Skip to main content

Solovay Reducibility on D-c.e Real Numbers

  • Conference paper
Computing and Combinatorics (COCOON 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3595))

Included in the following conference series:

Abstract

A c.e. real x is Solovay reducible to another c.e. real y if x can be approximated at least as efficiently as y by means of increasing computable sequences of rational numbers. The Solovay reducibility classifies elegantly the relative randomness of c.e. reals. Especially, the c.e. random reals are complete unter the Solovay reducibility for c.e. reals. In this paper we investigate an extension of the Solovay reducibility to the Δ\(^{\rm 0}_{\rm 2}\)-reals and show that the c.e. random reals are complete under (extended) Solovay reducibility for d-c.e. reals too. Actually we show that only the d-c.e. reals can be Solovay reducible to an c.e. random real. Furthermore, we show that this fails for the class of divergence bounded computable reals which extends the class of d-c.e. reals properly. In addition, we show also that any d-c.e. random reals are either c.e. or co-c.e.

This work is supported by DFG (446 CHV 113/240/0-1) and NSFC (10420130638).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ambos-Spies, K., Weihrauch, K., Zheng, X.: Weakly computable real numbers. Journal of Complexity 16(4), 676–690 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Calude, C.S., Hertling, P.H., Khoussainov, B., Wang, Y.: Recursively enumerable reals and Chaitin Ω numbers. Theoretical Computer Science 255, 125–149 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chaitin, G.: A theory of program size formally identical to information theory. J. of ACM 22, 329–340 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  4. Downey, R.G.: Some recent progress in algorithmic randomness. In: Fiala, J., Koubek, V., Kratochvíl, J. (eds.) MFCS 2004. LNCS, vol. 3153, pp. 42–83. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  5. Downey, R.G., Hirschfeldt, D.R.: Algorithmic Randomness and Complexity. Springer, Heidelberg (2000) (monograph to be published)

    Google Scholar 

  6. Downey, R.G., Hirschfeldt, D.R., LaForte, G.: Randomness and reducibility. In: Sgall, J., Pultr, A., Kolman, P. (eds.) MFCS 2001. LNCS, vol. 2136, pp. 316–327. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  7. Downey, R.G., Hirschfeldt, D.R., Nies, A.: Randomness, computability, and density. SIAM J. Comput. 31(4), 1169–1183 (2002) (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kuçera, A., Slaman, T.A.: Randomness and recursive enumerability. SIAM J. Comput. 31(1), 199–211 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Levin, L.A.: The concept of a random sequence. Dokl. Akad. Nauk SSSR 212, 548–550 (1973); English translation: Soviet Math. Dokl. 212, 1413–1416 (1974)

    MathSciNet  Google Scholar 

  10. Martin-Löf, P.: The definition of random sequences. Information and Control 9, 602–619 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  11. Raichev, A.: D.c.e. reals, relative randomness, and real closed fields. In: CCA 2004, August 16-20, Lutherstadt Wittenberg, Germany (2004)

    Google Scholar 

  12. Solovay, R.M.: Draft of a paper (or a series of papers) on chaitin’s work.. IBM Thomas J. Watson Research Center, Yorktown Heights, NY, p. 215 (1975) (manuscript)

    Google Scholar 

  13. Zheng, X., Rettinger, R., Gengler, R.: Closure properties of real number classes under CBV functions. Theory of Computing Systems (2005) (to appear)

    Google Scholar 

  14. Zheng, X., Rettinger, R.: On the extensions of solovay-reducibility. In: Chwa, K.-Y., Munro, J.I.J. (eds.) COCOON 2004. LNCS, vol. 3106, pp. 360–369. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rettinger, R., Zheng, X. (2005). Solovay Reducibility on D-c.e Real Numbers. In: Wang, L. (eds) Computing and Combinatorics. COCOON 2005. Lecture Notes in Computer Science, vol 3595. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11533719_37

Download citation

  • DOI: https://doi.org/10.1007/11533719_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28061-3

  • Online ISBN: 978-3-540-31806-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics