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Abstract

We study reductions that limit the extreme adaptivity of Turing reductions. In
particular, we study reductions that make a rapid, structured progression through
the set to which they are reducing: Each query is strictly longer (shorter) than
the previous one. We call these reductions query-increasing (query-decreasing) Turing
reductions. We also study query-nonincreasing (query-nondecreasing) Turing reductions.
These are Turing reductions in which the sequence of query lengths is nonincreasing
(nondecreasing). We ask whether these restrictions in fact limit the power of reductions.
We prove that query-increasing and query-decreasing Turing reductions are incomparable
with (that is, are neither strictly stronger than nor strictly weaker than) truth-table
reductions and are strictly weaker than Turing reductions. In addition, we prove that
query-nonincreasing and query-nondecreasing Turing reductions are strictly stronger
than truth-table reductions and strictly weaker than Turing reductions. Despite the fact
that we prove query-increasing and query-decreasing Turing reductions to in the general
case be strictly weaker than Turing reductions, we identify a broad class of sets A for
which any set that Turing reduces to A will also reduce to A via both query-increasing
and query-decreasing Turing reductions. In particular, this holds for all tight paddable
sets, where a set is said to be tight paddable exactly if it is paddable via a function
whose output length is bounded tightly both from above and from below in the length
of the input. We prove that many natural NP-complete problems such as satisfiability,
clique, and vertex cover are tight paddable.

1 Introduction

Oracle access is an important notion in the theory of computation. It forms the basis for defining
the different levels of the polynomial hierarchy [MS72,Sto76]. It is central to the notion of Turing
reducibility [LLS75], which is used to compare the complexity of problems.
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How the nature of access to its oracle affects the power of a Turing machine is a central research
issue. For example, the issue of whether adaptive access is more powerful than nonadaptive access
has been well researched (see, e.g., [Wat87,AB00,PS02]).1 A Turing machine with adaptive access
to its oracle has the full flexibility of asking queries in any order. In particular, the kth query may
depend on the answers to the previous k− 1 queries. On the other hand, in nonadaptive access, the
Turing machine is required to generate all queries before asking any of them. Thus, adaptive access
and nonadaptive access might at first seem to represent two extremes of flexibility in deterministic
oracle access (when one is without external limits on the number of queries allowed).

In this paper, we examine modes of oracle access whose flexibility in some cases lies somewhere
between these two extremes, and in some cases is incomparable even to the lower “extreme,” truth-
table reducibility. To help us formalize the degree and nature of the flexibility of oracle access, we
introduce the notion of query-restricted Turing reductions, ≤p

ρ-T , where ρ is a set of query sequences.
A Turing machine M has the ρ query property with respect to B if the following holds for each
input x: If q1, q2, . . . , qk is the sequence of strings queried by MB(x), then (x, q1, q2, . . . , qk) ∈ ρ. We
say that A ≤p

ρ-T B if there is a deterministic Turing machine M such that M robustly (i.e., for all

oracles) runs in polynomial time, L(MB) = A, and M has the ρ query property with respect to B.
Note that each query-restricted Turing reduction ≤p

ρ-T imposes certain restrictions (formally
captured by ρ) on the sequence of strings queried by the machine. In this paper, we study query-
restricted Turing reductions in which the set of allowable query sequences imposes monotonicity in
the length of the queries that the underlying machine asks to the oracle. We call such reductions
query-monotonic Turing reductions. For example, in query-increasing Turing reductions, the
machine is required to ask its queries in a length-increasing fashion, i.e., each query must be longer
than all the earlier ones (and also, in its strongest form, longer than the input). The main query-
monotonic reductions that we study in this paper are query-increasing reductions (≤p

li-T ), query-
decreasing reductions (≤p

ld-T ), query-nonincreasing reductions (≤p
lni-T ), and query-nondecreasing

reductions (≤p
lnd-T ). (Formal definitions of these and other query-monotonic reductions are provided

in Section 2.)
We came to define the notion of query-monotonicity motivated by the idea of rapid progress.

In particular, in this paper we wish to study the power of polynomial-time machines that sweep,
directionally, through their database (i.e., oracle). Such machines will have a “use it when you
can” flavor to their access to the information at each length—once one query at or beyond a length
is asked, the rest of the information at that length is forever lost to direct access, on the current
input. However, this apparently restrictive access is not necessarily restrictive in effect. It is at least
plausible that, by exploiting properties of particular databases, the restriction (for those databases)
will be toothless, i.e., can be obeyed without loss of generality. In this paper, we show that in some
cases the restriction has teeth, but we also show that in other quite central cases the restriction
is toothless. In particular, for several reductions ≤p

α and ≤p
β , we ask whether, for all A,B ⊆ Σ∗,

A ≤p
α B implies A ≤p

β B. If the answer to this question is “true”, we say that ≤p
β is stronger

than ≤p
α. (Note that “stronger” does not in this paper necessarily promise “strictly stronger”—for

example, each reduction is, under our definition, stronger than itself, but obviously is not strictly
stronger than itself. Similarly, “weaker” does not necessarily promise “strictly weaker.”) Roughly
speaking, we show that if ≤p

α and ≤p
β are chosen from among the Turing reductions, truth-table

reductions, 2-truth-table reductions, and the set of query-monotonic reductions that we study, then
the only “is stronger than” relationships that hold are the ones that obviously follow directly from
the definitions. The rest provably do not hold. For example, a query-increasing reduction is by

1More broadly, the differences between various polynomial-time reducibilities have been extensively studied ever
since the seminal work of Ladner, Lynch, and Selman [LLS75]. For an overview of this line of research, we refer the
reader to the survey articles by Homer [Hom90,Hom97], Buhrman and Torenvliet [BT94], and Pavan [Pav03].
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definition also a query-nondecreasing reduction (since each length-increasing query sequence is also
a length-nondecreasing query sequence). Thus, query-nondecreasing reductions are stronger than
query-increasing reductions. We prove that the converse is not true. That is, we prove that query-
increasing reductions are strictly weaker than query-nondecreasing reductions.

We now mention more specifically our results on the relative power of different reductions that
we study in this paper. We prove that there are sets A and B such that A ≤p

2-tt B, yet A 6≤p
li-T B

and A 6≤p
ld-T B. Since each 2-truth-table-reduction, query-increasing Turing reduction, and query-

decreasing Turing reduction is also a Turing reduction, it certainly follows that in fact both ≤p
li-T

and ≤p
ld-T are strictly weaker than ≤p

T . However, we also prove that there are sets C and D such that
C ≤p

li-T D, C ≤p
ld-T D, yet C 6≤p

tt D. Thus, each of ≤p
2-tt and ≤p

tt are, strength-wise, incomparable
with each of ≤p

li-T and ≤p
ld-T ; neither in general guarantees that the other holds. In addition, we

show that query-nonincreasing Turing reductions are strictly stronger than query-decreasing Turing
reductions. Similarly, we prove that query-nondecreasing Turing reductions are strictly stronger
than query-increasing Turing reductions. It is clear from the definitions that, for each A,B ⊆ Σ∗,
A ≤p

tt B =⇒ A ≤p
lni-T B and A ≤p

lni-T B =⇒ A ≤p
T B. However, note that from the results

mentioned above (namely that each of ≤p
li-T and ≤p

ld-T are incomparable with ≤p
tt and that ≤p

li-T
and ≤p

ld-T are incomparable) it follows that there are sets B and C such that B ≤p
lni-T C yet

B 6≤p
tt C, there are sets B and C such that B ≤p

T C yet B 6≤p
lni-T C, there are sets B and C such

that B ≤p
lnd-T C yet B 6≤p

tt C, and there are sets B and C such that B ≤p
T C yet B 6≤p

lnd-T C. That
is, each of ≤p

lni-T and ≤p
lnd-T is strictly stronger than ≤p

tt and strictly weaker than ≤p
T . Nonetheless,

we prove that for each class C closed downward under polynomial-time many-one reductions (for
example, NP, BPP, ⊕P, and PP), the reduction downward closures of C with respect to query-
nonincreasing, query-nondecreasing, and Turing reductions are identical.

It is clear from the definitions that query-monotonic Turing reductions are no less restrictive
than Turing reductions. Furthermore, from our results mentioned above it is clear that in some
cases the query-increasing and query-decreasing restrictions have teeth. Thus, it is interesting to
ask whether there are cases in which the restriction is toothless. In particular, we ask the following
question: What structural properties should a set S have so that each set that is Turing reducible to
S is in fact also query-increasing (query-decreasing) Turing reducible to S? We show that for a large
class of sets—namely those that are paddable via a (polynomial-time) function whose output size is
bounded tightly both from above and from below in the length of the input—the query-increasing
(query-decreasing) restriction does not limit the power of polynomial-time oracle Turing machines
using these sets as their database. We call these sets tight paddable. On one hand, we prove that
there are NP-complete sets that are not tight paddable, but on the other hand hand, we show that
many natural NP-complete problems (for example, satisfiability, vertex cover, and maximum clique)
are tight paddable.

Glaßer et al. [GOP+05] have recently shown that all NP-complete sets are many-one
autoreducible. A many-one autoreduction is a many-one reduction σ from a set to itself such that, for
each x, σ(x) 6= x. This is a very powerful result, but results on autoreducibility or length-increasing
self-reducibility (a many-one reduction from a set A to itself in which the function witnessing the
reduction maps to strings that are strictly longer than the input string)2 do not seem to give our
result, though it is easy to have the impression that they do via a flawed argument. The flawed
argument is this. Suppose one knows that each NP-complete set is many-one length-increasing self-
reducible (as a side comment, we mention that this implies that P and NP differ). Given a set that
≤p

T -reduces to some NP-complete set A, we try to convert that ≤p
T -reduction to an query-increasing

2Many-one length-decreasing self-reducibility when carelessly defined is possessed by no set, and when carefully
defined—namely, in terms of the ≤p

bm
reduction of Ambos-Spies ([Amb87], see also [DGM94])—holds for precisely the

sets in P and so is not interesting.
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reduction by leaving the first query intact, and taking the second query and via the many-one
length-increasing self-reduction mapping it to a string at most polynomially longer than the first
string. And we map the third string that the original reduction would like to query to, via the
many-one length-increasing self-reduction, a string at most polynomially longer than the string that
we remapped the second query into. And so on. The problem with this approach is that the lengths
snowball, and quickly become exponential. In contrast, “tight” padding, which we introduce in this
paper, precisely avoids this type of snowballing explosion.

This paper is organized as follows. Sections 2 and 3 define the different query-monotonic
reductions that are used in this paper, and show that all these reductions are robust in a certain
sense. In Section 4, we compare the power of query-monotonic reductions with that of Turing and
truth-table reductions. In Section 5, we study the query-monotonic reduction closures of sets in NP.
In Section 6, we study tight paddability and prove that many important NP-complete sets are tight
paddable.

2 Preliminaries

The alphabet for all strings, unless otherwise mentioned, is Σ = {0, 1}. For each x ∈ Σ∗, rank(x)
denotes the lexicographic rank of x, i.e., rank(ε) = 1, rank(0) = 2, rank(1) = 3, rank(00) = 4, etc.
The length of a string x is denoted by |x|. For each string x, and for each i such that 1 ≤ i ≤ |x|,
let bit(x, i) denote the ith bit of x. For example, bit(011, 1) = 0. For each string x, and for each i
such that 0 ≤ i ≤ |x|, let pre(x, i) denote the prefix of x of length i. For example, pre(011, 0) = ε
and pre(011, 2) = 01.

〈·, ·, . . . , ·〉 represents a one-to-one, polynomial-time computable and polynomial-time invertible
multiarity pairing function (see [HHT97]) defined as follows. Let α(0) = 00 and α(1) =
01. Let β(x) = α(bit(x, 1))α(bit(x, 2)) . . . α(bit(x, |x|)). Now define 〈x1, x2, . . . , xk〉 as
11β(x1)11β(x2) . . . 11β(xk). Note that |〈x1, x2, . . . , xk〉| is exactly 2(k + |x1| + |x2| + . . . + |xk|).
Also note that, for each x, 10x has no preimage in 〈·, ·, . . . , ·〉. Due to the standard one-to-one
mapping between strings and integers, we can apply the pairing function defined above to natural
numbers, for example, by first converting each number to its binary representation and then applying
the pairing function to these strings.

All sets, unless otherwise stated, are considered subsets of Σ∗. For each set X, ||X|| denotes
the cardinality of X. Σn denotes the set of strings in Σ∗ of length exactly n. For any C and
n, C=n = {a | a ∈ C ∧ |a| = n}, C≤n = {a | a ∈ C ∧ |a| ≤ n}, C<n = {a | a ∈ C ∧ |a| < n},
C≥n = {a | a ∈ C ∧ |a| ≥ n}, and C>n = {a | a ∈ C ∧ |a| > n}. For each A ⊆ Σ∗, χA is the
characteristic function of A, i.e., for each x 6∈ A, χA(x) = 0, and for each x ∈ A, χA(x) = 1. By
log n we mean log2 n.

We use the standard Turing machine model as described, for example, in [HU79]. We view all
Turing machines as potentially taking an oracle, and so write “Turing machine” rather than “oracle
Turing machine.” Let M1, M2, . . . be a standard enumeration of deterministic polynomial-time
Turing machines such that the running time of Mi is bounded by ni+i. Let N1, N2, . . . be a standard
enumeration of nondeterministic polynomial-time Turing machines such that the running time of
Ni is bounded by ni + i. Note that we build into our requirements of the standard enumerations
the fact that Turing machines in the enumerations defined above run in time that is bounded by a
polynomial that is independent of the oracle attached to the machine.3 Thus, when we say that M

3This is certainly not true of all Turing machines. There has been some study of the difference between the power
of machines that have a robust—that is, independent of the oracle—polynomial-time bound on their running time
and those that run in polynomial-time for each oracle yet have no robust polynomial-time bound on their running

4



is a polynomial-time Turing machine, we mean that there is a k ∈ N such that, for each X ⊆ Σ∗,
each Y ⊆ Σ∗, and for each x ∈ Σ∗, MX,Y (x) runs in time |x|k +k (thus so does MX(x) “=”MX,∅(x)
and M(x) “=”M∅,∅(x)). (For each Turing machine M and for each Y,Z ⊆ Σ∗, MY,Z represents
machine M with Y as its first oracle and Z as its second oracle. See [HHH97,HHH98,HHW99] for
earlier uses of double oracles—there in the context of studying the effect of the order in which the
two databases are accessed.)

For any Turing machine N and any x ∈ Σ∗, we will use N(x) as an abbreviation for “the
computation of N on x.” We will use DPTM as an abbreviation for “deterministic polynomial-time
Turing machine.” We will use NPTM as an abbreviation for “nondeterministic polynomial-time
Turing machine.” Due to the properties of machines in our enumerations, a DPTM (NPTM) by
definition runs in (polynomial) time that is independent of the oracle attached to it. For any NPTM
N , #accN is the function such that, for any x ∈ Σ∗, #accN (x) is equal to the number of accepting
computation paths of N(x).

We now formally define polynomial-time truth-table reductions.

Definition 2.1 [LLS75] Let A and B be arbitrary sets.

1. We say that A ≤p
tt B (A polynomial-time truth-table reduces to B) if there exists a DPTM

M and a polynomial-time computable function f such that, for each x, there exists an integer
m such that

(a) f(x) = 〈q1, q2, . . . , qm〉, and

(b) M(〈x, χB(q1), χB(q2), . . . , χB(qm)〉) accepts if and only if x ∈ A.

2. For each h : N → N, we say that A ≤p
h(n)-tt B (A polynomial-time h(n)-truth-table reduces

to B) if there exists a DPTM M and a polynomial-time computable function f such that, for
each x, there exists an integer m ≤ h(|x|) such that

(a) f(x) = 〈q1, q2, . . . qm〉, and

(b) M(〈x, χB(q1), χB(q2), . . . , χB(qm)〉) accepts if and only if x ∈ A.

As is standard, we will use A ≤p
k-tt B when we formally mean A ≤p

(λx.k)-tt B.

For each a and b such that ≤b
a is defined, and for each A ⊆ Σ∗, Rb

a(A) denotes {L |L ≤b
a A}, the

≤b
a-reduction downward closure of A. For each class C of languages and each a and b such that ≤b

a

is defined, Rb
a(C) =

⋃

A∈C Rb
a(A). For any a and b such that ≤b

a is a defined reduction, and any class

C, we say that a set B is C-≤b
a-hard exactly if C ⊆ Rb

a(B). For any a and b such that ≤b
a is a defined

reduction, and any class C, we say that a set B is C-≤b
a-complete if B is C-≤b

a-hard and B ∈ C.
We now introduce query-monotonic reductions. We in fact define a general “query-restricted”

Turing reduction, ≤p
ρ-T , where ρ is a restriction on the allowed sequences. Query-monotonic

reductions are defined in terms of query-restricted Turing reductions: Each query-monotonic
reduction is a query-restricted Turing reduction for some particular restriction ρ.

Definition 2.2 Let ρ ⊆ Σ∗ ∪ Σ∗ × Σ∗ ∪ Σ∗ × Σ∗ × Σ∗ ∪ · · · .

