition 8. Let P be any action program in B with set of fluents F.
The translation B(P,F) is the pair (I® @ DBY FB) where: FB = F, I =
initialize(F) and DBY contains exactly the following rules:

— inertial(Q) for each fluent Q € F

— a rule F «— Body for any static rule F if Body in P.

— a rule effect(F) «— A, Cond. for any dynamic rule A causes F if Cond
mn P.

Theorem 2. Let P be any B program with set of fluents F, (I” & DBF F)
its translation, s a state and K any set of actions. Then s’ is a resulting state
from s given P and the set of actions K iff it is a resulting state from s given
I @ DBP and the set of actions K.

This theorem makes it clear that there is a close relationship between EAPs
and the B language. In practice, FAPs generalize B by allowing both inertial
and non inertial fluents and by admitting rules, rather then simply facts, as
effects of actions.

Let us consider now the action language C. Given a complete description of
the current state of the world and performed actions, the problem of finding
a resulting state is a problem of the satisfiability of a causal theory, which is
known to be Z?J—hard (cf. [15]). So, this language belongs to a category with
higher complexity than EAPs whose satisfiability is NP-complete. However, only
a fragment of C is implemented and the complexity of such fragment is N P. This
fragment is known as the definite fragment of C [15]. In this fragment, static rules
are expressions of the form caused F' if Body where F' is a fluent literal and
Body is a conjunction of fluent literals, while dynamic rules are expressions of
the form caused not F' if Body after Cond where Cond is a conjunction of
fluent or action literals®. For this fragment it is possible to provide a translation
into EAPs.

The main problem of the translation of C into EAPs lies in the simulation
of causal reasoning with stable model semantics. The approach followed here
to encode causal reasoning with stable models is in line with the one proposed
n [21]. We need to introduce some auxiliary predicates and define a syntactic

3 The definite fragment defined in [15] is (apparently) more general, allowing Cond
and Body to be arbitrary formulae. However, it is easy to prove that such kind of
expressions are equivalent to a set of expressions of the form described above



transformation of rules. Let F be a set of fluents, and let F¢ denote the set of
fluents F U {Qn | Q@ € F}. We add, for each Q € F, the constraints:

— not Q,not Q. (4)
Let @ be a fluent and Body = Fi, ... , F), a conjunction of fluent literals. We will
use the following notation: Q = not Qn, not Q = not Q and Body = F,... , F,

Definition 9. Let P be any action program in the definite fragment of C with
set of fluents F. The translation C(P,F) is the pair (I © DP  FC) where:
FC is defined as above, I¢ = initialize(FC) and DT consists exactly of the
following rules:

— a rule effect(Q «— Body) < Cond, for any dynamic rule in P of the form
caused @ if Body after Cond;

— a rule effect(Qn — Body) — Cond, for any dynamic rule in P of the form
caused not Q if Body after Cond;

— a rule Q < Body, for any static rule in P of the form caused Q if Body;

— a rule Qn «— Body, for a static rule in P of the form caused not Q if Body;

— The rules (4) and (5), for each fluent Q € F.

For this translation we obtain a result similar to the one obtained for the
translations of the B language:

Theorem 3. Let P be any action program in the definite fragment of C with set
of fluents F, (I¢ @ DCP  FC) its translation, s a state, sC the interpretation
over FC defined as follows: s = sU{Qn | Q € s}U{not Qn | not Q € s}
and K any set of actions. Then s* is a resulting state from s€ given I¢ @ DCF
and the set of actions K iff there exists s’ such that s’ is a resulting state from
s, given P and the set K and s* =x, §.

By showing translations of the action languages B and the definite fragment
of C into EAPs, we proved that EAPs are at least as expressive as such languages.
Moreover, the translations above are quite simple: basically one EAP static or
dynamic rule for each static or dynamic rule in the other languages. The next
natural question is: Are they more expressive?

5 Updates of action domains

Action description languages describe the rules governing a domain where actions
are performed, and the environment changes. In practical situations, it may
happen that the very rules of the domain change with time too. When this
happens, it would be desirable to have ways of specifying the necessary updates
to the considered action program, rather than to have to write a new one. EAPs
are just a particular kind of Evolp sequences. So, as in general Evolp sequences,
they can be updated by external events.



When one wants to update the existing rules with a rule 7, all that has to
be done is to add the fact assert(r) as an external event. This way, the rule
T is asserted and the existing Evolp sequence is updated. Following this line,
we extend EAPs by allowing the external events to contain facts of the form
assert(r), where 7 is an Evolp rule, and we show how they can be used to
express updates to EAPs. For simplicity, below we use the notation assert(R),
where R is a set of rules, for the set of expressions assert(r) where 7 € R.

To illustrate how to update an EAP, we come back to Example 1. Let I & D
be the EAP defined in there. Let us now consider that after some shots, and
dead turkeys, rubber bullets are acquired. One can now either load the gun with
normal bullets or with a rubber bullets, but not with both. If one shoots with a
rubber loaded gun, the turkey is not killed.

To describe this change in the domain, we introduce a new inertial fluent
representing the gun being loaded with rubber bullets. We have to express that,
if the gun is rubber-loaded, one can not kill the turkey. For this purpose we
introduce the new macro:

not effect(F «— Body) «— Cond.

where F', is a fluent literal, Body is a set of fluents literals and C'ond is a set of
fluent or action literals. We refer to such expressions as effects inhibitions. This
macro simply stands for the rule

assert(not event(F «— Body)) « Cond.

where event(F «— Body) is as before. The intuitive meaning is that, if the
condition Cond is true in the current state, any dynamic rule whose effect is the
rule F' «— Body is ignored.

To encode the changes described above, we update the EAP with the external
event E; consisting of the facts assert(I;) where

I, = (initialize(rubber_loaded))

Then, in the subsequent state, we update the program with the external update
Ey = assert(D;) where D is the set of rules*

inertial(rubber_loaded).

effect (rubber_loaded) — rubber_load.
effect(not rubber_loaded) «— shoot(X).
effect(L) « rubber_loaded, load.

effect(L) «— loaded, rubber_load.

not effect(dead(X) — hit(X)) « rubber_loaded.

Let us analyze the proposed update. First, the fluent rubber_loaded is ini-
tialized. It is important to initialize any fluent before starting to use it. The

* In the remainder, we use assert(U), where U is a set of macros (which are themselves
sets of Evolp rules), to denote the set of all facts assert(r) such that there exists a
macro n in U with 7 € n.



newly introduced fluent is declared as inertial, and two dynamic rules are added

specifying that load actions are not executable when the gun is already loaded

in a different way. Finally we use the new command to specify that the ef-

fect dead(X) < hit(X) does not occurs if, in the previous state, the gun was

loaded with rubber bullets. Since this update is more recent than the original

rule effect(dead(X) «— hit(X)) < shoot(X), the dynamic rule is updated.
Basically updating the original EAP with the rule

not effect(dead(X) «— hit(X)) « rubber_loaded.

has the effect of adding not rubber_loaded to the preconditions of the dynamic
rule
effect(dead(X) «— hit(X)) < shoot(X).

So far we have shown how to update the preconditions of a dynamic rule. It
is also possible to update static rules and the descriptions of effects of actions.
Suppose the cylinder of the gun becomes dirty and, whenever one shoots, the
gun may either work properly or fail. If the gun fails, the action shoot has no
effect. We introduce two new fluents in the program with the event assert(Is)
where I = initialize(fails, work)). Then, we assert the event Ey = assert(Ds)
where Ds is the following EAP

effect(fails < not work) «— shoot(X).
effect(work — not fails) — shoot(X).
not missed(X) «— fails.
not hit(X) « fails.
not bang < fails.
effect(loaded — fails) «— loaded.
effect (rubber_loaded «— fails) «— rubber_loaded.

The first two dynamic rules simply introduce the possibility that a failure
may occur every time we shoot. The three static rules describe changes in the
behaviour of the environment when the gun fails, and amount to negate what was
entailed by static and dynamic rules in D. The last two dynamic rules update
two of the dynamic rules in D and D1, respectively. These rules specify that,
when a failure occurs, the gun remain loaded with the same kind of bullet. Since
the new rules of Dy are more recent than the rules in D and D, they update
these latter ones.

This last example shows how to update static and dynamic rules with new
static and dynamic rules. To illustrate how this is indeed achieved in this exam-
ple, we now show a possible evolution of the updated system. Suppose currently
the gun is not loaded. One loads the gun with a rubber bullet, and then shoots
at the turkey named Trevor. The initial state is {}. The first set of actions is
{rubber_load} The resulting state after this action is s’ = {rubber_loaded}. Sup-
pose one performs the action load. Since the EAP is updated with the dynamic
rule effect(L) «— rubber_loaded, load. there is no resulting state. This happens
because we have performed a non executable action. Suppose, instead, that the



second set of actions is {shoot(trevor)}. In this case there are three possible
resulting states. In one the gun fails and, in it, the resulting state is again s’. In
the second, the gun works but the bullet misses Trevor. In this case, the result-
ing state is 8| = {missed(trevor)}. Finally, in the third, the gun works and the
bullet hits Trevor. Since the bullet is a rubber bullet, Trevor is still alive. In this
case the resulting state is s = {hit(trevor)}.

The events may introduce changes in the behaviour of the original EAP. This
opens a new problem. In classical action languages we do not care about the pre-
vious history of the world: If the current state of the world is s, the computation
of the resulting states is not affected by the states before s. In the case of EAPs
the situation is different, since external updates can change the behaviour of the
considered EAP. Fortunately, we do not have to care about the whole history
of the world, but just about those events containing new initializations, inertial
declarations, effects inhibitions, and static and dynamic rules.

It is possible to have a compact description of an EAP that is updated
several times via external events. For that we need to further extend the original

definition of EAPs.

Definition 10. An updated Evolp action program over (F,A) is any sequence
I1®D1®...®D,, where I is initialize(F ), and the various Dy are sets consisting
of static rules, dynamic rules, inertial declarations and effects inhibitions such
that any fluent appearing in Dy belongs to F.

Definition 11. Let I ® D1 & ... ® D,, be any updated EAP and s a state of
the world. Then s’ is a resulting state from s given I & D1 & ... ® D,, and the
sequence of sets of actions Ky ..., K, iff there exists an evolving stable model
My,...,M, of I® Dy &...® D, given the external events (sUK1),..., K,,0
such that ' =5 M,,.

In general, if we updated an Evolp action program I @ D with the subsequent
events assert(I1), assert(D;), where I1 @ D; is another EAP, we obtain the
equivalent updated Evolp action program (I UI1) @ D @ D; Formally:

Theorem 4. Let [yUI®Dy®D1®...® Dy, be any update EAP over (F, A). Let
P E! be a sequence of events such that: By = K1 U s, where s is any state of
the world and K, is any set of actions; and the others E;s are any set of actions
K, , or any set assert(initialize(F3)) where | Fz = 1, or any assert(D;) with
1<i<k. Letsy,...,s, be a sequence of possible resulting states from s given the
EAP Iy® Dy and the sequence of events @ EI and K,y1 a set of actions. Then
81,...,58n,5 18 a resulting state from s given Iy ® Dgy and the sequence of events
P E!® K, y1 iff s is a resulting state from s, given IyUI ©@ Do ® D1 ® ... P Dy
and the set of actions Ky1.

By applying this theorem we can, for instance, simplify the updates to the
original EAP of the example in this section into the updated EAP Iy, & D &
D1 & Dy, where Iy, =1 U I; U Iy, I and D are as in Example 1, and the I;s
and D;s are as described above.



Yet one more possibility opened by updated Evolp action programs is to cater
for successive elaborations of a program. Consider an initial problem described
by an EAP I&D. If we want to describe an elaboration of the program, instead of
rewriting I ® D we can simply update it with new rules. This gives a new answer
to the problem of elaboration tolerance [25] and also open the new possibility of
automatically update action programs by other action programs.

The possibility to elaborate on an action program is also discussed in [15]
in the context of the C language. The solution proposed there, is to consider C
programs whose rules have one extra fluent atom in their bodies, all these extra
fluents being false by default. The elaboration of an action program P is the
program P U U where U is a new action program. The rules in U can defeat
the rules in P by changing the truth value of the extra fluents. An advantage of
EAP over that approach is that in EAPs the possibility of updating rules is a
built-in feature rather then a programming technique involving manipulation of
rules and introduction of new fluents. Moreover, in EAPs we can simply encode
the new behaviours of the domain by new rules and then let these new rules
update the previous ones.

6 Conclusions and future work

In this paper we have explored the possibility of using logic programs updates
languages as action description languages. In particular, we have focused our
attention on the Evolp language [2]. As a first point, we have defined a new
action language paradigm, christened Evolp action programs, defined as a macro
language over Evolp. We have provided an example of usage of this language, and
compared Evolp action programs with action languages A, B and the definite
fragment of C, by defining simple translations into Evolp of programs in these
languages. Finally, we have also shown and argued about the capability of EAPs
to handle changes in the domain during the execution of actions.

Though all the results in this paper refer to the update language Evolp, it is
not our stance that these could not be obtained if other LP update languages
were used instead. For recasting (some) of the results in other LP update lan-
guages, one would have to resort to established relationships between the various
LP update languages, such as the ones found in [2,19]. Also, the possibility of
handling changes in the domain shown by EAPs, could in principle be obtained
if, instead of Evolp, another update language with the capability of updating
update rules were used instead. Another LP update language with this capabil-
ity is the KABUL language defined in [19]. However, the study of which of the
existing LP update languages could be used as action description languages, in
a way similar to what is described here for Evolp, is outside the scope of this pa-
per, and would, in our opinion, fit better in a paper with a focus on relationship
among various LP update languages. Our goal in this paper was to show that
(at least) one LP update language can be used for describing effects of actions,
and can be formally compared with existing action description languages. This
goal was achieved by showing exactly that for the language Evolp.



Several important topics are not touched here, and will be subject of future
work. Important fields of research are how to deal, in the Evolp context, with
the problem of planning prediction and postdiction [24], when dealing with in-
complete knowledge of the state of the world. Yet another topic involves the
possibility of concurrent execution of actions. Nevertheless, we have not fully
explored this topic, and confronted the results with extant works [6, 18].

The development of implementations for Evolp and EAPs is another neces-
sary step. Finally EAPs have to be tested in real and complex contexts.
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A Proofs

Before presenting the proofs of the results in this paper, we present an alternative
definition of the transition function of EAPs, and prove its equivalence to the
original definition (Definition 6). We do so because in some proofs it is more
convenient to use this alternative definition.

In this alternative definition, and in its prove, we will use the notation S|z
to denote the restriction of the set S to the literals in the set 7 i.e., to denote
SNZ.

Theorem 5. Let 1 & D be any EAP, s a state of the world and K a set of
actions. Let R be the set of static rules in D, T the following set of fluent literals

I={Q € F: inertial(Q) e D}U{not Q: Q € F: inertial(Q) € D}
and D(s, K) be the following set of rules:
D(s,K) = {7 : effect(tr) — Cond € D NK Us = Cond}
Then s’ is a resulting state from s given I & D and the set of actions K iff

s’ =least ((sNs'NZI) UDefault(s',RUD(s,K))|r,\7) UD(s,K) UR)
(6)

Proof. By Definition 6, s’ is a resulting state from s given I @& D and the set
of actions K iff there exists an evolving stable model M, s* of I & D given the
external events s U K, () such that s’ = s*. An interpretation M is an evolving
stable model of I & D given the external events s U K iff M; is a refined stable
models of & DUsUK i.e.,

My =least ((IUDUsUK)\ Rej*(My,I ® DUK Us)U Default(M))

All the atoms of the form event(7) where 7 is the effect of a dynamic rule
are false by default in 7 & D U K U s. Hence the rules of the form (1) and (3),
which have those atoms in their bodies, play no role when calculating the least
model. Also all the literals of the form prev(Q), where @ is a fluent literal, are
false by default, and so the rules of the form @ < prev(Q) play no role either.
Since the initial (starting) state s is always assumed consistent wrt. the static
rules, there is no conflict between the static rules in D. Thus, static rules do not
reject any literal in s nor do they infer any fluent literal that does not belong to
s. So, we can simplify the expression above in the following way:

My =least (D*UsUK) U Default(My))

where D* is the set of all rules the form

assert(event(r)) «— Cond.



for which there is a dynamic rule effect(7) < Cond in D, union with the set of
all rules of the form

assert(prev(Q)) — Q. assert(not prev(Q)) < not Q.

for every @ such that inertial(Q) belongs to D.

Hereafter, for sake of simplicity, in interpretations we omit the negative lit-
erals of the form not A whenever A is an auxiliary atom or an action literal. In
other words, we omit not A whenever A ¢ F. Moreover, by Prev(s) we denote
the set of literals which are either of the form prev(F') where F is a fluent literal
that is declared as inertial in D and is true in s, or of the form not prev(F') where
F is a fluent literal that is declared as inertial in D and is false in s. Finally, by
ED(s, K) we mean the set of literals event(r) such that

assert(event(r)) «— Cond.

belongs to D and s U K = Cond.

Given this, it is easy to see that the trace associated with any evolving
interpretation M, s* is the sequence J : I @ D @ Prev(s) U ED(s,K). So,
M, s* is an evolving stable model of I @& D given the sequence of events K, () iff
s* is a refined stable model of J.

Let s* be any interpretation over the language of I & D, and s’ = s*| . To
prove the theorem, we simply have to prove that s* is a refined stable model of
J iff ¢’ satisfies the equivalence (6). By definition of refined stable model, s* is
a refined stable model of J iff

s* =least (I UD U Prev(s) UD(s,K)) \ Rej®(s*) U Default(s*))

= Assume that s* is a refined stable model of 7. To prove that s’ satisfies the
equivalence, we start by simplifying the expression above defining s*.
Let s’ = s%. Since s’ only has fluent literals, the dynamic rules and the
inertial declarations in D play no role in verifying the equivalence. Hence,
the only rules we are interested in are the static rules in R. Moreover, since s*
is two valued, there is no mutual rejection between the rules in R: otherwise
there would be a fluent literal @) such that all the rules with head Q or not @
would be rejected, and such that not ¢ would not be in the set Default(s*)
as well. In such a case, neither Q nor not ) would be in s* which would
contradict the two valuedness of s*. Finally, by partially evaluating the facts
in ED(s, K), in the rules of the form

F < Body, event(F < Body).
we can delete the atoms event(r) from the body of those rules whenever
event(r) € ED(s, K), and delete one such rule when event(r) ¢ ED(s, K).

With this, we can simplify the equivalence for s’ into:

s' =least (I'\ Rej®(s*) U Prev(s) UR U D(s, K) U Default(s*))



We can split the set of default assumptions into two subsets: the one con-
cerning the inertial fluent literals; and the one concerning the fluent literals
that are not inertial. Taking this splitting in consideration, the equivalence
for s’ becomes:

& — least I\ Rej®(s*) U Prev(s) U Default(s*)|z U
o RUD(s, K)U Default(s*)|(r,\1)

where Default(s*) stands for Default(s*,I ® RU D(s, K))|F,\1). Notice
that the expression Default(s*,1 @ R U D(s, K))|F,\7) is equivalent to
Default(s', RU D(s, K))|(#,\z)- Moreover, the expression De fault(s*)|z is
equivalent to Default(s’,s UR U D(s, K))|(z). Let Inherit(s) be the set of
rules:

Inherit(s*) = {Q € F : Q «— prev(Q) € I\ Rej®(s*) A prev(Q) € Prev(s)}

What remains to show in order to prove that s’ satisfies the equivalence (6)
is that
Inherit(s*) U Default(s*)|z = (sNs' NI)

For showing this, we consider separately the negative and the positive fluent
literals. Let @ be a fluent literal that belongs to (s Ns’ NZ). We want to
prove this is equivalent to say that Q « prev(Q) belongs to I\ Rej®(s*)
and that Prev(Q) € Prev(s) i.e., we want to prove that @ € Inherit(s*).
The literal @ belongs to (sNs'NZ) iff Q € Z, not Q & s and not Q ¢ s’. This
implies that there exists no rule in R U D(s, K) whose head is not @ and
whose body is true. So, the rule Q « prev(Q) belongs to I\ Rej®(s*) and,
by @ € s and by definition of Prev(s), we conclude that Prev(Q) € Prev(s).
Let assume now Q « prev(Q) belongs to I\ Rej®(s*), then there exists
no rule in R U D(s, K) whose head is not @ and whose body is true. If,
furthermore, Prev(Q) € Prev(s), then not Q ¢ Default(s*) and so not @ is
not derived by any rule nor by default assumption. Thus, not Q € s’ and so
Q@ € s. Moreover, by definition if prev(Q) € Prev(s) then @ € s and Q € 7.
So, we have proved that

Qe (snsNI) e Q «— prev(Q) € I'\ Rej®(s*) A prev(Q) € Prev(s)

Let us now consider the negative fluent literals. In this case we want to prove
that, for any inertial fluent, the following equivalence holds.

not Q € (sNs') < not Q € Default(s’,s UR U D(s, K))|F

We know not Q € s’ iff Q ¢ ', which, since s’ is a model of R U D(s, K),

implies that there exists no rule in R U D(s, K) whose head is @ and whose

body is satisfied by s’. This, together with the fact that Q ¢ s, by definition

of Default implies that not Q € Default(s’,s UR U D(s, K)), as desired.
< Let us now suppose that s’ satisfies the equivalence (6). i.e.

s’ =least ((sNs'NI) UDefault(s',RUD(s,K))|r,\7) UD(s, k) UR)



Let NED be the set of literals of the form —event(r) such that event(r) €
ED(s,K) and there is no dynamic rule of the form effect(r) «— Cond
such that s’ satisfies Cond. Let s’ be the following evolving interpretation
(again we omit in the interpretation, the negative literals which are not fluent
literals).

s*=¢" U Prev(s) U ED(s,K) UNED Uassert(ED(s',K)) U
U assert(Prev(s))’

We have to prove that s* is a refined stable model of 7. We start this proof
by showing that

Inherit(s*) U Default(s*)|z = (sNs'NI)

We start by assuming that @ is a fluent literal in (sNs'NZ). @ is such a fluent
iff Prev(Q) € Prev(s), and not Q ¢ s'. Since s’ is a model of R U D(s, K),
we conclude that there exists no rule in R U D(s, K) with head not @ and
true body in s. Thus, the rule Q « prev(Q) € I\ Rej®(s*), and hence
Q € Inherit(s*).

Let assume now Q € Inherit(s*) (i.e. Q « prev(Q) € I\ Rej®(s*) and
prev(Q) € Prev(s)) then @ € s. This implies that not Q € s, Q € Z, and
there exists no rule in R U D(s, K) with head @ whose body is true in s'.
Consequently, not Q € s’ (i.e. @ € §'), and finally Q € (sNs' N7T).

Let us now consider the negative fluent literals. We want to prove that, for
any inertial fluent, the following equivalence holds.

not Q € (sNs') < not Q € Default(s’,s UR U D(s, K))|F
The proof proceeds in the same way as above, in order to conclude that
Inherit(s*) U Default(s*)|z = (sNs' NT)
We obtain then the following equivalence

& — least Inherit(s*) U De fault(s*)|z U
a Default(s',RUD(s,K))|r,\7) UD(s,k) UR

which is equivalent to
s' = least ( Inherit(s*) U Default(s*) UD(s,k) UR)|x,

Since s’ is consistent wrt. D(s, K) and R, these sets of rules do not contain
any pair of rules with conflicting heads and whose bodies are both true in
s'. So, by replacing Inherit(s*) with Prev(s) U T\ Rej®(s*) we obtain

s =least ( (IUD(s,K) UmR) \ RejS(s*)U De fault(s*)) |,
and from this, and by considering the definition of s*

s* =least (I UDU Prev(s) UD(s,K)) \ Rej®(s*) U De fault(s*))

*

This equation is, by definition, equivalent to say that M, s* is an evolving
stable model of I & D given the sequence of events K, (). In other words, s’
is a resulting state from s given I @& D and the set of actions K.



In the extreme cases where the set of inertial fluents coincides with the whole
set of fluents and, when the set if inertial fluents is empty, we obtain two sim-
plifications of the equivalence (6).

Corollary 1. Let I & D be any FAP, s a state of the world and K a set of
actions. Let R, D(s,K) be as in theorem 5. Moreover let every fluent be an
inertial fluent. Then s’ is a resulting state from s given I & D and the set of
actions K iff

s' =least (sNs') UD(s, k) UR)

Proof. Follows trivially as a special case of theorem 5.

Corollary 2. Let I & D be any FAP, s a state of the world and K a set of
actions. Let R, D(s,K) be as in theorem 5. Moreover let the set of inertial
fluents be the empty set. Then s’ is a resulting state from s given I ® D and the
set of actions K iff s’ is a stable model of the logic program D(s, k) UR

Proof. 1t follows trivially as a special case of theorem 5 that
s' = least (De fault(s',RU D(s, K))|(F,\7) UD(s,k) UR)
As proved in [19] this amount to say s’ is a stable model of D(s, k) UR.

Having shown this alternative to the definition of the transition function of
EAPs, and proven its equivalence to the original Definition 6, we are now ready
to prove all of the theorems (that we recall here, for the sake of readability) in
this paper.

Theorem 1 (Complexity of EAPs). Let I ® D be any EAP over (F, A), s
a state of the world and K C A. To find a resulting state s’ from s given I & D
and the set of actions K is an NP-complete problem.

Proof. By corollary 2, and given that the problem of finding a stable model of a
program is NP-hard, we conclude that finding a resulting state s’ from s given
I & D and the set of actions K is an NP-hard problem.

As for membership, from theorem 5 and from the observation that the com-
putation of least(P), where P is a logic program, is polynomial wrt. the number
of rules in P (since least(P) is the least Herbrand model of P considering the
negative literals in P as new atoms), it follows that checking whether a given
state s’ is resulting state is a polynomial problem wrt. the number of rules in
I & D plus the number of elements in F U A. Hence, the problem of finding a
resulting state s’ from s given I @ D and the set of actions K is NP.

Theorem 2 (Relation to B). Let P be any B program with set of fluents F,
(IP ® DBP | F) its translation, s a state and K any set of actions. Then s’ is a
resulting state from s given P and the set of actions K iff it is a resulting state
from s given I® @ DBP and the set of actions K.