1. For each Turing machine M , each B ⊆ Σ∗, and each x ∈ Σ∗, we say that M has the ρ query
property with respect to B on input x if the sequence q1, q2, . . . , qk of queries made by MB(x)
to its oracle satisfies: (x, q1, q2, . . . , qk) ∈ ρ. (For example, MB(x) may legally ask no queries
only if (x) ∈ ρ.)

time [CHW99, Section 6].
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2. For each Turing machine M and each B ⊆ Σ∗, we say that M has the ρ query property with
respect to B if, for each x ∈ Σ∗, M has the ρ query property with respect to B on input x.

3. For each x ∈ Σ∗, the set of valid query sequences in ρ on input x is the set
{(x, q1, q2, . . . , qr) | (x, q1, q2, . . . , qr) ∈ ρ}.

4. A ≤p
ρ-T B if there exists a DPTM M such that

(a) M has the ρ query property with respect to B, and

(b) L(MB) = A.

We now define several query-monotonic restrictions that will be of interest to us. Note that the
“Σ∗” part in the following definitions makes it legal for a Turing machine to ask no queries to its
oracle.

Definition 2.3 1. (Length-increasing) ρli = Σ∗ ∪ {(x, q1, q2, . . . , qk) | k ≥ 1 ∧ |q1| < |q2| < . . . <
|qk|}.

2. (Length-decreasing) ρld = Σ∗ ∪ {(x, q1, q2, . . . , qk) | k ≥ 1 ∧ |q1| > |q2| > . . . > |qk|}.

3. (Length-nonincreasing) ρlni = Σ∗ ∪ {(x, q1, q2, . . . , qk) | k ≥ 1 ∧ |q1| ≥ |q2| ≥ . . . ≥ |qk|}.

4. (Length-nondecreasing) ρlnd = Σ∗ ∪ {(x, q1, q2, . . . , qk) | k ≥ 1 ∧ |q1| ≤ |q2| ≤ . . . ≤ |qk|}.

5. (Strong length-increasing) ρs-li = Σ∗ ∪ {(x, q1, q2, . . . , qk) | k ≥ 1 ∧ |x| < |q1| < |q2| < . . . <
|qk|}.

6. (Strong length-decreasing) ρs-ld = Σ∗ ∪ {(x, q1, q2, . . . , qk) | k ≥ 1 ∧ |x| > |q1| > |q2| > . . . >
|qk|}.

7. (Strong length-nonincreasing) ρs-lni = Σ∗ ∪ {(x, q1, q2, . . . , qk) | k ≥ 1 ∧ |x| ≥ |q1| ≥ |q2| ≥
. . . ≥ |qk|}.

8. (Strong length-nondecreasing) ρs-lnd = Σ∗ ∪ {(x, q1, q2, . . . , qk) | k ≥ 1 ∧ |x| ≤ |q1| ≤ |q2| ≤
. . . ≤ |qk|}.

For each α ∈ {li, ld, lnd, lni, s-li, s-ld, s-lni, s-lnd}, and for each A,B ⊆ Σ∗, we will abuse notation
and use A ≤p

α-T B when we formally mean A ≤p
ρα-T B. For each Turing machine M and each

B ⊆ Σ∗, if M has the ρli (respectively, ρld, ρlni, ρlnd, ρs-li, ρs-ld, ρs-lni, ρs-lnd) query property with
respect to B, then we say that M has the query-increasing (respectively, query-decreasing, query-
nonincreasing, query-nondecreasing, strong query-increasing, strong query-decreasing, strong query-
nonincreasing, strong query-nondecreasing) property with respect to B. If A ≤p

li-T B (respectively,
A ≤p

ld-T B, A ≤p
lni-T B, A ≤p

lnd-T B, A ≤p
s-li-T B, A ≤p

s-ld-T B, A ≤p
s-lni-T B, A ≤p

s-lnd-T
B), then we say that A polynomial-time query-increasing (respectively, query-decreasing, query-
nonincreasing, query-nondecreasing, strong query-increasing, strong query-decreasing, strong query-
nonincreasing, strong query-nondecreasing) Turing reduces to B. Sometimes, for succinctness and
to avoid repetition, we will not explicitly include the word “Turing,” e.g., we will write “query-
nonincreasing reduction” for “query-nonincreasing Turing reduction.”

We now define relativized query-monotonic reductions. For each ρ ⊆ Σ∗ ∪ Σ∗ × Σ∗ ∪ Σ∗ ×
Σ∗ × Σ∗ ∪ · · · , we say that, relative to Z, M has the ρ query property with respect to Y if, for
each x ∈ Σ∗, the sequence q1, q2, . . . , qk of queries that MY,Z(x) asks to its first oracle satisfies

(x, q1, q2, . . . , qk) ∈ ρ. A ≤p,C
ρ-T B if there exists a DPTM M such that L(MB,C) = A and, relative

to C, M has the ρ query property with respect to B.
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Though it is slightly broken English, for succinctness we will at times write phrases using the
locution “queries [string] to [oracle being queried].” For example, we will at times write “the machine
then queries x to A” for “the machine then asks the query x to the oracle A.”

We now define a new notion of padding—tight paddability—that we will use to understand query-
monotonic reductions over NP. Before we define tight paddability, for comparison we review notions
of padding that are standard in the literature. Paddability of sets has been used in complexity theory
in many contexts including the seminal work of Berman and Hartmanis [BH77] on polynomial-time
isomorphism for sets in NP, and of Hartmanis [Har78] on the study of logspace isomorphism for sets
in NL, CSL, P, NP, PSPACE, etc. Mahaney and Young [MY85] use padding functions to prove
results regarding the structure of polynomial-time many-one degrees.

A (polynomial-time) paddable set is one for which there is a polynomial-time function (called
a padding function for that set) that allows one to map the input string to a longer string while
preserving membership in the set.

Definition 2.4 Let A ⊆ Σ∗. Then σ : Σ∗ → Σ∗ is a padding function for A if

1. σ is polynomial-time computable,

2. for each x ∈ Σ∗, σ(x) ∈ A if and only if x ∈ A, and

3. for each x ∈ Σ∗, |σ(x)| > |x|.

We say that A is paddable if there exists a padding function for A.

Berman and Hartmanis [BH77] define two different types of functions called Z-padding functions
and S-padding functions (though, formally speaking S-padding functions need not be padding
functions in the sense of Definition 2.4).

Definition 2.5 [BH77] Let A ⊆ Σ∗. Then σ : Σ∗ → Σ∗ is a Z-padding function for A if σ is
a padding function and σ is a one-to-one function. We say that A is Z-paddable if there exists a
Z-padding function for A.

Definition 2.6 [BH77] Let A ⊆ Σ∗. Then σ : Σ∗ × Σ∗ → Σ∗ is an S-padding function for A if

1. σ is polynomial-time computable,

2. σ is polynomial-time invertible in the second argument, i.e., there is a polynomial-time
computable function σ′ such that, for each x, y ∈ Σ∗, σ′(σ(x, y)) = y, and

3. for each x, y ∈ Σ∗, σ(x, y) ∈ A if and only if x ∈ A.

We say that A is S-paddable if there exists an S-padding function for A.

Mahaney and Young [MY85] note that any set that is S-paddable is S-paddable via some function
that is polynomial-time invertible in both arguments, i.e., there exists a polynomial-time computable
function ρ such that for each x and y, ρ(σ(x, y)) = 〈x, y〉. Also, note that if a function is invertible
in both arguments, in the particular sense just mentioned, then it is one-to-one. We state these
properties in Proposition 2.7.

Proposition 2.7 (essentially [MY85]) Let A be S-paddable. Then there is an S-padding function π
for A such that

1. π is polynomial-time invertible in both arguments (in the sense defined above),

2. π is honest (that is, there is a polynomial q such that, for each x, y ∈ Σ∗, |x|+|y| ≤ q(|π(x, y)|).

3. π is one-to-one, that is, for each a, b, c, and d, π(a, b) = π(c, d) only if a = c and b = d,

7



4. for each x, y ∈ Σ∗, |π(x, y)| > |x|.

Proof Let σ be a S-padding function for A. By definition, σ is polynomial-time invertible in the
second argument. Let σ′ be the function that inverts σ in the second argument. We will first define
a function α : Σ∗ × Σ∗ → Σ∗ that satisfies the first three conditions and then use α to define a
function π : Σ∗ × Σ∗ → Σ∗ that satisfies all the four conditions.

Consider α defined as follows: α(x, y) = σ(x, 〈x, y〉). α is polynomial-time computable because
σ is polynomial-time computable. α is polynomial-time invertible in both arguments (in the sense
mentioned above) via σ′ because, for each x, y ∈ Σ∗, σ′(α(x, y)) = σ′(σ(x, 〈x, y〉)) = 〈x, y〉, where
the last equality follows from the definition of σ′. Thus, α is a polynomial-time invertible-in-both-
arguments (in the sense defined above) S-padding function for A. Like all functions invertible in
both arguments (in the above sense) functions, it is one-to-one.

Since α is invertible in both arguments, there is a polynomial q′ such that, for each x and y,
|〈x, y〉| = |α−1(α(x, y))| ≤ q′(|α(x, y)|). Thus, there is a strictly increasing polynomial q such that
|x| + |y| ≤ q(|α(x, y)|). Equivalently, |α(x, y)| ≥ q−1(|x| + |y|). In other words, α is honest, i.e., it
does not shrink its input by more than an inverse-polynomial factor.

For each x, y ∈ Σ∗, define π(x, y) = α(x, 〈y, 0q(|x|)+1〉). Clearly, for each x ∈ Σ∗, |π(x, y)| > |x|.
Also, π is an S-padding function for A because we can show, using the fact that α is an S-padding
function for A, that π obeys all the three conditions mentioned in Definition 2.6. It is easy to see
that since α is honest, one-to-one, and polynomial-time invertible in both arguments, so is π. ❑

It is important to note that any S-paddable set A is also Z-paddable. Note that the π’s
created in Proposition 2.7 are honest, that is, they can “shrink” the size of their inputs at most
polynomially. We can use this property to construct a Z-padding function for A. In particular,
ρ(x) = π(x, 0q(|x|)−|x|) is a Z-padding function for A, where π is an invertible-in-both-arguments
S-padding function for the set (e.g., via Proposition 2.7) and q is the associated honesty polynomial.
Note that most natural NP-complete problems (for example, SAT, vertex cover, max clique, 3-
colorability, etc.) are obviously S-paddable.

We now define two notions of tight padding: tight paddability and tight Z-paddability. Informally
speaking, a tight padding function for a set is a padding function that has strong guarantees on the
length of its output.

Definition 2.8 Let A ⊆ Σ∗.

1. Let σ : Σ∗ → Σ∗. Then σ is a tight padding function for A if σ is a padding function for A
and there exists a k ∈ N such that, for each x ∈ Σ∗, |σ(x)| ≤ |x| + k. We say that A is tight
paddable if there is a tight padding function for A.

2. Let σ : Σ∗ → Σ∗. Then σ is a tight Z-padding function for A if σ is a Z-padding function for
A and there exists a k ∈ N such that, for each x ∈ Σ∗, |σ(x)| ≤ |x|+k. We say that A is tight
Z-paddable if there is a tight Z-padding function for A.

Clearly, each tight paddable set is also paddable. Similarly, each tight Z-paddable set is also
Z-paddable. Figure 1 shows the relationships among the different notions of paddability.

One might ask why we have not defined a “tight” analog of the S-paddable sets. One could. But
we mention in passing that no one-to-one 2-ary function satisfies the length restriction associated
with tightness. Let σ be an arbitrary one-to-one 2-ary function. Let n ∈ N. The number of pairs of
strings x and y such that |x|+|y| is n is exactly (n+1)2n. Thus, the length of the longest string whose
preimage (x, y) in σ is such that |x|+ |y| = n is at least dlog(1+(n+1)2n)−1e ≥ n−1+ log(n+1).
Thus, for any such σ and for each k ∈ N, there exist x and y such that σ(x, y) > |x| + |y| + k.

In Section 6, we show that many well-known NP-complete problems such as satisfiability of
boolean formulas, vertex cover in graphs, and size of the largest clique in graphs are tight Z-paddable.
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tight paddable

S−paddable

paddable

Z−paddable

tight Z−paddable

Figure 1: Relationships between different notions of paddability. A line between a and b such that
a lies above b indicates that any set of type b is also a set of type a.

We also show that many types of query-monotonic reductions are equivalent (and in fact, also
equivalent to Turing reductions) when the set being reduced to is tight paddable.

3 Robustness of Query-Monotonic Reductions

Note that in the definition of ≤p
ρ-T reductions (Definition 2.2, part 4), the machine witnessing

the reduction need only have the ρ query property when its database (oracle) is the particular set
being reduced to. For example, a machine M witnessing a ≤p

li-T reduction from A to B is allowed
to disobey the ρli query property when the oracle that the machine accesses is not B. That is, for
some B′ 6= B, M might not have the query-increasing property with respect to B ′. Now, consider
a potentially more restrictive form of query-monotonic reductions in which the machine witnessing
the reduction is required to be query-monotonic robustly, i.e., not just for the set it is witnessing
the reduction to, but also for every set. We formalize this notion in Definition 3.1 below. We will
soon show that whether such robustness does limit the power of query-restricted Turing reductions
is dependent both on the constraint ρ and on whether P = NP.

Definition 3.1 Let ρ ⊆ Σ∗ ∪ Σ∗ × Σ∗ ∪ Σ∗ × Σ∗ × Σ∗ ∪ · · · .

1. For each Turing machine M , we say that M has the robust ρ query property if, for each
C ⊆ Σ∗, M has the ρ query property with respect to C.

2. For each A,B ⊆ Σ∗, A ≤p
r-ρ-T B if there exists a DPTM M such that

(a) M has the robust ρ query property, and

(b) L(MB) = A.

Informally, this is simply part 4 of Definition 2.2 except with the ρ query property being global.
For each α ∈ {li, ld, lni, lnd, s-li, s-ld s-lni, s-lnd}, and for each A,B ⊆ Σ∗, we will abuse notation
and use A ≤p

r-α-T B when we formally mean A ≤p
r-ρα-T B. If A ≤p

r-li-T B (respectively A ≤p
r-ld-T B,

A ≤p
r-lni-T B, A ≤p

r-lnd-T B, A ≤p
r-s-li-T B, A ≤p

r-s-ld-T B, A ≤p
r-s-lni-T B, A ≤p

r-s-lnd-T B), then we
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say that A robust query-increasing (respectively, robust query-decreasing, robust query-nonincreasing,
robust query-nondecreasing, robust strong query-increasing, robust strong query-decreasing, robust
strong query-nonincreasing, robust strong query-nondecreasing) Turing reduces to B.

Thus, robust query-monotonic (for example, query-increasing or query-decreasing) Turing
machines have the query-monotonic property with respect to all oracles and all input strings, while
query-monotonic Turing machines are only required to have the query-monotonic property with
respect to one oracle and all input strings. The issue of whether Turing machines have properties
robustly (for all oracles) has been studied in literature, for example, in the the study of positive
Turing reductions [Sel79,HJ91], in the study of robust Turing machines and helper sets [Sch85,
Ko87,CHV93], and even regarding whether a Turing machine runs in polynomial time [CHV93].
Regarding the first of these, various forms of positive truth-table reductions and positive Turing
reductions (neither of which we define here) are used, among other things, to study the P-selective
sets (see [Sel79,HJ91]). It is now known that positive and robustly positive reductions are different
under standard complexity-theoretic assumptions and under suitable relativizations. In contrast,
we prove via Theorem 3.2 that robust query-monotonic Turing reductions are no more restrictive
than query-monotonic Turing reductions. Informally speaking, Theorem 3.2 says that reductions
based on “nice” polynomial-time-recognizable query-constraint collections are just as powerful when
restricted to robustly obeying the constraints, i.e., obeying them not just for the set being reduced
to, but with respect to every set. Our niceness constraint here—which is quite natural and is satisfied
by all the query-monotonic reduction types we have defined—is that all the nonempty prefixes of
any nonempty, legal query-vector are themselves legal. This disallows a potentially fatal case—the
case where the oracle itself leads the computation through a minefield of illegal vectors, but at the
end reaches a legal one. We will, after Corollary 3.3, further discuss the importance (and potential
nonimportance) of the niceness condition, and in particular will show that on one hand if P = NP
then for P-recognizable query properties robustness can be achieved always (even for ρ that violate
niceness), but that on the other hand there are (necessarily non-nice, non-P-recognizable) query
properties ρ such that in appropriate relativized worlds, ρ and its robust counterpart differ.

Theorem 3.2 Let ρ ⊆ Σ∗ ∪ Σ∗ × Σ∗ ∪ Σ∗ × Σ∗ × Σ∗ ∪ · · · be a set of tuples such that ρ′ =
{〈x1, x2, . . . , xk〉 | (x1, x2, . . . , xk) ∈ ρ} ∈ P and ρ satisfies the following: For each k ≥ 0, and
each x, q1, q2, . . . , qk+1 ∈ Σ∗, if (x, q1, x2, . . . , xk+1) ∈ ρ, then (x1, x2, . . . , xk) ∈ ρ. Then, for each
A,B ⊆ Σ∗, A ≤p

ρ-T B if and only if A ≤p
r-ρ-T B.

Proof The (⇐) direction is trivially true. We will show that the (⇒) direction also holds. Let
M be a DPTM witnessing A ≤p

ρ-T B. We will show that A ≤p
r-ρ-T B. Consider a Turing machine

M1 that, on input x, simulates M(x) exactly, except when M(x) is about to ask a query (say q) to
its oracle. When M(x) is about to ask a query to its oracle M1 does the following. It computes all
the queries that M1(x) has previously asked to its oracle in the current run. (Note that this can
easily be computed, for example, by having M1 keep track of the queries it asks of its oracle.) Let
these queries be q1, q2, . . . , qk. M1(x) computes whether z = (x, q1, q2, . . . , qk, q) is a member of ρ by
running the polynomial-time algorithm for ρ′ on the string 〈x, q1, q2, . . . , qk, q〉. (By hypothesis, such
an algorithm exists.) If z 6∈ ρ, M1(x) halts and rejects. (Note that in this case the oracle attached
to M1 is not B since, by hypothesis, all query prefixes of all sequences of queries asked by M B on all
inputs are from the set ρ.) If z ∈ ρ, M1(x) asks query q to its oracle and proceeds with the current
computation.

Since M is a DPTM, so is M1. Also, by construction, M1 has the robust ρ query property,
because M1 only asks a query q if the sequence of queries up to and including q is a member of ρ.
Since, by hypothesis, M witnesses A ≤p

ρ-T B, we have that, for all strings x, the query sequence

of MB(x) is in ρ. Thus, by construction, for all x, MB
1 (x) simulates MB(x) appropriately. So,

10



L(MB
1 ) = L(MB) = A. Since M1 has the robust ρ query property, M1 runs in polynomial time,

and L(MB
1 ) = A, it follows that A ≤p

r-ρ-T B (via M1). ❑

Since ρli, ρld, ρlni, ρlnd, ρs-li, ρs-ld, ρs-lni, and ρs-lnd all satisfy the niceness condition, as
an immediate corollary we have that for each query-monotonic Turing reduction in Definition 2.3
robustness is free.

Corollary 3.3 For each α ∈ {li, ld, lni, lnd, s-li, s-ld, s-lni, s-lnd}, and for each A,B ⊆ Σ∗, A ≤p
α-T

B if and only if A ≤p
r-α-T B.

Is the niceness condition—that nonempty prefixes of nonempty legal sequences must themselves
be legal—needed for the robust ρ query property to hold? The following two results show that if
P = NP the condition is superfluous (in proving this our strategy will be to ensure that we always
have an “escape route” available to us—as a set of additional queries that along with those we asked
are an allowed query vector), and that there are oracle worlds where the condition is needed.

Before we state Theorem 3.4, we state a definition that will be used in its proof. Given ρ ⊆
Σ∗ ∪ Σ∗×Σ∗ ∪ Σ∗×Σ∗×Σ∗ ∪ · · · , sequences of strings s = (x1, x2, . . . , xk) and s′ = (y1, y2, . . . , yt),
and integer r, we say that s′ is a (ρ, s, r) escape route if

1. t ≤ r,

2. for each 1 ≤ i ≤ t, |yt| ≤ r, and

3. (x1, x2, . . . , xk, y1, y2, . . . , yt) ∈ ρ.

The following property of escape routes follows from the definition above: Let M be a Turing
machine such that there is a polynomial p bounding the running time of M (regardless of the oracle).
Assume that M has the ρ query property with respect to B. Let x ∈ Σ∗ and x1, x2, . . . , xk be a
prefix of queries that MB(x) asks to its oracle. Let s = (x, x1, x2, . . . , xk). Then there must exist a
(ρ, s, p(|x|)) escape route. We can now state Theorem 3.4 and its proof.

Theorem 3.4 Let ρ ⊆ Σ∗ ∪ Σ∗ × Σ∗ ∪ Σ∗ × Σ∗ × Σ∗ ∪ · · · be a set of tuples such that the set
ρ′ = {〈x1, x2, . . . , xk〉 | (x1, x2, . . . , xk) ∈ ρ} is in P. If P = NP, then for each A,B ⊆ Σ∗, A ≤p

ρ-T B

if and only if A ≤p
r-ρ-T B.

Proof The (⇐) direction is trivially true. We will show that the (⇒) direction also holds. Let
M be a DPTM witnessing A ≤p

ρ-T B. Note that by definition (see Section 2), the running time of

M is bounded by a polynomial (say, p) independent of the oracle. We will show that A ≤p
r-ρ-T B

by describing a Turing machine M1 that witnesses A ≤p
r-ρ-T B. M1 will have the property that,

for each oracle C, for each string x, and at each step in the computation MC
1 (x), if q1, q2, . . . , qk is

the sequence of queries that have already been asked, then there exists a (ρ, s, p(|x|)) escape route,
where s = (x, q1, q2, . . . , qk). Note that since for each string x there exists a (ρ, (x), p(|x|)) escape
route (namely, the sequence of strings that MB(x) asks to its oracle), this property holds trivially
at the very start of computation MC

1 (x). We now describe M1.
M1, on input x, simulates M(x), except in the following two cases: (a) when M(x) is about to

ask a query to its oracle, and (b) when M(x) is about to halt. We will describe what M1 does in
each of the above two cases.

Consider case (a): M(x) is about to ask a query to its oracle. In this case M1 does the following.
It computes all the queries that M1(x) has previously asked to its oracle. (Note that this can
easily be computed, for example, by having M1 keep track of the queries it asks to its oracle.)
Let these queries be q1, q2, . . . , qk. Let s1 = (x, q1, q2, . . . , qk, q) and let s2 = (x, q1, q2, . . . , qk).
M1(x) computes whether a (ρ, s1, p(|x|)) escape route exists. (Clearly, computing the existence of
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a (ρ, s1, p(|x|)) escape route can be done in NP. Since P = NP, by assumption, this can even be
done deterministically in polynomial time.) If a (ρ, s1, p(|x|)) escape route exists, then M1(x) asks
query q to its oracle and proceeds with the current computation. If no such escape route exists, it
follows that the oracle attached to M1 is not B since, by hypothesis, M has the ρ query property
with respect to B. In this case M1 computes a (ρ, s2, p(|x|)) escape route e. (Note that since M1

queried qk at an earlier step, the construction ensures the existence of a (ρ, s2, p(|x|)) escape route.
Furthermore, since P = NP, this sequence can be computed deterministically in polynomial time.)
Let e = (y1, y2, . . . , ym). M1 asks the following queries in sequence: y1, y2, . . . , ym. M1 then halts
and rejects.

Now consider case (b): M(x) is about to halt. Let q1, q2, . . . , qk be the sequence of queries that
M1 has asked to its oracle. Let s = (x, q1, q2, . . . , qk). M1 computes a (ρ, s, p(|x|)) escape route e.
Clearly, such an escape route exists, since it exists at the start of the computation and, as argued in
case (a) above, at each subsequent step. Let e = (y1, y2, . . . , ym). (Note: When our oracle happens
to be B, a legal escape sequence will always be to take e to be an empty sequence.) M1 asks the
following queries in sequence: y1, y2, . . . , ym. If M(x) was about to halt and accept, M1(x) halts
and accepts. On the other hand, if M(x) was about to halt and reject, M1(x) halts and rejects.
This completes the description of M1.

Since M is a DPTM, so is M1. Also, by construction, M1 has an escape route available at each
step, and just before halting (both in case (a) and in case (b)) it “takes” the escape route and ensures
that the sequence of queries is in fact a valid one. Thus, M1 has the robust ρ query property. Also,
it follows from construction that L(MB

1 ) = L(MB) = A. Since, M1 has the robust ρ query property,
M1 runs in polynomial time, and L(MB

1 ) = A, it follows that A ≤p
r-ρ-T B (via M1). ❑

Theorem 3.4 shows that for all easily computable query sequence collections, if P = NP then
the niceness condition is not required for robustness. Thus, proving that the niceness condition
is required for robustness will imply P 6= NP, and thus cannot be proven using relativizable
techniques. However, this leaves open the possibility that the niceness condition is never required.
In Theorem 3.5 we show that proving that the niceness condition is never required would require
nonrelativizable techniques, since there is an oracle C and a constraint set ρ ∈ PC such that ≤p,C

ρ-T
and ≤p,C

r-ρ-T differ. Of course, in light of (the natural relativized version of) Theorem 3.2, the ρ of

Theorem 3.5 must be non-nice. In fact, Theorem 3.5 shows that the difference between ≤p,C
ρ-T and

≤p,C
r-ρ-T is witnessed by a simple set, namely the empty set. The reader might wonder why a Turing

machine that rejects on all inputs (without asking any queries to its oracle) does not establish that,

for each set B, ∅ ≤p,C
r-ρ-T B. The reason is that on some inputs asking no queries at all might not be

legal in ρ.

Theorem 3.5 There is an oracle C, a set B, and a constraint set ρ such that the set ρ′ =
{〈x1, x2, . . . , xk〉 | (x1, x2, . . . , xk) ∈ ρ} ∈ PC , ∅ ≤p,C

ρ-T B, and yet ∅ 6≤p,C
r-ρ-T B.

Proof We will construct B, C, and ρ in stages. In Stage i, we will diagonalize against machine
Mi. That is, in Stage i, we will show that Mi does not witness ∅ ≤p,C

r-ρ-T B. Define

Z = {222

, 2222
22

, 2222
22

22
2

, . . .}.

We mention the following property of Z, which will be used below:

Lemma 3.6 Let n and n′ be the kth and (k + 1)st smallest numbers in Z. Then n′ > 2n+1 >
1 + nk + k.
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Proof of Lemma 3.6 Immediate from the definition of Z. ❑ (Lemma 3.6)
We continue with the proof of Theorem 3.5. Define D = {0n | n ∈ Z}. Let B0 = ∅, C0 = ∅,

ρ0 = {(x) | x /∈ D}, and n0 = 1.

Stage k ∈ N
+: Let M = Mk. Let n = nk be the integer 222

nk−1

. Let Bk−1, Ck−1, and ρk−1 be the
set of strings added to B, C, and ρ, respectively, before the kth stage.

For each i such that 1 ≤ i ≤ 2n, let xi be the lexicographically ith string in Σn. Let P =
{x1, x2, . . . , xn+1}. For each Y ⊆ Σn, let cY be the string χY (x1)χY (x2) . . . χY (xn+1). For each
Y ⊆ Σn, let qY be the string 〈x1, x2, . . . , xn+1, cY 〉. That is, qY represents a sequence of n+2 oracle
queries where the first n + 1 strings queried are the lexicographically first n + 1 strings in Σn and
the last string is the (n + 1)-bit string formed by concatenating the answers (obtained from Y ) to
the previous queries.

There are the following two cases:

1. Consider the case that there exist Y, Y ′ ⊆ P such that the sequence of queries that
MBk−1∪Y ′,Ck−1∪{cY }(0n) asks to its first oracle is not qY . In this case, set Bk = Bk−1 ∪ Y , set
Ck = Ck−1 ∪ {qY }, and set ρk = ρk−1 ∪ {(0n, x1, x2, . . . , xn+1, cY )}. Go to Stage k + 1.

2. The remaining case is: For each Y, Y ′ ⊆ P , the sequence of queries that MBk−1∪Y ′,Ck−1∪{cY }

asks to its first oracle is qY . We will derive a contradiction. Let Y ⊆ P be the lexicographically
smallest set such that MBk−1,Ck−1(0n) does not ask cY to its second oracle and the sequence
of queries that MBk−1,Ck−1(0n) asks to its first oracle is not qY . Note that Y is well defined
because MBk−1,Ck−1(0n) asks at most nk + k queries, the number of distinct subsets of P is
2n+1, and by Lemma 3.6 we have 2n+1 > 1 + nk + k. Since MBk−1,Ck−1(0n) does not ask
cY to its second oracle, the sequence of queries asked by MBk−1,Ck−1∪{cY }(0n) is exactly the
same as the sequence of queries asked by MBk−1,Ck−1(0n). By our choice of Y , we have that
the sequence of queries asked by MBk−1,Ck−1∪{cY }(0n) to its first oracle is not qY , which is a
contradiction. Thus, this case cannot arise.

End of Stage k.
We now define B =

⋃

k≥0 Bk, C =
⋃

k≥0 Ck, and ρ =
⋃

k≥0 ρk. For each x ∈ Σ∗, there is exactly
one valid query sequence in ρ on input x. If x /∈ D, (x) is the only valid query sequence in ρ on input
x. If x ∈ D, then for each q1, q2, . . . , qr ∈ Σ∗, (x, q1, q2, . . . , qr) ∈ ρ if and only if r = |x| + 2, for
each i < r, qi is the lexicographically ith string at length |x|, |qr| = |x|+ 1, and 〈q1, q2, . . . , qr〉 ∈ C.
Thus, ρ′ = {〈x1, x2, . . . , xk〉 | (x1, x2, . . . , xk) ∈ ρ} ∈ PC .

∅ ≤p,C
ρ-T B via a Turing machine M that on input x rejects if x /∈ D. Since (x) ∈ ρ, M has

the ρ query property with respect to B on input x. Otherwise (that is, if x ∈ D), let n = |x|.

By definition, n = 222
nk−1

, for some k ∈ N. M asks the following queries in sequence to its
first oracle: r1, r2, . . ., rn+1, where ri is the lexicographically ith string of length n. Let bi be
the answer that M obtains from the first oracle to query ri. M now asks the query b1b2 . . . bn+1

to its first oracle and rejects. Clearly, if M ’s first oracle is B, then by construction at Stage k,
(x, r1, r2, . . . , rn+1, b1b2 . . . bn+1) ∈ ρk. Since ρk ⊆ ρ, it follows that M has the ρ query property
with respect to B on input x.

Assume that ∅ ≤p,C
r-ρ-T B via Mk. We will derive a contradiction. Let n = nk. First note that it

follows from Lemma 3.6 that the behavior of MBk,Ck(0n) is exactly the same as that of MB,C(0n).
This is because in the stages after Stage k, the membership (in B or in C) of strings up to length
nk + k remains unaffected. Since Case 2 is impossible, Case 1 must hold in Stage k. Let Y and
Y ′ be as defined in Case 1 of Stage k of the construction. Let M = Mk. The sequence of queries
that MBk−1∪Y ′,Ck(0n) asks to its first oracle is not qY . Since each string queried by M on input
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0n must have length at most nk + k, the sequence of queries that MBk−1∪Y ′,C(0n) asks to its first

oracle is not qY . Thus, M = Mk cannot show that ∅ ≤p,C
r-ρ-T B. Since k was arbitrarily chosen,

∅ 6≤p,C
r-ρ-T B. ❑

We mention in passing that Theorem 3.5 and many of the other results that we prove here via
explicit diagonalization could be proved also via constructions that involve Kolmogorov complexity.
Indeed, the November 2003 precursor of this paper [HT03a] does that for many of the results that
it covers. However, as is often the case when doing Kolmogorov-based oracle constructions, the
constructions involve stages, cases, and information counting that is sufficiently complex as to make
the proofs long and in our opinion less easily understood than the explicit diagonalization versions
included here.

4 Comparing Query-Monotonic Reductions to Turing and

Truth-Table Reductions

In this section, we compare the power of query-monotonic reductions to different forms of Turing
and truth-table reductions. By definition, query-monotonic reductions are no more powerful than
Turing reductions. But in which cases are they as powerful as Turing reductions and in which cases
are they not? How does the power of query-monotonic reductions relate to the that of classical
reductions such as Turing reductions and truth-table reductions? These are the central questions
that we answer in this section.

Let ≤p
α and ≤p

β be defined reductions. If (∀A,B ⊆ Σ∗)[A ≤p
α B =⇒ A ≤p

β B], then we

say that ≤p
β is stronger than ≤p

α and that ≤p
α is weaker than ≤p

β . If ≤p
β is stronger than ≤p

α and

(∃A,B ⊆ Σ∗)[A ≤p
β B ∧ A 6≤p

α B], then we say that ≤p
β is strictly stronger than ≤p

α and that ≤p
α is

strictly weaker than ≤p
β . (For example, ≤p

T is trivially stronger than itself, and is both stronger and

strictly stronger than ≤p
tt.)

4 If we say that ≤p
β is not stronger than ≤p

α, we mean just that—that

“≤p
β is stronger than ≤p

α” is untrue. That is, this means (A,B ⊆ Σ∗)[A ≤p
α B ∧ A 6≤p

β B]. Note of

course that “≤p
β is not stronger than ≤p

α” and “≤p
β is strictly weaker than ≤p

α” are not synonymous.

Also note that “≤p
β is strictly stronger than ≤p

α” is equivalent to “≤p
β is stronger than ≤p

α but ≤p
α

is not stronger than ≤p
β .”

Let X = {li, ld, lni, lnd, s-li, s-ld, s-lni, s-lnd}. For each α, β ∈ X, we ask whether ≤p
α is stronger

than ≤p
β . There are 64 (8× 8 = 64) such questions. We resolve all these questions. In fact, we show

that the only “stronger than” relationships that hold are the ones that immediately follow from the
definitions. Since the definitions of query-monotonic reductions are based on restriction sets (see
Definition 2.3), we can formally (yet succinctly) state the answers to each of these 64 questions as
Theorem 4.1.

Theorem 4.1 For each α, β ∈ {li, ld, lni, lnd, s-li, s-ld, s-lni, s-lnd}, ≤p
β is stronger than ≤p

α if and
only if ρα ⊆ ρβ.

Note that, intuitively speaking, Theorem 4.1 says that the only stronger-than relationships that hold
are the ones that are “obvious.” Theorem 4.1 is a corollary of Theorems 4.9, 4.11, 4.13, and 4.14,
all of which are stated and proven below.