Proof. Tt trivially follows from corollary 1.

Theorem 3 (Relation to C). Let P be any action program in the definite
fragment of C with set of fluents F, (I€ ® DY FC) its translation, s a state,
sY the interpretation over FC defined as follows: s = sU{Qn | Q € s}U
{not Qn | not Q € s} and K any set of actions. Then s* is a resulting state
from s€ given I€ @ DCP and the set of actions K iff there exists s’ such that s'
is a resulting state from s, given P and the set K and s* =, s'.

Proof. By corollary 2, s* is a resulting state from s© given I¢ @ D" and the
set of actions K iff ¢ is a stable model of the program RU D(s, K) where R and
D(s%, K) are defined as in theorem 5. From the translation of definite causal
theories into logic programs presented in [15], it follows that this is equivalent
to say that s’ is a model of the causal theory obtained by all the static rules of
P plus the rules of the form caused J if H for which a dynamic rule

caused J if H after O

belongs to P and @ is true in s U K. This, in turn, is equivalent to saying that
s’ is a resulting state from s given P and the set of actions K, as desired.

Theorem 4 (Simplification of updated EAPs). Let [Z,UI®Dy@D;&...P
Dy, be any update EAP over (F, A). Let @ E!* be a sequence of events such that:
FEy = K1 U s, where s is any state of the world and Ky is any set of actions;
and the others E;s are any set of actions K, or any set assert(initialize(Fg))

where |JFg =1, or any assert(D;) with 1 <i < k. Let s1,...,s, be a sequence
of possible resulting states from s given the EAP Iy & Dy and the sequence of
events @ E" and K41 a set of actions. Then s1,...,8y,,s is a resulting state

from s given In® Dy and the sequence of events @ EI ® K,+1 iff s’ is a resulting
state from s, given IoUI @ Dy @ D1 @ ...® Dy and the set of actions Ky, 41.

Proof. The sequence si,...,S5,,s is a sequence of possible resulting states iff
there exists a sequence of evolving interpretations My, My, ... M,, s* such that
Mylr = s, M;|x = s; and s*|x = s’. The trace of My, My, ... M,,s* is the DLP
Io® Dyg&T,...® T, where each T;s is a set of literal of one of the following
forms:

T, = Aux;
T; = Aux; U initialize(F3)
T; = Auz; U D; for some 0 <j <k

and Auz; is a set of auxiliary literals of the form Prev(Q) or not Prev(Q), where
@ is an inertial literal or event(r) or not event(r), T being the effect of some
dynamic rule.

To compute s*, the only relevant part of the trace is formed by the various
initialize(Fps), Dys and the last set of auxiliary literals Auz,,. Moreover, the



semantics does not change if we put the various initialize(Fps) in the first pro-
gram of the sequence, since a fluent only appears in a D; after being initialized.
Hence we can simplify the trace of My, My, ... M,,s* into:

IoUIEBD()@Dl@...@DkUAUJJn
The set Aux, can be split in three separate sets
Aux,, = Prev(sy) U ED(s,, K)U Retract(sy)

where Prev(s,) and ED(s,, K) are as defined in the proof of theorem 5 and
Retract(sy,) is the set of all literals of the form not event(r) coming from dynamic
rules whose preconditions are true in s,_1 and false in s,,. The negative literals
in Retract(sy,) simply rejects facts of the form event(r) from Auz,,_. Since we
have already simplified the trace by erasing all the Aux;s with i < n, we can
ignore the set Retract(sy,,). Thus, we obtain that s1, ... s’ is a sequence of possible
resulting states iff an interpretation s*, with s*|7, = &, is a refined stable model
of hbUI®Dy® D1 @ ... 0 Dy @ ED(sp, K) U Prev(sy). This is equivalent to
saying that s’ is a resulting state from s given IpUI & Do @® D1 & ... ® Dy and
the set of actions K11, as desired.