4So, as is now standard in complexity, we use “stronger” to refer to reductions that link at least as many sets as the
ones they are stronger than. To avoid confusion, we mention in passing that recursion theorists sometimes exchange
“strong” and “weak,” as they focus on the level of refinement of the equivalence classes induced by the reductions,
and a few computer science papers—especially early ones—mirrored that notion.
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[LLS75]

≤p
T

≤p
lni-T

≤p
ld-T≤p

s-lni-T

≤p
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≤p
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s-lnd-T≤p
tt

≤p
s-ld-T ≤p

2-tt ≤p
s-li-T

D
IThm 4.2, 4.4, and 4.7

T

Thm 4.9 and 4.11

Thm 4.13 Thm 4.14

Thm 4.2, 4.4, and 4.7

[LLS75]

Figure 2: Stronger-than and not-stronger-than relationships between different query-monotonic
reductions. Circles labeled D and I represent families of reductions (respectively, the “decreasing”
family and the “increasing” family) defined in this paper. Box T represents the “Turing/truth-table”
family of reductions (namely, ≤p

T , ≤p
tt, and ≤p

2-tt) that we compare our reductions against. A path
of solid edges from ≤p

β to ≤p
α indicates that ≤p

β is stronger than ≤p
α (that is, (∀A,B ⊆ Σ∗)[A ≤p

α

B =⇒ A ≤p
β B]). Note that all the solid edges are immediate from the definitions. A dashed edge

from family of reductions X to family of reductions Y indicates that, for each ≤p
β∈ X and ≤p

α∈ Y , if

there is no directed path of solid edges from ≤p
β to ≤p

α, then a solid edge from ≤p
β to ≤p

α is impossible

(in other words, (∃A,B ⊆ Σ∗)[A ≤p
α B ∧ A 6≤p

β B]. A label on a dashed edge indicates the results
from which the presence of the edge can be inferred.

We also want to compare query-monotonic reductions to classical notions of reductions (such
as Turing reductions). Thus, for each α ∈ X and for each β ∈ Y , where X is defined as above
and Y = {T, tt, 2-tt}, we ask whether ≤p

α is stronger than ≤p
β and we ask whether ≤p

β is stronger
than ≤p

α. There are 48 (2 × 3 × 8 = 48) such questions. We resolve each of these 48 questions in
Theorems 4.2, 4.4, and 4.7.

Roughly speaking, it follows from Theorems 4.2, 4.4, 4.7, 4.9, 4.11, 4.13, and 4.14 that, for each
α ∈ X and for each β ∈ X∪Y , of the two stronger-than relationships that can hold between ≤p

α than
≤p

β , the only ones that hold are the ones that are immediate from the definitions. That is, if it is

not immediate from the definitions that ≤p
β is stronger than ≤p

α, then ≤p
β is (provably) not stronger

than ≤p
α. And, if two reductions seem incomparable, they are in fact (provably) incomparable.

The main results of this section (in particular, the answers to the questions mentioned above) are
summarized in Figure 2. The solid directed edges in Figure 2 show the stronger-than relationships
that are immediate from the definitions. The results of this section show that the only stronger-than
relationships that hold are the ones shown by the solid edges. (Note that the stronger-than relation
is a transitive relation. For clarity, Figure 2 only shows (using directed edges) a subset of the tuples
in the stronger-than relation. The set of all tuples in the stronger-than relation is the transitive
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closure, under the stronger-than relation, of the set of tuples shown in Figure 2.) Thus, one way to
look at the results of this section is: If there is no directed path (that uses only solid edges) between
two arbitrary distinct nodes in Figure 2, no solid edge can be drawn between them. The dashed
edges represent the not-stronger-than relationship. To avoid clutter, the nodes in Figure 2 have
been clustered into 3 families: D (“decreasing”), I (“increasing”), and T (“Turing/truth-table”). A
dashed edge from ≤p

β to ≤p
α indicates that ≤p

β is not stronger than ≤p
α. A dashed edge from a group

X ∈ {D, I, T} to a group Y ∈ {D, I, T} indicates that, for each node ≤p
β∈ X and ≤p

α∈ Y , if there is

no (solid) directed path from ≤p
β to ≤p

α, then ≤p
β is not stronger than ≤p

α. The label on each dashed
edge denotes the set of results that imply the not-stronger-than relationships that the edge denotes.

Given reductions ≤p
α and ≤p

β such that there is no (solid) directed path from ≤p
β to ≤p

α in

Figure 2, one can also use Figure 2 to derive the result that ≤p
β is not stronger than ≤p

α. To show

that ≤p
β is not stronger than ≤p

α, it is sufficient to show that adding a solid (directed) edge from

≤p
β to ≤p

α in Figure 2 results in the following situation: Let G be the graph shown in Figure 2 and

let G′ be G appended with the edge (≤p
β , βp

α). There are distinct nodes ≤p
γ and ≤p

δ in G such that

there is a dashed edge from ≤p
γ to ≤p

δ in G, there is no directed path from ≤p
γ to ≤p

δ in G, yet in G′

there is a (solid) directed path from ≤p
γ to ≤p

δ . This a contradiction because solid edges represent
stronger-than relationships while dashed edges represent not-stronger-than relationships. (Note that
the stronger-than relation is transitive.)

Thus, Figure 2 can be used as a ready reference for comparing query-monotonic reductions. For
example, to look up the known relationships between, say, strong query-nonincreasing reductions
and query-increasing reductions, first locate ≤p

s-lni-T and ≤p
li-T in Figure 2 and find if there is any

(solid) directed path between these nodes. In this case there is none. This means that ≤p
s-lni-T is

incomparable to ≤p
li-T . Proofs for not-stronger-than relationships between ≤p

s-lni-T and ≤p
li-T can

be obtained as follows. Find the dashed path between circles D (which contains ≤p
s-lni-T ) and I

(which contains ≤p
li-T ). The path is labeled “Thm 4.9 and 4.11.” This means that using one or

more of Theorems 4.9 and 4.11, we can prove that ≤p
s-lni-T and ≤p

li-T are in fact incomparable. It
turns out that we need both Theorem 4.9 and Theorem 4.11. To show that ≤p

li-T is not stronger
than ≤p

s-lni-T (in other words, to show that there exist A,B ⊆ Σ∗ such that A ≤p
s-lni-T B yet

A 6≤p
li-T B), we use Theorem 4.9 (which says that ≤p

lnd-T is not stronger than ≤p
s-ld-T ) along with

the observations: ≤p
lnd-T is stronger than ≤p

li-T and ≤p
s-lni-T is stronger than ≤p

s-ld-T . (These two
results can be inferred from the presence of directed paths from ≤p

lnd-T to ≤p
li-T and from ≤p

s-lni-T
to ≤p

ld-T , respectively.) Note that if we assume (for the purpose of deriving a contradiction) that
≤p

li-T is stronger than ≤p
s-lni-T , then by the transitivity of the stronger-than relation we have that

≤p
lnd-T is stronger than ≤p

s-ld-T , which is a contradiction to Theorem 4.9. To show that ≤p
s-lni-T

is not stronger than ≤p
li-T , we combine the result that query-increasing reductions are not stronger

than strong query-increasing reductions (Theorem 4.11) with the observations: ≤p
lni-T is stronger

than ≤p
s-lni-T and ≤p

li-T is stronger than ≤p
s-li-T .

We will now state and prove results from which all the not-stronger-than relationships can be
derived. We first state (as Theorems 4.2, 4.4, and 4.7) the not-stronger-than relationships between
the query-monotonic reductions and the classical reductions. This set of results corresponds to the
bidirectional dashed arrows between D and T and between I and T in Figure 2. After this set
of results, we will state (as Theorems 4.9, 4.11, 4.13, and 4.14) the not-stronger-than relationships
between query-monotonic reductions. This set of results corresponds to the bidirectional dashed
edges between D and I, between ≤p

s-lni-T and ≤p
ld-T , and between ≤p

s-lnd-T and ≤p
li-T .

In Theorem 4.2, we show that two strongest query-monotonic reductions (namely, query-
nonincreasing reductions and query-nondecreasing reductions) are not stronger than the Turing
reductions. Given that Turing reductions are stronger than both query-nonincreasing and query-
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nondecreasing reductions, Theorem 4.2 implies that Turing reductions are strictly stronger than
both query-nonincreasing and query-nondecreasing reductions.

Theorem 4.2 (∃A,B ⊆ Σ∗)[B ≤p
T A ∧ B 6≤p

lni-T A ∧ B 6≤p
lnd-T A].

Proof Intuitively speaking, the proof is based on the observation that a Turing machine
implementing a query-nonincreasing reduction cannot ask a longer query after it has asked a shorter
one. Similarly, a machine implementing a query-nondecreasing reduction cannot ask a shorter query
after it has asked a longer one. The diagonalization works by ensuring that for each machine M
there is a diagonalizing string x such that the membership (in the test language5 B = LA) of x
depends on two strings in the oracle A; let us call them ` (for “long”) and s (for “short”). ` has
length longer than |x| and s has length shorter than |x|. We will ensure that ` and s are picked
so that if M asks queries in a length-nonincreasing manner, it cannot query ` to its oracle and if
MA(x) asks query in a length-nondecreasing manner, it cannot query s to its oracle. Since the
membership of x will depend on both ` and s, we can then force M to have the behavior that we
need for diagonalization.

For each D ⊆ Σ∗, we define LD as:

LD = {04k

| k ≥ 1 ∧ (µ1(k) ∈ D) ⊕ (µ2(k) ∈ D))},

where, for each k ∈ N
+, µ1(k) is the string 0(1/4)4k

χD(04k−1)χD(04k−2) . . . χD(0(3/4)4k

) and µ2(k) is

the string 0(5/4)4k

χD(04k+1)χD(04k+2) . . . χD(0(5/4)4k

). Note that for each D ⊆ Σ∗, LD ≤p
T D. We

will construct the set A in stages below such that LA 6≤p
lni-T A and LA 6≤p

lnd-T A. Thus, LA will be
the set B promised in the statement of this theorem. In odd numbered stages we will ensure that
LA 6≤p

lni-T A and in even numbered stages we will ensure that LA 6≤p
lnd-T A. For each i ∈ N

+, let
Ai−1 denote the set of strings added to A before Stage i. A0 = ∅.
Stage i = 2j −1, j ∈ N

+. Let M = Mj . We will ensure that M does not implement LA ≤p
lni-T A.

Let n = ni be the smallest integer such that no string of length greater than or equal to n has been

made relevant6 in any previous stage, ni + i < 2(1/4)n, and for some k ≥ 1, n = 4k. If MAi−1(04k

)
does not ask queries in a length-nonincreasing manner, let Ai = Ai−1. Go to Stage i + 1. If

MAi−1(04k

) asks queries in a length-nonincreasing manner, let α be a string of length (1/4)4k such

that MAi−1(04k

) does not query 0(5/4)4k

α (for specificity, the lexicographically least such string).

(Such a string exists because ni + i < 2(1/4)4k

by our choice of n.) We will fix the membership (in

A) of the following strings in accordance with α: 04k+1, 04k+2, . . ., 0(5/4)4k

. In particular, for each

1 ≤ i ≤ (1/4)4k, if the ith bit of α is 0, we put the string 04k+i out of A and if the ith bit of α

is 1, we put the string 04k+i in A. Let A′ be resulting set. Formally, let A′ = Ai−1 ∪ X, where

X = {04k+i | 1 ≤ i ≤ (1/4)4k and ith bit of α is 1}. Since, by assumption, MAi−1(04k

) does not

query 0(5/4)4k

α, if MA′

(04k

) queries 0(5/4)4k

α, then MA′

(04k

) queries 0(5/4)4k

α after having queried

5The term “test language” doesn’t have any formal, technical meaning, but rather is typically used in construction
settings to describe a language that is defined in terms of another one—in this case, B is defined via A in a manner
that will soon be specified—and that typically is used to instantiate or falsify some reducibility or membership claim
(see, e.g., [Tha04]).

6If a stage of this construction speaks of a machine, Mk, running on inputs x1, x2 . . ., then we say that all strings
of length up to and including

max
xi

(|xi|
k + k)

are made relevant by this stage (regardless of whether or not they are queried), and we also say that each string that,
in that stage, we explicitly place into the oracle or explicitly set as not belonging to the oracle is made relevant by
this stage. (For later proofs, we will not as explicitly define “relevant,” but it will in each case be analogous, and clear
from content.)
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some string from the set X (since Ai−1 and A differ only regarding X). Each string in X has length

strictly less than |0(5/4)4k

α|. Thus, in this case M does not have the query-nonincreasing property

with respect to A′ on input 04k

. Let Ai = A′. Go to Stage i+1. Otherwise (that is, if MA′

(04k

) does

not query 0(5/4)4k

α), define Ai = A′ ∪ {0(5/4)4k

α |MA′

(04k

) rejects}.7 Clearly, MAi(04k

) accepts if

and only if 04k

/∈ LAi
. We will maintain this behavior throughout the construction.8 Go to Stage

i + 1.
End of Stage i.

Stage i = 2j, j ∈ N
+. Let M = Mj . We will ensure that M does not implement LA ≤p

lnd-T A.
Let n = ni be the smallest integer such that no string of length greater than or equal to n has been

made relevant in any previous stage, ni + i < 2(1/4)n, and for some k ≥ 1, n = 4k. If MAi−1(04k

)
does not ask queries in a length-nondecreasing manner, let Ai = Ai−1. Go to Stage i + 1. If

MAi−1(04k

) asks queries in a length-nondecreasing manner, let α be a string of length (1/4)4k such

that MAi−1(04k

) does not query 0(1/4)4k

α (for specificity, the lexicographically least such string).

(Such a string exists because ni + i < 2(1/4)4k

by our choice of n.) We will fix the membership (in

A) of the following strings in accordance with α: 04k−1, 04k−2, . . ., 0(3/4)4k

. In particular, for each

1 ≤ i ≤ (1/4)4k, if the ith bit of α is 0, we put the string 04k−i out of A and if the ith bit of α

is 1, we put the string 04k−i in A. Let A′ be resulting set. Formally, let A′ = Ai−1 ∪ X, where

X = {04k−i | 1 ≤ i ≤ (1/4)4k and ith bit of α is 1}. Since, by assumption, MAi−1(04k

) does not

query 0(1/4)4k

α, if MA′

(04k

) queries 0(1/4)4k

α, then MA′

(04k

) queries 0(1/4)4k

α after having queried

some string from the set X. Each string in X has length strictly greater than |0(1/4)4k

α|. Thus,

in this case M does not have the query-nondecreasing property with respect to A′ on input 04k

.

Let Ai = A′. Go to Stage i + 1. Otherwise (that is, if MA′

(04k

) does not query 0(1/4)4k

α), define

Ai = A′ ∪ {0(1/4)4k

α | MA′

(04k

) rejects}. Clearly, MAi(04k

) accepts if and only if 04k

/∈ LAi
. We

will maintain this behavior throughout the construction. Go to Stage i + 1.
End of Stage i.

Let A =
⋃

i≥1 Ai. It is clear from our construction in the odd numbered stages that, for each

j ∈ N
+, Mj does not implement LA ≤p

lni-T A. Thus, LA 6≤p
lni-T A. Furthermore, it is clear

from our construction in the even numbered stages that, for each j ∈ N
+, Mj does not implement

LA ≤p
lnd-T A. Thus, LA 6≤p

lnd-T A. ❑

As an immediate corollary to Theorem 4.4, we get the following.

Corollary 4.3 (∃A,B ⊆ Σ∗)[B ≤p
T A ∧ B 6≤p

li-T A ∧ B 6≤p
ld-T A].

Roughly speaking, in Theorems 4.4, 4.6, and 4.7 we show that nonadaptive Turing reductions
(i.e., truth-table reductions) and query-increasing Turing reductions are incomparable: Theorem 4.4
shows that neither query-increasing nor query-decreasing Turing reductions are stronger than two-
truth-table reductions (and thus, neither is stronger than truth-table reductions). Nonetheless, we
show in Theorem 4.7 that truth-table reductions are not stronger than either query-increasing or
query-decreasing Turing reductions. In fact, we show in Theorem 4.7 that truth-table reductions
are not stronger than even strong query-increasing Turing reductions and truth-table reductions are
not stronger than even query-decreasing Turing reductions. Note that Theorem 4.4 as an immediate

7We will often use this notation. It means just what it says interpreted in the natural mathematical way: Ai =

A′ ∪ {0(5/4)4k

α} if MA′

(04k

) rejects, and otherwise Ai = A′.
8The sentence “We will maintain this behavior throughout the construction,” which will appear often in this paper,

means that the behavior just mentioned—in this particular case “MAi (04k

) accepts if and only if 04k

/∈ LAi
”—will

hold not just for Ai but even for A, i.e., no action taken later in the construction will break this.
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corollary implies that neither query-increasing nor query-decreasing reductions are stronger than
Turing reductions.

Theorem 4.4 (∃A,B ⊆ Σ∗)[B ≤p
2-tt A ∧ B 6≤p

li-T A ∧ B 6≤p
ld-T A].

Proof Roughly speaking, the proof is based on exploiting the “maximum of one query per length”
limitation of machines implementing query-increasing and query-decreasing reductions. In contrast
to this limitation, even though a machine implementing a 2-truth-table reduction is allowed at most
two queries to its oracles on any given input, both these queries may be of the same length. We
exploit this difference in our diagonalization to construct sets A and B = LA such that LA ≤p

2-tt A,
yet LA 6≤p

li-T A and LA 6≤p
ld-T A. For each D ⊆ Σ∗, define LD as follows:

LD = {0i | (0i ∈ D) ⊕ (1i ∈ D)},

where ⊕ is the exclusive OR operator. Clearly, for each D, LD ∈ Rp
2-tt(D). We will now construct

a set A such that LA 6∈ Rp
li-T (A) ∪ Rp

ld-T (A). We will construct A in stages by adding zero or more
elements to A at each stage. At each stage, we will ensure that the elements added to A at that
stage have not been made relevant (see footnote 6) in earlier stages. For each k, nk ∈ N (defined
later) is the only length at which strings are added at Stage k. Let Ak−1 be the set consisting of all
the elements added to A before Stage k. In Stage k, we will ensure, via diagonalization if required,
that at least one of the following two conditions hold:

1. Mi neither has the ρli query property nor has the ρld query property with respect to A.

2. L(MA
i ) 6= LA.

Note that if, for each k, at least one of the above conditions hold, then LA 6≤p
li-T A and LA 6≤p

ld-T A
.

Let A0 = ∅ and n0 = 1.
Stage k ∈ N

+. Choose n = nk to be the smallest natural number that is is larger than the length of
all strings made relevant (see footnote 6) in earlier stages. Let M = Mk. Either MAk−1(0n) accepts
or MAk−1(0n) rejects. If MAk−1(0n) accepts, then let Ak = Ak−1. MAk(0n) accepts, yet 0n 6∈ LAk

,
and so condition 2 is satisfied. We will maintain this behavior throughout the construction. If
MAk−1(0n) rejects, then there are 3 possible cases:

1. MAk−1(0n) queries neither 0n nor 1n.

2. MAk−1(0n) queries exactly one of 0n and 1n.

3. MAk−1(0n) queries both 0n and 1n.

If MAk−1(0n) queries neither 0n nor 1n, then let Ak = Ak−1∪{0
n}. Clearly, 0n ∈ LAk

−L(MAk). We
will maintain this behavior throughout the construction. Thus, condition 2 is satisfied. If M Ak−1(0n)
queries exactly one of 0n and 1n, we let Ak = Ak−1 ∪ {a}, where a is the string in {0n, 1n} that is
not queried by MAk−1(0n). Clearly, 0n ∈ LAk

−L(MAk). We will preserve this behavior throughout
the construction. Thus, condition 2 is satisfied. If MAk−1(0n) queries both 0n and 1n, then let
Ak = Ak−1. In this case, since M queries two strings of the same length, M neither has the ρli

query property nor has the ρld query property with respect to Ak. We will maintain this behavior
throughout the construction. Thus, condition 1 is satisfied. Go to Stage k + 1.
End of Stage k.

Let A =
⋃

k≥1 Ak. As noted earlier, if for each k, at least one of the two conditions holds, then

LA 6≤p
li-T A and LA 6≤p

ld-T A. It is evident from the construction that, for each k ≥ 1, at least one
of the two conditions holds in Stage k of the construction. Also, by our choice of nk in subsequent
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stages, the behavior that causes this condition to hold at Stage k is preserved in subsequent stages,
and thus this condition itself continues to hold in subsequent stages. ❑

Theorem 4.4 shows that polynomial-time query-increasing Turing reductions and polynomial-
time 2-truth-table reductions differ. In fact, the proof of Theorem 4.4 actually achieves a slightly
stronger result. Note that the LA we construct in the proof not only polynomial-time 2-truth-table
reduces to A, but also 2-truth-table reduces to A via a machine that uses the same truth-table
(namely, the “2-ary parity” truth-table) for each input.

Definition 4.5 [Wec85] A k-fixed-truth-table reduction, denoted ≤p
k-ftt, is a truth-table reduction

in which the machine implementing the reduction uses the same truth-table for each input.

There are a total of sixteen two-argument fixed-truth-table reductions (corresponding to the
sixteen 2-ary boolean connectives). A completely degenerate boolean connective is one whose output
does not depend on any of its inputs, and an almost-completely degenerate boolean connective is one
whose output depends on exactly one of its inputs ([HJ95], which shows that these notions are highly

relevant to closure properties of the P-selective sets). Of the 22k

k-ary boolean connectives, there are
exactly two completely degenerate ones and exactly 2k almost-completely degenerate ones. Since
each boolean connective corresponds to a k-fixed-truth-table reduction, there are two completely
degenerate k-fixed-truth-table reductions and 2k almost-completely degenerate k-fixed-truth-table
reductions. For each k-ary boolean connective σ, let ≤p

σ-ftt denote the k-fixed-truth-table reduction
in which the machine uses σ as its truth-table.

As observed earlier, the test language LA in the proof of Theorem 4.4 is not only in Rp
2-tt(A),

as claimed in the statement of theorem, but also in Rp
σ⊕-ftt(A), where σ⊕ is the “2-ary parity”

truth-table. It is not hard to see that for each 2-ary boolean connective σ that is neither completely
degenerate nor almost-completely degenerate, the construction of Theorem 4.4 can be modified (the
“3 possible cases”/subsequent arguments framework changes in some of these cases, but in each case
it is not hard to see that diagonalization can be successfully achieved) so that the test language
LA ≤p

σ-ftt A yet LA 6≤p
li-T A and LA 6≤p

ld-T A. On the other hand, if σ is completely degenerate

or almost-completely degenerate then, for each B ∈ Rp
σ-ftt(A), the membership of any string in B

depends on the membership (in A) of at most one string. Thus, B ≤p
li-T A and B ≤p

ld-T A. We
formalize these relationships between fixed-truth-table reductions and query-monotonic reductions
in Theorem 4.6 below.

Theorem 4.6 1. For each 2-ary boolean connective σ that is neither completely degenerate nor
almost-completely degenerate, there exists an A,B ⊆ Σ∗ such that B ≤p

σ-ftt A yet B 6≤p
li-T A

and B 6≤p
ld-T A.

2. For each 2-ary boolean connective σ that is completely degenerate or almost-completely
degenerate, and for each A,B ⊆ Σ∗, B ≤p

σ-ftt A =⇒ (B ≤p
li-T A ∧ B ≤p

ld-T A).

Theorems 4.4 and 4.6 show that neither query-increasing nor query-decreasing reductions
are stronger than truth-table reductions. In fact, neither query-increasing nor query-decreasing
reductions are stronger than even 2-query fixed-truth-table reductions. In light of these results, it is
interesting to ask the converse question: Are truth-table reductions stronger than query-increasing
reductions? Are truth-table reductions stronger than query-decreasing reductions? In Theorem 4.7
we show that the answer to both these questions is “no.”

Theorem 4.7 (∃A,B ⊆ Σ∗)[B ≤p
s-li-T A ∧ B ≤p

s-ld-T A ∧ B 6≤p
tt A].
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Proof The proof is based on the construction of an oracle A and a test language B such that
membership of strings in B can be decided in two different ways—by querying A in a strong length-
increasing fashion or by querying A in a strong length-decreasing fashion. Additionally, we ensure
via diagonalization that B does not polynomial-time truth-table reduce to A.

For each D, define LD as follows:

LD = {08k

| k ≥ 1 ∧ 0(5/8)8k

χD(08k−1)χD(08k−2) . . . χD(0(7/8)8k

) ∈ D}.

We will construct sets A and LA (which will be our B) such that LA ≤p
s-li-T A and LA ≤p

s-ld-T A,
yet LA 6≤p

tt A.
Note that, for each D ⊆ Σ∗, LD ≤p

s-ld-T D via a Turing machine M that rejects any input that

is not of the form 08k

and that, for any input of the form 08k

, asks its oracle the following strings in

order: 08k−1, 08k−2, . . ., 0(7/8)8k

. From the answers b1, b2, . . ., b(1/8)8k to these queries, M computes

the string q = 0(5/8)8k

b1b2 . . . b(1/8)8k , asks q to its oracle, and accepts exactly if the oracle says

“yes.” Since |q| = (5/8)8k + (1/8)8k = (3/4)8k < (7/8)8k, it follows that M indeed has the strong
query-decreasing property with respect to each oracle D.

To ensure that the LA we construct strong query-increasing reduces to A, we will ensure that
set A that we construct obeys the following promises:

1. For each k ≥ 1 and for each j such that 1 ≤ j ≤ (1/8)8k, χA(08k−j) = χA(08k+j).

2. For each k ≥ 1, 0(5/8)8k

χA(08k−1)χA(08k−2) . . . χA(0(7/8)8k

) ∈ A if and only if

0(9/8)8k

χA(08k+1)χA(08k+2) . . . χA(0(9/8)8k

) ∈ A.

If these promises are satisfied, then LA ≤p
s-li-T A via a Turing machine M that rejects any input

that is not of the form 08k

and that, on any input of the form 08k

, asks its oracle the following

(1/8)8k strings in order: 08k+1, 08k+2, . . ., 0(9/8)8k

. From part 1 of the promises above, it follows
that if the oracle providing the answers is A, then the sequence of answers to the queries above is

exactly the sequence of answers to the following sequence of queries: 08k−1, 08k−2, . . ., 0(7/8)8k

. Let

this sequence be b1, b2, . . ., b(1/8)8k . M computes the string q = 0(9/8)8k

b1b2 . . . b(1/8)8k , asks q to its
oracle, and accepts exactly if the oracle says “yes.” From part 2 of the promises above, it follows

that q ∈ A if and only if 0(5/8)8k

χA(08k−1)χA(08k−2) . . . χA(0(7/8)8k

) ∈ A. Thus, it follows from the

definition of LA that, for each k ≥ 1, M(08k

) accepts if and only if 08k

∈ LA. It is immediate from
its description that M has the strong query-increasing property with respect to A (and, in fact, with
respect to each oracle).

It is not hard to see that each truth-table reduction can be implemented by some Turing machine
T such that, for each input x and for each oracle X, in spirit “T X(x) computes all its oracle queries
before asking any one of them.” Of course, this is not a well-formalized notion (short of changing
the model of what a Turing reduction itself is). But we can formalize the closely related notion
that we want as follows. Instead of having “T X(x) computes all its oracle queries before asking
any one of them” as our requirement, we will have as our requirement that for each x and each
Y and each Z, the ordered sequence of queries asked by T Y (x) is exactly the same as the ordered
sequence of queries asked by T Z(x) (this in effect ensures that the vector of questions asked by T (x)
does not depend on what our oracle is). Let us henceforward call Turing machines that have this
property “truth-table machines.” Let T1, T2, . . . be an (easily computed) enumeration of truth-table
machines such that, for each X ⊆ Σ∗ and each x ∈ Σ∗, TX

i (x) runs in time ni + i, and such that
each truth-table reduction is implemented by at least one Ti (note that we do not require that
every machine with “truth-table machine” behavior appears in our enumeration, as that would run
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aground on undecidability issues; rather, we just require that our enumeration holds at least one
machine implementing each truth-table reduction). It is not hard to see that such an enumeration
exists, and we will from now on refer to it when we speak of T1, T2, . . .. (Note that this paragraph
presented a somewhat different approach to capturing truth-table reductions than that part 1 of
Definition 2.1.)

We will now describe our construction of A. We will construct A in stages. In Stage i ≥ 1, we
will diagonalize against the machine Ti. That is, in Stage i we will show that Ti does not implement
LA ≤p

tt A.
Let Ai−1 denote the set of strings added to A before Stage i. Let A0 = ∅.

Stage i, i ≥ 1: Let n = ni be the smallest integer such that, for some k ≥ 1, n = 8k, ni + i < 2n/8,
and no string of length (3/4)8k or longer has been made relevant (see footnote 6) in any earlier
stage.

We will diagonalize against Ti. Let M = Ti. Let Q be the set of oracle queries that M asks on

input 08k

. Since M is a truth-table machine, the set of oracle queries does not depend on the oracle
attached to M . Since M runs in time at most ni + i, ||Q|| ≤ ni + i. Let α be the lexicographically

smallest string of length n/8 such that neither 0(5/8)8k

α nor 0(9/8)8k

α is in Q. Since ni + i < 2(1/8)8k

,
α is well defined. We will fix the membership (in A) of the following strings in accordance with

α: 08k−1, 08k−2, . . ., 0(7/8)8k

. In particular, for each 1 ≤ i ≤ (1/8)8k, if the ith bit of α is 0, we

fix the string 08k−i to be out of A and if the ith bit of α is 1, we fix the string 08k−i to be in A.

Since we want A to obey the promises, we make sure that 08k−i is in A exactly if 08k+i is in A.

Let A′ be resulting set. Formally, let A′ = Ai−1 ∪ {08k−i | 1 ≤ i ≤ (1/8)8k and the ith bit of α is

1} ∪ {08k+i | 1 ≤ i ≤ (1/8)8k and the ith bit of α is 1}. Define Ai = A′ ∪ {0(5/8)8k

α | MA′

(08k

)

rejects} ∪ {0(9/8)8k

α |MA′

(08k

) rejects}.
First note that if Ai−1 satisfies the abovementioned promises, then so does Ai. By the definition

of α, MAi(08k

) queries neither 0(5/8)8k

α nor 0(9/8)8k

α. Thus, MAi(08k

) accepts if and only if

MA′

(08k

) accepts, and so MAi(08k

) accepts if and only if 08k

/∈ LAi
. We will maintain this behavior

throughout the construction. Go to Stage i + 1.
End of Stage i.

Let A =
⋃

i≥1 Ai. Since A0 = ∅ trivially satisfies the promises, it follows from the construction

that A satisfies the promises. Thus, it is clear from the construction that LA ≤p
s-li-T A and

LA ≤p
s-ld-T A, yet LA 6≤p

tt A. ❑
As an immediate corollary we have the following:

Corollary 4.8 1. (∃A,B ⊆ Σ∗)[B ≤p
li-T A ∧ B ≤p

ld-T A ∧ B 6≤p
tt A].

2. (∃A,B ⊆ Σ∗)[B ≤p
lni-T A ∧ B ≤p

lnd-T A ∧ B 6≤p
tt A].

In Theorems 4.2, 4.4, and 4.7, we saw not-stronger-than relationships between query-monotonic
reductions and classical reductions (such as Turing and truth-table reductions). We now state
and prove (as Theorems 4.9, 4.11, 4.13, and 4.14) not-stronger-than relationships between different
query-monotonic reductions.

Note that truth-table reductions are at least as restrictive as query-nondecreasing (query-
nonincreasing) reductions, because if all the queries are generated before any query is asked, then
they can be asked in query-nondecreasing or query-nonincreasing order, regardless of what the
queries are. Thus, for sets A and B, if A ≤p

tt B, then A ≤p
lni-T B and A ≤p

lnd-T B. On the other
hand, if two of the queries in the list of queries are of the same length, then they cannot be asked in
query-increasing or in query-decreasing order. Thus, it is not clear whether truth-table reductions
are as restrictive as query-increasing (query-decreasing) reductions. In fact, as Theorem 4.4 and
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Theorem 4.7 show, truth-table and query-increasing (query-decreasing) reductions are incomparable.
In light of these results, it is interesting to ask how query-increasing and query-decreasing Turing
reductions compare. Is one stronger than the other? We show in Corollaries 4.10 and 4.12 that
query-increasing and query-decreasing Turing reductions are strength-wise incomparable. In fact,
we prove the following stronger results in Theorems 4.9 and 4.11 from which Corollaries 4.10 and 4.12
follow easily: There exist sets A and B such that B strong query-decreasing Turing reduces to A but
B does not query-nondecreasing Turing reduce to A, and there also exist sets A and B such that B
strong query-increasing Turing reduces to A, yet B does not query-nonincreasing Turing reduce to
A.

Theorem 4.9 (∃A,B ⊆ Σ∗)[B ≤p
s-ld-T A ∧ B 6≤p

lnd-T A].

Proof The proof idea is similar to that of Theorem 4.7. We want to construct an oracle A and
a test language B such that the membership of each string in B can be tested by asking queries
to A in a strong length-decreasing fashion. In particular, the Turing machine implementing the

strong query-decreasing reduction from B to A would, on strings of the form 04k

, ask (1/4)4k strong
length-decreasing queries to its oracle. The machine then concatenates the answers from the oracle,
pads the concatenated string appropriately, and uses the string q thus formed as the next query to
its oracle. Our construction ensures that the length of q is less than the lengths of strings queried
earlier. Roughly and intuitively speaking, since the bits of q depend on the membership (in A) of
several strings, a machine cannot compute the value of q without asking to its oracle those queries
(of lengths longer than |q|) whose membership (in A) determine the bits of q. This allows us to
diagonalize against machines implementing query-nondecreasing reductions to A.

For each D, we define LD as follows:

LD = {04k

| k ≥ 1 ∧ 0(1/4)4k

χD(04k−1)χD(04k−2) . . . χD(0(3/4)4k

) ∈ D}.

We will construct sets A and LA (which is our B) such that LA ≤p
s-ld-T A, yet LA 6≤p

lnd-T A.
Note that, for each D ⊆ Σ∗, LD ≤p

s-ld-T D via a Turing machine M that rejects any input that

is not in {04k

|k ≥ 1} and that, for any input in {04k

|k ≥ 1}, asks its oracle the following queries in

order: 04k−1, 04k−2, . . ., 0(3/4)4k

. Let the answers to these queries be b1, b2, . . ., b(1/4)4k , respectively.

M computes the string q = 0(1/4)4k

b1b2 . . . b(1/4)4k , asks query q to its oracle, and accepts exactly if

the oracle says “yes.” Since |q| = (1/4)4k + (1/4)4k = (1/2)4k < (3/4)4k, it follows that M indeed
has the strong query-decreasing property with respect to each oracle D.

We will now describe our construction of A. We will construct A in stages. In Stage i ≥ 1, we
will diagonalize against the machine Mi. (Recall from Section 2 that for each X ⊆ Σ∗ and each
x ∈ Σ∗, MX

i (x) runs in time |x|i + i.) That is, in Stage i we will show that Mi does not implement
LA ≤p

lnd-T A.
Let Ai−1 denote the set of strings added to A before Stage i. Let A0 = ∅.

Stage i, i ≥ 1: Let n = ni be the smallest integer such that, for some k ≥ 1, n = 4k, ni + i < 2n/4,
and no string of length (1/2)4k or longer has been made relevant (see footnote 6) in any earlier
stage.

We will diagonalize against Mi. Let M = Mi. Let t be the smallest step at which MAi−1(04k

)
asks a query of length strictly greater than (1/2)4k. Let γ be this string. By definition, |γ| > (1/2)4k.

(If MAi−1(04k

) never asks a query of length strictly greater than (1/2)4k, let t = ni + i and let γ be

undefined.) Let α be the lexicographically smallest string of length (1/4)4k such that MAi−1(04k

)

does not ask the query 0(1/4)4k

α in the first t steps. Since t ≤ ni + i < 2(1/4)4k

, α is well defined.

We will fix the membership (in A) of the following strings in accordance with α: 04k−1, 04k−2,
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. . ., 0(3/4)4k

. In particular, for each 1 ≤ i ≤ (1/4)4k, if the ith bit of α is 0, we fix the string

04k−i to be out of A and if the ith bit of α is 1, we fix the string 04k−i to be in A. Formally, let

A′ = Ai−1 ∪ {04k−i | 1 ≤ i ≤ (1/4)4k and the ith bit of α is 1}. If MAk−1(04k

) never asks a query a

string of length strictly greater than (1/2)4k (that is, if γ is undefined), MA′

(04k

) will ask exactly

the same set of queries as MAi−1(04k

). Let Ai = A′ ∪ {0(1/4)4k

α | MA′

(04k

) rejects}. MAi(04k

)

accepts if and only if 04k

/∈ LAi
. We will preserve this behavior. Go to Stage i + 1.

Otherwise (that is, if MAk−1(04k

) asks a query of length strictly greater than (1/2)4k), γ is

defined. For each query s that is asked in the first t−1 steps of MAi−1(04k

), the membership of s in

A′ is identical to the membership of s in Ai−1. Thus, the first t−1 steps of MA′

(04k

) will be identical

to the first t−1 steps of MAi−1(04k

). Thus, the query asked by MA′

(04k

) at step t will be γ and the

queries asked in the first t steps of MA′

(04k

) will not include 0(1/4)4k

α. If MA′

(04k

) asks the query

0(1/4)4k

α at step t + 1 or later, we know that M does not have the query-nondecreasing property

with respect to A′ on input 04k

because it asks a query (namely, 0(1/4)4k

α) of length (1/2)4k after
it asks a query (namely, γ) of length greater than (1/2)4k. Let Ai = A′. M does not implement
LAi

≤p
lnd-T Ai (because M does not have the query-decreasing property with respect to A′). We

will maintain this behavior throughout the construction. Go to Stage i + 1.

The remaining case is: MA′

(04k

) does not ask the query 0(1/4)4k

α. Let Ai = A′ ∪

{0(1/4)4k

α | MA′

(04k

) rejects}. By the definition of LAi
, 04k

∈ LAi
if and only if MA′

(04k

)
rejects. We will maintain this behavior throughout the construction. Thus, M does not implement
LAi

≤p
lnd-T Ai. Go to Stage i + 1.

End of Stage i.
Let A =

⋃

i≥1 Ai. It is clear from the construction at Stage i that Mi does not implement

LA ≤p
lnd-T A. ❑

As an immediate corollary, we have the following corollary.

Corollary 4.10 1. (∃A,B ⊆ Σ∗)[B ≤p
s-ld-T A ∧ B 6≤p

li-T A].

2. (∃A,B ⊆ Σ∗)[B ≤p
ld-T A ∧ B 6≤p

li-T A].

3. (∃A,B ⊆ Σ∗)[B ≤p
ld-T A ∧ B 6≤p

lnd-T A].

Theorem 4.9 shows that query-nondecreasing Turing reductions are not stronger than strong
query-decreasing Turing reductions. Thus, it is natural to ask whether the not-stronger-than
relationship holds between query-nonincreasing Turing reductions and strong query-increasing
Turing reductions. In Theorem 4.11 we show that this is indeed the case. In fact, the proof of
Theorem 4.11 is very similar to that of Theorem 4.9—the difference, roughly, is that in the proof
of Theorem 4.9 our construction ensures that the only way a polynomial-time Turing machine
can correctly accept/reject the diagonalizing string is by asking queries to the oracle in a length-
decreasing fashion, while in the proof of Theorem 4.11 our construction ensures that the only way a
Turing machine can correctly accept/reject the diagonalizing string is by asking queries to the oracle
in a length-increasing fashion. For the sake of completeness, we give the full proof of Theorem 4.11,
but we encourage the reader to work out the details of the proof on his or her own.

Theorem 4.11 (∃A,B ⊆ Σ∗)[B ≤p
s-li-T A ∧ B 6≤p

lni-T A].

Proof The proof idea is similar to that of Theorem 4.9. We want to construct an oracle A and
a test language B such that the membership of each string in B can be tested by asking queries
to A in a strong length-increasing fashion. In particular, the Turing machine implementing the

strong query-increasing reduction from B to A would, on strings of the form 04k

, ask (1/4)4k strong
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length-increasing queries to its oracle. The machine would then concatenate the answers from the
oracle, pad the concatenated string appropriately, and use the string q thus formed as the next
query to its oracle. The padding ensures that the length of q is greater than the lengths of strings
queried earlier. Roughly speaking, since the bits of q depend the membership (in A) of several
strings, a machine cannot compute the value of q without asking to A those queries (shorter than
|q|) whose membership (in A) determine the bits of q. This allows us to diagonalize against machines
implementing query-nonincreasing reductions to A.

For each D, we define LD as follows:

LD = {04k

| k ≥ 1 ∧ 0(5/4)4k

χD(04k+1)χD(04k+2) . . . χD(0(5/4)4k

) ∈ D}.

We will construct sets A and LA (which is our B) such that LA ≤p
s-li-T A, yet LA 6≤p

lni-T A.
Note that, for each D ⊆ Σ∗, LD ≤p

s-li-T D via a Turing machine M that rejects any input that

is not in {04k

|k ≥ 1} and that, for any input in {04k

|k ≥ 1}, asks to its oracle the following queries

in order: 04k+1, 04k+2, . . ., 0(5/4)4k

. Let the answers to these queries be b1, b2, . . ., b(1/4)4k . M

computes the string q = 0(5/4)4k

b1b2 . . . b(1/4)4k , asks q to its oracle, and accepts exactly if the oracle

says “yes.” Since |q| = (5/4)4k + (1/4)4k = (3/2)4k > (5/4)4k, it follows that M indeed has the
strong query-increasing property with respect to each oracle D.

We will now describe our construction of A. We will construct A in stages. In Stage i ≥ 1, we
will diagonalize against the machine Mi. (Recall from Section 2 that for each X ⊆ Σ∗ and each
x ∈ Σ∗, MX

i (x) runs in time |x|i + i.) That is, in Stage i we will show that Mi does not implement
LA ≤p

lni-T A.
Let Ai−1 denote the set of strings added to A before Stage i. Let A0 = ∅.

Stage i, i ≥ 1: Let n = ni be the smallest integer such that, for some k ≥ 1, n = 4k, ni+i < 2(1/4)n,
and no string of length 4k or longer has been made relevant (see footnote 6) in any earlier stage.

We will diagonalize against Mi. Let M = Mi. Let t be the smallest step at which MAi−1(04k

)
asks some query of length strictly less than (3/2)4k. Let γ be this string. By definition, |γ| < (3/2)4k.

(If MAi−1(04k

) never asks a query of length strictly less than (3/2)4k, let t = ni + i and let γ be

undefined.) Let α be the lexicographically smallest string of length (1/4)4k such that MAi−1(04k

)

does not ask the query 0(5/4)4k

α in the first t steps. Since t ≤ ni + i < 2(1/4)4k

, α is well defined.

We will fix the membership (in A) of the following strings in accordance with α: 04k+1, 04k+2, . . .,

0(5/4)4k

. In particular, for each 1 ≤ i ≤ (1/4)4k, if the ith bit of α is 0, we put the string 04k+i out

of A and if the ith bit of α is 1, we put the string 04k+i in A. Formally, let A′ = Ai−1 ∪ {04k+i | 1 ≤

i ≤ (1/4)4k and the ith bit of α is 1}. If MAi−1(04k

) never asks a query of length strictly less than

(3/2)4k (that is, if γ is undefined), MA′

(04k

) will ask exactly the same set of queries as MAi−1(04k

).

Let Ai = A′ ∪ {0(5/4)4k

α |MA′

(04k

) rejects}. MAi(04k

) will accept if and only if 04k

/∈ LAi
. We will

preserve this behavior throughout the construction. Go to Stage i + 1.

Otherwise (that is, if MAi−1(04k

) asks some query of length strictly less than (3/2)4k), γ is

defined. The membership (in A′) of queries asked in the first t − 1 steps of MAi−1(04k

) is identical

to their membership in Ai−1. Thus, the first t − 1 steps of MA′

(04k

) will be identical to the first

t−1 steps of MAi−1(04k

). Thus, the query asked at step t will be γ and the queries asked in the first

t steps of MA′

(04k

) do not include 0(5/4)4k

α. If MA′

(04k

) asks the query 0(5/4)4k

α at step t + 1 or
later, we know that M does not have the query-nonincreasing property with respect to A′ on input

04k

because it asks a query (namely, 0(5/4)4k

α) of length (3/2)4k after it asks a query (namely, γ)
of length less than (3/2)4k. Let Ai = A′. M does not implement LAi

≤p
lni-T Ai. We will maintain

this behavior throughout the construction. Go to Stage i + 1.
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The remaining case is: MA′

(04k

) does not ask the query 0(5/4)4k

α. Let Ai = A′ ∪

{0(5/4)4k

α | MA′

(04k

) rejects}. By the definition of LAi
, 04k

∈ LAi
if and only if MA′

(04k

)
rejects. We will maintain this behavior throughout the construction. Thus, M does not implement
LAi

≤p
lni-T Ai. Go to Stage i + 1.

End of Stage i.
Let A =

⋃

i≥1 Ai. It is clear from the construction at Stage i that Mi does not implement

LA ≤p
lni-T A. ❑

As an immediate corollary, we have the following corollary.

Corollary 4.12 1. (∃A,B ⊆ Σ∗)[B ≤p
s-li-T A ∧ B 6≤p

ld-T A].

2. (∃A,B ⊆ Σ∗)[B ≤p
li-T A ∧ B 6≤p

ld-T A].

3. (∃A,B ⊆ Σ∗)[B ≤p
li-T A ∧ B 6≤p

lni-T A].

What is the relationship between strong query-nonincreasing and query-decreasing reductions?
First note that both these reductions are stronger than strong query-decreasing reductions. However,
these two reductions seem incomparable: On the one hand strong query-nonincreasing reductions
seem more restrictive than query-decreasing reductions because the length of each query in a strong
query-nonincreasing reduction must be at least the length of the input. On the other hand, query-
decreasing reductions seem more restrictive than strong query-nonincreasing reductions because
each query in a query-decreasing reduction must be strictly shorter than the previous query. In
Theorem 4.13, we show that strong query-nonincreasing Turing reductions and query-decreasing
Turing reductions are incomparable. Similarly, we show in Theorem 4.14 that strong query-
nondecreasing Turing reductions and query-increasing Turing reductions are incomparable.

Theorem 4.13 (∃A,B,C ⊆ Σ∗)[B ≤p
ld-T A ∧ B 6≤p

s-lni-T A ∧ C ≤p
s-lni-T A ∧ C 6≤p

ld-T A].

Proof The proof is based on the construction of an oracle A and two test languages B = L1
A and

C = L2
A such that (i) L1

A ≤p
ld-T A ∧ L1

A 6≤p
s-lni-T A and (ii) L2

A ≤p
s-lni-T A ∧ L2

A 6≤p
ld-T A. To achieve

this, we interweave two diagonalizations—the first diagonalization ensures that (i) holds and the
second diagonalization ensures that (ii) holds.

The first diagonalization is based on the observation that, on an input of length n, the first query
in a query-decreasing reduction may legally be of length n + 1 but in a strong query-nonincreasing
reduction the first query cannot be of length n + 1. For each D ⊆ Σ∗, define L1

D as:

L1
D = {04i | i ≥ 1 ∧ 04i+1 ∈ D}.

Clearly, for each D ⊆ Σ∗, L1
D ≤p

ld-T D. (In fact, for each D ⊆ Σ∗, L1
D ≤p

bm D, where ≤p
bm is the variant

of ≤p
m that allows the reduction to when it wishes to directly output “accept” or “reject” [Amb87].

In contrast, L1
D ≤p

m D does not hold for the case D = Σ∗.) Our construction of A will ensure that
L1

A 6≤p
s-lni-T A.

The second diagonalization is based on the observation that, on an input of length n, asking
multiple queries of length n − 1 is legal in a strong query-nonincreasing reduction but is illegal in a
query-decreasing reduction. For each D ⊆ Σ∗, define L2

D as:

L2
D = {04i+3 | i ≥ 1 ∧ ((04i+2 ∈ D) ⊕ (14i+2 ∈ D))}.

Clearly, for each D ⊆ Σ∗, L2
D ≤p

s-lni-T D. (In fact, for each D ⊆ Σ∗, L2
D ≤p

2-tt D.) Our construction
of A will ensure that L2

A 6≤p
ld-T A.

We will carry out our interwoven diagonalization in stages. In odd numbered stages, we will
carry out the first diagonalization, and in even numbered stages we will carry out the second
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diagonalization. That is, in odd numbered stages, we will ensure that L1
A 6≤p

s-lni-T A, while in
even numbered stages we will ensure that L2

A 6≤p
ld-T A.

For each i ≥ 1, let Ai−1 denote the set of strings in A before the ith stage. Let A0 = ∅.
Stage i = 2j − 1, j ∈ N

+. We will ensure that Mi does not implement L1
A ≤p

s-lni-T A. Let
n = ni be the smallest integer such that no string of length n or longer has been made relevant (see
footnote 6) in any previous stage and, for some k ≥ 1, n = 4k. If MAi−1(04k) queries 04k+1, let
Ai = Ai−1. M does not have the strong length-nonincreasing property with respect to Ai on input
04k. We will maintain this behavior throughout the construction. Go to Stage i + 1.

The remaining case is: MAi−1(04k) does not query 04k+1. Let Ai = Ai−1 ∪ {04k+1 |MAi−1(04k)
rejects}. Note that MAi(04k) accepts if and only if 04k /∈ L1

Ai
. We will maintain this behavior

throughout the construction. Go to Stage i + 1.

End of Stage i.

Stage i = 2j, j ∈ N
+. We will ensure that Mi does not implement L2

A ≤p
ld-T A. Let n = ni be the

smallest integer such that no string of length n or longer has been made relevant (see footnote 6) in
any previous stage and, for some k ≥ 1, n = 4k + 3. If MAi−1(04k+3) queries both 04k+2 and 14k+2,
let Ai = Ai−1. M does not have the length-decreasing property with respect to Ai on input 04k+3.
We will maintain this behavior throughout the construction. Go to Stage i + 1.

The remaining case is: MAi−1(04k+3) queries at most one string in {04k+2, 14k+2}. If
MAi−1(04k+3) accepts, let Ai = Ai−1. If MAi−1(04k+3) rejects, let Ai = Ai−1 ∪ {α}, where α is the
lexicographically smallest string in {04k+2, 14k+2} that is not queried by MAi−1(04k+3). 04k+3 ∈ LAi

,
yet MAi(04k+3) rejects. We will maintain this behavior throughout the construction. Go to Stage
i + 1.

End of Stage i.

Let A =
⋃

i≥1 Ai. It is clear from the construction that L1
A ≤p

ld-T A yet L1
A 6≤p

s-lni-T A, and that

L2
A ≤p

s-lni-T A yet L2
A 6≤p

ld-T A. ❑

Theorem 4.13 shows that query-decreasing and and strong query-nonincreasing reductions are
incomparable. We next show that query-increasing and strong query-nondecreasing reductions are
also incomparable.

Theorem 4.14 (∃A,B,C ⊆ Σ∗)[B ≤p
li-T A ∧ B 6≤p

s-lnd-T A ∧ C ≤p
s-lnd-T A ∧ C 6≤p

li-T A]

Proof The proof is based on the construction of an oracle A and two test languages B = L1
A and

C = L2
A that simultaneously ensure that (i) L1

A ≤p
li-T A yet L1

A 6≤p
s-lnd-T A, and (ii) L2

A ≤p
s-lnd-T A

yet L2
A 6≤p

li-T A. To achieve this, we interweave two diagonalizations—the first diagonalization
ensures that (i) holds and the second diagonalization ensures that (ii) holds.

The first diagonalization is based on the observation that, on input of length n, the first query
in a query-increasing reduction may legally be of length n − 1 but in a strong query-nondecreasing
reduction the first query cannot be of length n − 1. For each D ⊆ Σ∗, define L1

D as:

L1
D = {04i+3 | i ≥ 1 ∧ 04i+2 ∈ D}.

Clearly, for each D ⊆ Σ∗, L1
D ≤p

li-T D. (In fact, for each D ⊆ Σ∗, L1
D ≤p

bm D.) Our construction of
A will ensure that L1

A 6≤p
s-lnd-T A.

The second diagonalization is based on the observation that, on an input of length n, asking
multiple queries of length n + 1 is legal in a strong query-nondecreasing reduction but is illegal in a
query-increasing reduction. For each D ⊆ Σ∗, define L2

D as:

L2
D = {04i | i ≥ 1 ∧ ((04i+1 ∈ D) ⊕ (14i+1 ∈ D))}.
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Clearly, for each D ⊆ Σ∗, L2
D ≤p

s-lnd-T D. (In fact, for each D ⊆ Σ∗, L2
D ≤p

2-tt D.) Our construction
of A will ensure that L2

A 6≤p
li-T A.

We will carry out our interwoven diagonalization in stages. In odd numbered stages, we will
carry out the first diagonalization, and in even numbered stages we will carry out the second
diagonalization. That is, in odd numbered stages, we will ensure that L1

A 6≤p
s-lnd-T A, while in

even numbered stages we will ensure that L2
A 6≤p

li-T A.
For each i ≥ 1, let Ai−1 denote the set of strings in A before the ith stage. Let A0 = ∅.

Stage i = 2j − 1, j ∈ N
+. We will ensure that Mi does not implement L1

A ≤p
s-lnd-T A. Let

n = ni be the smallest integer such that no string of length n or longer has been made relevant (see
footnote 6) in any previous stage and such that, for some k ≥ 1, n = 4k+3. If MAi−1(04k+3) queries
04k+2, let Ai = Ai−1. M does not have the strong length-nondecreasing property with respect to
Ai on input 04k+3. We will maintain this behavior throughout the construction. Go to Stage i + 1.

The remaining case is: MAi−1(04k+3) does not query 04k+2. Let Ai = Ai−1 ∪
{04k+2 | MAi−1(04k+3) rejects}. Note that MAi(04k+3) accepts if and only if 04k+3 /∈ L1

Ai
. We

will maintain this behavior throughout the construction. Go to Stage i + 1.
End of Stage i.
Stage i = 2j, j ∈ N

+. We will ensure that Mi does not implement L2
A ≤p

li-T A. Let n = ni be the
smallest integer such that no string of length n or longer has been made relevant (see footnote 6)
in any previous stage and such that, for some k ≥ 1, n = 4k. If MAi−1(04k) queries both 04k+1 and
14k+1, let Ai = Ai−1. M does not have the length-decreasing property with respect to Ai on input
04k. We will maintain this behavior throughout the construction. Go to Stage i + 1.

The remaining case is: MAi−1(04k) queries at most one string in {04k+1, 14k+1}. If MAi−1(04k)
accepts, let Ai = Ai−1. If MAi−1(04k) rejects, let Ai = Ai−1 ∪ {α}, where α is the lexicographically
smallest string in {04k+1, 14k+1} that is not queried by MAi−1(04k). 04k ∈ L2

Ai
, yet MAi(04k) rejects.

We will maintain this behavior throughout the construction. Go to Stage i + 1.
End of Stage i.

Let A =
⋃

i≥1 Ai. It is clear from the construction that L1
A ≤p

li-T A yet L1
A 6≤p

s-lnd-T A, and that

L2
A ≤p

s-lnd-T A yet L2
A ≤p

li-T A. ❑
The results of this section indicate that unless query-monotonic reductions are “obviously”

related, they are provably incomparable. However, thus far while comparing reductions we have
used a rather stringent notion, namely the stronger-than relationship. The reason this notion is
stringent is that, for ≤p

β to be stronger than ≤p
α, we require that, for every pair of sets A and B,

if A ≤p
α B then A ≤p

β B. In complexity theory, we are often interested in properties that hold
for restricted classes of sets with “nice” properties even though these might not hold for all sets.
Thus, it is natural to ask how the query-monotonic reductions compare when we restrict ourselves
to natural complexity classes (having nice properties). We show in Theorem 4.15 that for each
class C that is closed downward under many-one reductions, the query-nondecreasing (respectively,
query-nonincreasing) Turing reduction closure of C is identical to the Turing reduction closure of C.
Since most natural complexity classes have this property, it follows that when the database (oracle)
is restricted to be from a natural complexity class, query nondecreasing and query nonincreasing
requirements are toothless. (In Sections 5 and 6, we study query-monotonic reductions over NP,
arguably the most important complexity class.)

Theorem 4.15 For each class C of languages such that C is closed downward under ≤p
m reductions,

Rp
T (C) = Rp

lni-T (C) = Rp
lnd-T (C)

Proof Clearly, for any class C, Rp
lnd-T (C) ⊆ Rp

T (C) and Rp
lni-T (C) ⊆ Rp

T (C), since any query-
nondecreasing or query-nonincreasing Turing reduction is also a Turing reduction. Let A ⊆ Σ∗ and
B ∈ C be such that A ≤p

T B via DPTM M . If B = Σ∗, then A ∈ P, and thus A ∈ Rp
lni-T (C) ∩
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Rp
lnd-T (C). So assume that B 6= Σ∗. We will show that there exists Z ⊆ Σ∗ and DPTM M1 such that

the following properties hold: (a) Z ≤p
m B, (b) L(MZ

1 ) = A, and (c) for each x ∈ Σ∗, all queries that
MZ

1 (x) asks to its oracle are of the same length. Then, it follows that A ∈ Rp
lnd-T (Z) ∩ Rp

lni-T (Z),
and since C is closed downward under many-one reductions, Z ∈ C. Thus, it follows that A ∈
Rp

lnd-T (C) ∩ Rp
lni-T (C).

We now specify Z and M1 and show that the properties (a), (b), and (c) mentioned above
hold. Roughly speaking, we encode the membership (in B) of all strings of length at most k in the
membership (in Z) of the first 2k+1 − 1 strings of length k + 1. We achieve this by including the
jth string of length k + 1 in Z if and only if B contains the jth string in (Σ∗)≤k. Now, a sequence
of queries to B such that the length of each query is at most ` can be transformed to a sequence of
queries to Z such that the length of each query is exactly ` + 1. Formally, Z is defined as follows:
Z = {x ∈ Σ∗ | |x| > 0 ∧ (∃r : 1 ≤ r ≤ 2|x|−1)[x is the lexicographically rth string at length |x| and
the lexicographically rth string (in Σ∗) is in B]}.

Let a be a string that is in B. (Note that a is well defined because B 6= Σ∗.) Z ≤p
m B via the

following FP function σ, which on any input x ∈ Σ∗ does the following:

Compute the rank r of x among strings of length |x|. By definition, 1 ≤ r ≤ 2|x|. If
r = 2|x|, output a. Otherwise, output the string (in Σ∗) with lexicographic rank r.

Thus, (a) holds. (We mention in passing that, clearly, B ≤p
m Z.) We will now define M1. Let q be a

monotonically increasing polynomial that robustly (i.e., for all oracles) bounds the running time of
M . By definition, such a polynomial exists. For each x ∈ Σ∗, M1 on input x does the following. It
simulates M(x), and when M asks a query z to its oracle, M1 asks the query z′ to its oracle, where
z′ is the lexicographically rank(z)th string at length q(|x|)+ 1. (Recall from Section 2 that rank(z)
is the lexicographic rank of z.) Clearly, since |z| ≤ q(|x|), z′ is well defined. Also, note that z ∈ B if
and only if z′ ∈ Z. Thus, the sequence of answers to queries that MB(x) asks to its oracle is exactly
the same as the sequence of answers to queries that MZ

1 (x) asks to its oracle. Also, by construction,
all queries that MZ

1 asks to its oracle are of length q(|x|) + 1. So, (b) and (c) hold. ❑

As an immediate corollary to Theorem 4.15, we have that for many natural complexity classes
(for example, BPP, C= P, ⊕P, PP, and each level of the polynomial hierarchy) query-nondecreasing
and query-nonincreasing reductions are no less powerful than Turing reductions.

Corollary 4.16 For each class C ∈ {NP,NPNP, . . . , coNP, coNPNP, . . . ,P,PNP,PNPNP

, . . . ,BPP,
C= P,⊕P,PP}, Rp

T (C) = Rp
lni-T (C) = Rp

lnd-T (C).

5 Query-Monotonic Reductions to NP Sets

In the previous section, we saw that query-monotonic and Turing reductions are different in
general, though for many natural complexity classes the reduction closure of these classes with
respect to query-nonincreasing, query-nondecreasing, and Turing reductions are identical. In this
section, we study the relationship between query-monotonic and Turing reductions to NP sets. We
ask the following question: For each A ⊆ Σ∗ and B ∈ NP, does A ≤p

T B imply A ≤p
li-T B? Since ≤p

T

is stronger than ≤p
li-T , if the answer to the above question is “yes,” then for each A ⊆ Σ∗ and for

B ∈ NP, A ≤p
T B if and only if A ≤p

li-T B. Similarly, we ask the following question: For each A ⊆ Σ∗

and each B ∈ NP, does A ≤p
T B imply A ≤p

ld-T B? Since ≤p
T is stronger than ≤p

ld-T , if the answer
to the above question is “yes,” then for each A ⊆ Σ∗ and B ∈ NP, A ≤p

T B if and only if A ≤p
ld-T B.

Clearly, if either question has the answer “no,” then P 6= NP. In fact, both these questions are
currently open. Indeed, even seemingly easier issues are still open. In particular, is it true that for
all A ⊆ Σ∗ and B ∈ NP, A ≤p

2-tt B implies A ≤p
li-T B? In Theorem 5.1 we show that a “yes”
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resolution of the open questions mentioned above will require nonrelativizable techniques. In fact,
we prove that there is an oracle relative to which truth-table (even 2-fixed-truth-table) and query-
increasing (query-decreasing) reductions differ on some set in NP. Finally, note that both ≤p

li-T
and ≤p

ld-T are trivially stronger than ≤p
1-tt and both ≤p

lni-T and ≤p
lnd-T are trivially stronger than

≤p
tt, and that both these facts relativize. Thus, the ≤p

2-tt in Theorem 5.1 cannot be strengthened to
≤p

1-tt and the ≤p
li-T (respectively, ≤p

ld-T ) in Theorem 5.1 cannot be strengthened to ≤p
lnd-T (≤p

lni-T ,
respectively).

Theorem 5.1 (∃W ⊆ Σ∗)(∃A ∈ NPW )(∃B ⊆ Σ∗)[B ≤p,W
2-tt A ∧ B 6≤p,W

li-T A ∧ B 6≤p,W
ld-T A].

Proof The basic idea of the proof is to exploit the fact that a Turing machine implementing a
query-increasing or a query-decreasing reduction cannot ask two queries of the same length. On the
other hand a machine implementing a 2-truth-table reduction does not have this restriction. With
this insight, we diagonalize against machines implementing query-increasing or query-decreasing
reductions by making the membership of the diagonalizing string dependent on the memberships of
two strings of the same length in the oracle.

For each D, define LD as follows:

LD = {0i | i ≥ 1 ∧ ((0i ∈ D) ⊕ (1i ∈ D))}.

Clearly, for each D, LD ≤p,W
2-tt D. We will construct sets W , A, and B = LA, such that A ∈ NPW ,

LA ≤p,W
2-tt A, yet LA 6≤p,W

li-T A and LA 6≤p,W
ld-T A. We define A as follows:

A = {0n | n ≥ 1 ∧ (∃y ∈ Σ∗)[|y| = n ∧ 0ny ∈ W ]} ∪ {1n | n ≥ 1 ∧ (∃y ∈ Σ∗)[|y| = n ∧ 1ny ∈ W ]}.

Clearly, A ∈ NPW . Note that LA is implicitly defined in terms of W since LA is defined in terms
of A and A is defined in terms of W . We will construct W such that LA 6≤p,W

li-T A and LA 6≤p,W
ld-T A.

Recall from Section 2 that M1,M2, . . . is an enumeration of (deterministic) Turing machines such
that Mk robustly (that is, for all oracles) runs in time nk + k.

The construction of W will proceed in stages. In Stage k ∈ N
+, we will diagonalize against

machine Mk. That is, we will ensure in Stage k that Mk does not implement LA ≤p,W
li-T A and Mk

does not implement LA ≤p,W
ld-T A.

For each k, let Wk be the set of all elements added to W before Stage k. For each k, let Ak be
defined as follows:

Ak = {x ∈ Σ∗ | (∃y ∈ Σ∗)[|y| = |x| ∧ xy ∈ Wk]}.

Let W1 = ∅.
Stage k ≥ 1. Let M = Mi. Choose n = nk to be smallest positive integer such that n is greater
than the length of each string made relevant (see footnote 6) in any earlier stage and 2n > nk + k.

Either MAk,Wk(0n) accepts or it rejects. If MAk,Wk(0n) accepts, then let Wk+1 = Wk.
MAk+1,Wk+1(0n) accepts, yet 0n 6∈ LAk+1

. (Note: Here we are using the fact that LAk+1
is defined in

terms of Wk+1.) Also, our construction will in fact ensure that both these behaviors are preserved,
i.e., our construction will ensure that MA,W (0n) accepts and 0n 6∈ LA. (We will explain at the end
of this proof why these behaviors are preserved.) Otherwise, i.e., if MAk,Wk(0n) rejects, then let
Q be the set of queries made by M to its first oracle in MAk,Wk(0n). Exactly one of the following
cases hold.

1. ||Q ∩ {0n, 1n}|| = 0.

2. ||Q ∩ {0n, 1n}|| = 1.
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3. ||Q ∩ {0n, 1n}|| = 2.

Case 1. Let Wk+1 = Wk ∪ {0ny}, where y is the lexicographically smallest string in Σn such that
MAk,Wk(0n) does not ask the query 0ny to either of its oracles. Note that such a y exists since
MAk,Wk(0n) can ask at most nk + k queries and, by our choice of n, 2n > nk + k. Clearly,
0n ∈ Ak+1 and 1n /∈ Ak+1, thus 0n ∈ LAk+1

. However, MAk+1,Wk+1(0n) rejects. These
behaviors will be preserved. Go to Stage k + 1.

Case 2. Consider the case that 0n ∈ Q. (The case when 1n ∈ Q is analogous.) Let Wk+1 =
Wk ∪{1ny}, where y is the lexicographically smallest string in Σn such that MAk,Wk(0n) does
not ask the query 1ny to either of its oracles. Note that such a y exists since M can ask at
most nk + k queries and, by our choice of n, 2n > nk + k. Clearly, 0n /∈ Ak+1 and 1n ∈ Ak+1,
thus 0n ∈ LAk+1

. However, MAk+1,Wk+1(0n) rejects. These behaviors will be preserved. Go to
Stage k + 1.

Case 3. Let Wk+1 = Wk. By definition, Ak+1 = Ak. Since MAk+1,Wk+1(0n) asks two queries,
namely 0n and 1n, of the same length, it follows that, relative to Wk+1, M has neither the
query-increasing property nor the query-decreasing property with respect to Ak+1. These
behaviors will be preserved. Go to Stage k + 1.

End of Stage k.
Let W =

⋃

k≥1 Wk. (Note that A and LA are above defined in terms of W .) Consider an
arbitrary k ≥ 1. Let M = Mk. It is clear from the construction at Stage k that at least one of the
following conditions holds.

1. 0nk ∈ LAk+1
⇐⇒ 0nk 6∈ L(MAk+1,Wk+1).

2. Relative to Wk+1, M has neither the query-increasing property nor the query-decreasing
property with respect to Ak+1 on input 0nk .

Let k ∈ N
+. It is clear from the construction at Stage k that all the strings added to A in Stage

k are from the set {0nk , 1nk}. Since our choice of n`, ` > k, is such that n` is greater than the length
of any string queried at Stage k, the following hold:

1. 0nk ∈ LAk+1
⇐⇒ 0nk ∈ LA.

2. 0nk ∈ L(MAk+1,Wk+1) ⇐⇒ 0nk ∈ L(MA,W ).

Thus, for each k ≥ 1, at least one of the following conditions holds.

1. 0nk ∈ LA ⇐⇒ 0nk 6∈ L(MA,W ).

2. Relative to W , M has neither the query-increasing property nor the query-decreasing property
with respect to A on input 0nk .

Thus, LA 6≤p,W
li-T A and LA 6≤p,W

ld-T A. ❑

Theorem 5.1 shows that proving that query-increasing (query-decreasing) Turing reductions are
stronger than truth-table reductions on sets in NP will require nonrelativizable techniques. Thus, it
is interesting to ask what (if any) structural consequences follow from the assumption that query-
increasing Turing reductions are stronger than truth-table reductions on NP sets. We consider a
stronger hypothesis (which we call Hypothesis S), namely that query-increasing Turing reductions
are stronger than Turing reductions. Note that under this assumption, for each A ⊆ Σ∗ and B ∈ NP,
A ≤p

T B if and only if A ≤p
li-T B. Theorem 5.2 shows that there is an infinite set L ⊆ N such that

if Turing and query-increasing reductions coincide for each set in NP, then for each set A in PNP,
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A ∩ {x ∈ Σ∗ | |x| ∈ L}, the set of all strings in A whose length is in L, 1-truth-table reduces to
some set in NP. (It is easy to see from the proof that the result holds not only for the particular L
mentioned in the proof, but also for each easily recognizable, wide-spaced subset of N.)

Hypothesis S: (∀A ⊆ Σ∗)(∀B ∈ NP)[A ≤p
T B ⇐⇒ A ≤p

li-T B].

Theorem 5.2 There exists an infinite polynomial-time computable set L ⊆ N such that if Hypothesis
S holds then, for each set A in PNP, there is a C ∈ NP such that A ∩ {x ∈ Σ∗ | |x| ∈ L} ≤p

1-tt C.

Proof Let L = {222

, 2222
22

, 2222
22

22
2

, . . .}.
We first informally describe the main idea of the proof. Let A ∈ PB via DPTM M , where

B ∈ NP. Let p be the monotonically increasing polynomial p bounding the running time of M
independent of the oracle. We will construct a set C ∈ NP such that A ∩ {x ∈ Σ∗ | |x| ∈ L} ≤p

T C.
This set C will be wide-spaced, and in fact, the spacing in C will depend on the spacing in L. If
Hypothesis S holds, then A ∩ {x | |x| ∈ L} ≤p

li-T C. That is, there is a polynomial-time Turing
machine that on any input asks queries of C in a length-increasing fashion and (correctly) accepts
A ∩ {x | |x| ∈ L}. Note that since C is widely-spaced, there are exponential gaps between lengths
at which C potentially contains strings. Let us call the lengths at which C potentially contains
strings “interesting.” Any polynomial-time machine that, with C as its oracle, asks at most one
query per length, asks at most one query at a length that is both large (with respect to the input
string’s length) and interesting. The membership (in C) of any other query string can be easily
determined without querying C in the following manner. First compute whether the query string q
is of an interesting length and, if so, brute-force compute the membership of q in C. Since C is in
NP, and q (due to the other above) is exponentially smaller than the input length, this brute-force
computation can be done in time polynomial in the length of the input.

Let L′ = {p(m) + 1 |m ∈ L}. C will be nonempty only at lengths in L′. Define C as: C = {x ∈
Σ∗ | |x| ∈ L′ ∧ (∃r : 1 ≤ r ≤ 2|x| − 1)[the lexicographic rank of x among strings of length |x| is r
and the lexicographically rth string in Σ∗ is in B]}. Roughly speaking, at length p(m) + 1, where
m ∈ L, C encodes the membership (in B) of all strings of length at most p(m).

Claim 5.3 1. C ∈ NP.

2. A ∩ {x ∈ Σ∗ | |x| ∈ L} ≤p
T C.

Proof Part 1 follows from the construction of C and the fact that B ∈ NP. To see that part 2
holds, consider a Turing machine M1 that on input x rejects if |x| /∈ L. If |x| ∈ L, M1(x) simulates
M(x) and whenever M asks a query q to its oracle, M1 asks a query q′ to its oracle, where q′ is a
string of length p(|x|)+1 such that the lexicographic rank of q′ among all strings of length p(|x|)+1
is exactly the lexicographic rank of q (among strings of Σ∗). q′ is well defined since, by assumption,
|q| ≤ p(|x|). After asking q′ to its oracle and obtaining answer b from its oracle, M1 proceeds with
the simulation of M(x) assuming that the answer to query q in the simulation of M(x) is b. By
the construction of C, it follows that for each x ∈ Σ∗ such that |x| ∈ L, the sequence of answers
that MC

1 (x) obtains from its oracle is identical to the sequence of answers that MB(x) obtains from
its oracle. Thus, for each x ∈ Σ∗ such that |x| ∈ L, MC

1 (x) accepts if and only if MB(x) accepts.
Clearly, L(MC

1 ) = {x ∈ Σ∗ | |x| ∈ L} ∩ L(MB) = {x ∈ Σ∗ | |x| ∈ L} ∩ A. ❑
We continue with the proof of Theorem 5.2. Now, if Hypothesis S holds, then by Claim 5.3

part 2 it follows that A ∩ {x ∈ Σ∗ | |x| ∈ L} ≤p
li-T C. That is, there is a DPTM M0 such that

L(MC
0 ) = A ∩ {x ∈ Σ∗ | |x| ∈ L} and M0 has the query-increasing property with respect to C. Let

q be a monotonically increasing polynomial such that M0 runs in time bounded by q regardless of
the oracle. We will now construct a Turing machine M1 that accepts (with access to C) exactly the
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same set that MC
0 accepts, but we will ensure that M1 on any input asks at most one query to its

oracle. Let x be an arbitrary input to M1. M1(x) rejects if |x| /∈ L. Otherwise (that is, if |x| ∈ L),
M computes k, where k is defined as

k = max{i ∈ N | i ∈ L′ ∧ i ≤ q(|x|)}.

Note that k is an upper bound on the length of the largest string in {x ∈ Σ∗ | |x| ∈ L′} that M0

can query on input x. Because C contains only strings whose lengths are in L′, any string whose
length is not in L′ is definitely not in C. Note that for each ` ∈ L′ such that ` < k, it holds that
` ≤ 1 + p(log log log k) ≤ 1 + p(log log log q(|x|)), which is O(log log |x|). Thus, the membership (in
C) of any string of length ` such that ` ∈ L′ and ` < k can be determined in polynomial time by
brute-forcing the NP algorithm for C. M1(x) simulates M0(x) and when M0(x) asks a query q of
its oracle, M1 determines whether |q| ∈ L′. If not, then M1 assumes that the answer to the query is
“no.” If |q| ∈ L′, M1 asks the query q to its oracle only if |q| = k. Otherwise (that is, if |q| ∈ L′ and
|q| < k), M1 brute-force computes the membership of q in C. Since M0 has the query-increasing
property with respect to C, it follows that at most one query MC

0 (x) asks is of length k, and thus
MC

1 (x) asks at most one query to its oracle. Also, as argued earlier, the brute-force computation
of all other strings can be done in polynomial time. Thus, M1 is a DPTM and, for each x ∈ Σ∗,
MC

1 (x) accepts if and only if MC
0 (x) accepts. So, A∩{x ∈ Σ∗ | |x| ∈ L} ≤p

1-tt C via Turing machine
M1. ❑

For each set X and any class C, we say that X is C-immune if X is an infinite set and no infinite
subset of X is in C [SB84]. For classes D and C, we say that D is C-immune if each infinite set in
D is C-immune. (The literature on immunity is large. As a few examples from the past decade, we
mention [Rot99,HH03,GOP+05]—see also the references therein.)

One might be fooled into thinking that Theorem 5.2 is a (non)immunity result. However, it
is not since, in some cases, A ∩ {x | |x| ∈ L} will be empty, for example, if A = {x | |x| /∈ L}.
Nonetheless, if Hypothesis S holds, then for each set A ∈ PNP such that A∩ {x | |x| ∈ L} is infinite,
A ∩ {x | |x| ∈ L} is an infinite Rp

1-tt(NP) subset of A, i.e., PNP ∩ {A |A ∩ {x | |x| ∈ L} is infinite} is
not Rp

1-tt(NP)-immune. However, we state as a corollary a weaker but more natural result.

Definition 5.4 A set A is length-supported if it has strings at all but a finite number of lengths,
i.e., {n |A=n = ∅} is finite. Let LS = {A ⊆ Σ∗ |A is length-supported}.

Corollary 5.5 If Hypothesis S holds, then PNP ∩ LS is not Rp
1-tt(NP)-immune.

On the other hand, one could if one wanted state a stronger (than Theorem 5.2), yet relatively
natural, result. In particular, we say that a set of integers B ⊆ N is wide-spaced if, for each a, b ∈ B
such that a < b, it holds that a ≤ log log log b. Note that the proof idea behind Theorem 5.2 clearly
yields: If A ∈ PNP, then for any polynomial-time computable, wide-spaced set B, there exists a
C ∈ NP such that A ∩ {x ∈ Σ∗ | |x| ∈ B} ≤p

1-tt C. In particular, if A∩ {x ∈ Σ∗ | |x| ∈ B} is infinite,
then it forms an infinite subset of A belonging to Rp

1-tt(NP). That is, we have as a corollary to the
proof technique of Theorem 5.2 the following result.

Corollary 5.6 If Hypothesis S holds, then no PNP set that, for some polynomial-time computable,
wide-spaced set of lengths, has strings at an infinite number of those lengths is Rp

1-tt(NP)-immune.

6 Tight Padding and NP

In Section 4 we saw that query-monotonic reductions are in general different from Turing
reductions, and different query sequence collections (for example, ρli, ρld, etc.) indeed lead to
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different notions of query-monotonic reductions. On the flip side, in Theorem 4.15 we saw that
query-nondecreasing and query-nonincreasing Turing reductions are no more restrictive than Turing
reductions for classes of sets that are closed downward under polynomial-time many-one reductions.
In this section, we study query-nonincreasing Turing reductions to NP sets. In particular, we ask
the following question: For any set S ∈ NP, what structural property of S is sufficient to ensure
that each language A that Turing reduces to S in fact query-increasing (query-decreasing) Turing
reduces to S? We show in Theorem 6.1 that when the set being reduced to is tight paddable, query-
increasing Turing reductions, query-decreasing Turing reductions, strong query-increasing Turing
reductions, and Turing reductions are equivalent. Recall from Definition 2.8 that a tight paddable
set is a set that has an easily computable function that preserves membership in the set and has
strict lower and upper bounds on its output length vis-a-vis the length of the input.

Theorem 6.1 Let S be a tight paddable set. Then, for each A ⊆ Σ∗, the following are equivalent.

1. A ≤p
T S.

2. A ≤p
li-T S.

3. A ≤p
ld-T S.

4. A ≤p
s-li-T S.

Proof Note that (2) =⇒ (1), (3) =⇒ (1), and (4) =⇒ (2) follow from definitions. We will
first prove that (1) =⇒ (4). The proof relies on the assumption that S is tight paddable. By
Definition 2.8, there exist a polynomial-time computable function σ and a k > 0 such that, for each
x, (i) |x| < |σ(x)| ≤ |x| + k and (ii) x ∈ S if and only if σ(x) ∈ S. Let A be an arbitrary set
such that A ≤p

T S. Let M be a DPTM, from our enumeration of deterministic, polynomial-time
Turing machines (see Section 2) that implements A ≤p

T S. Let p be the monotonically increasing
polynomial associated with M in Section 2 that bounds the running time of M regardless of its
oracle. By Section 2 (since when i ∈ N and n ∈ N, ni + i > n), for each n ∈ N, p(n) > n. Consider
the Turing machine T that, on input x, simulates M(x), keeping track of the length, `, of the query
that T most recently asked to its oracle. T initializes ` to p(|x|). Note that each query that M S(x)
asks will be of length at most p(|x|). T (x) simulates M(x), except when M(x) asks a query q of its
oracle, T computes a query q′ as follows. Compute q0 = q, q1 = σ(q), q2 = σ(σ(q)), . . ., qm = σm(q),
where m is such that |qm−1| ≤ ` and |qm| > `. (m is well defined, in part due to the fact that
|q0| ≤ `.) Note that since |q0| > |q1| > . . . > |qm|, it follows that m ≤ ` + 1. Also, since |qm−1| ≤ `,
|qm| ≤ ` + k. Let q′, the query that T asks to its oracle, be qm. Update the value of ` to |q′|. Note
that the new value of ` is at most k greater than its old value. T now asks the query q ′ to its oracle.
Note that q′ ∈ S if and only if q ∈ S. Thus, the answer a that T S(x) obtains on query q′ is exactly
the same as the one that MS(x) obtains on query q. T then proceeds with the simulation of M(x)
assuming that the answer M(x) gets to its query q is a.

Let q′1, q
′
2, . . . , q

′
r be the queries that T (x) asks of its oracle. From the description above, it is clear

that |x| < p(|x|) < |q′1| < |q′2| < . . . < |q′r|. Clearly, r ≤ p(|x|) since M(x) runs for at most p(|x|)
steps. Furthermore, |q′1| ≤ p(|x|) + k, |q′2| ≤ p(|x|) + 2k, . . ., |q′m| ≤ p(|x|) + rk ≤ p(|x|) + p(|x|)k.
Thus, T S runs in polynomial time.

We can prove (1) =⇒ (3) using a simulation similar to the one described above except that in
this case we will need to start with padded queries that are sufficiently long and, for each subsequent
query, use the tight paddability of S to compute (and ask) equivalent queries that are shorter than
the previous ones. ❑

Theorem 6.1 shows that for each tight paddable set, the notions of Turing reductions, query-
increasing Turing reductions, query-decreasing Turing reductions, and strong query-increasing
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Turing reductions are equivalent. It is interesting to note that, for the same sets, it is not clear
whether strong query-decreasing Turing reductions are equivalent to Turing reductions (and, to the
other three query-monotonic reductions proved, in Theorem 6.1, to be equivalent on tight paddable
sets). Intuitively, the reason is that any Turing machine implementing a strong query-decreasing
Turing reduction can ask at most |x| queries on input |x| (one query of each of the following lengths:
0, 1, 2, . . . , |x| − 1), but this is not necessarily true for a machine implementing a Turing reduction.

In light of Theorem 6.1, it is interesting to ask whether any interesting sets are tight paddable. We
show in Theorem 6.3 that many natural NP-complete sets (such as SAT) are tight Z-paddable (and
thus, tight paddable). Thus, Theorem 6.1 together with Theorem 6.3 implies that, for any natural
NP-complete set S listed in Theorem 6.3, a polynomial-time computation that uses S as a database
can, without losing any computational power, even access S in a query-increasing (query-decreasing)
fashion.

In Theorem 6.3, we show that a variety of NP-complete problems are tight Z-paddable (and thus,
tight paddable). In the proof of Theorem 6.3, we prove that two example NP-complete problems
(namely, 3-SAT and CLIQUE) are tight Z-paddable, and leave the rest as an exercise for the reader.
Since tight Z-paddability of a set can depend on how the set is encoded, we first specify how we
will encode boolean formulas and graphs. The encoding of boolean formulas will be needed in the
specification of instances of 3-SAT and the encoding of graphs will be needed in the specification of
of instances of CLIQUE.

We first describe how we encode each 3CNF boolean formula. We will define a function
hbool such that, for each 3CNF boolean formula φ, hbool(φ) is a string representing φ. Let φ
be a 3CNF boolean formula over n variables, x1, x2 . . . , xn. Then, φ = φ1 ∧ φ2 ∧ . . . ∧ φm,
where, for each i such that 1 ≤ i ≤ m, φi = (yi,1 ∨ yi,2 ∨ yi,3), where each literal yi,j ∈
{x1, x2, . . . , xn} ∪ {x1, x2, . . . , xn}. Each (uncomplemented) literal xi is represented as the string
1si while each complemented literal xi is represented as the string 0si, where si is the ith string in
lexicographic order. hbool(φ), the representation of φ as a string, is defined as follows: hbool(φ) =
〈w1,1, w1,2, w1,3, w2,1, w2,2, w2,3, . . . , wm,1, wm,2, wm,3〉, where wi,j is the string representing the
literal yi,j . It follows easily—from the representation of literals and the fact that the multiarity
pairing function (see Section 2) is such that |〈x1, x2, . . . , xk〉| is 2(k + |x1| + |x2| + . . . + |xk|)—that
|hbool(φ)| is 2

∑

1≤i≤n Ni(1 + |si|), where n is the number of variables in φ, and Ni is the number of
occurrences of xi (as either xi or xi) in φ.

We now describe how to encode an undirected graph. We will define a function hgraph such that,
for each undirected graph G, hgraph(G) is a string representing G. Let G = (V,E) be an undirected
graph over n vertices V = {v1, v2, . . . , vn}. E = {e1, e2, . . . , em}, where each ej is a pair of vertices
from V . Let ej = (vk, v`). Let wj = 〈sk, s`〉, and hgraph(G) = 〈sn, w1, w2, . . . , wm〉, where, for
each j ∈ N, sj is the jth string in lexicographic order. Note that the “sn” in hgraph(G) denotes the
number of nodes in G. It is important to encode this information in addition to the edge-connectivity
information because the number of nodes cannot be inferred from the edge-connectivity information.
For example, given that the set of edges in a graph is {(1, 2)}, we do not know whether it is a two
node graph or, for some k ∈ N

+, a k +2 node graph with k isolated vertices. It follows easily—from
the representation of edges and the bounds on the output length of the multiarity pairing function—
that |hgraph(G)| is 2(1 + |sn|+

∑

1≤i≤n Ni(1 + |si|)), where n is the number of vertices in G and Ni

is the degree of the ith vertex.

Definition 6.2 (See [GJ79].)

1. 3-SAT= {x ∈ Σ∗ | there is a satisfiable 3CNF boolean formula φ such that x = hbool(φ)}.

2. CLIQUE = {〈x,m〉 | x ∈ Σ∗, m ∈ N, and there exists an undirected graph G such that
hgraph(G) = x and there is a clique of size at least m in G}.
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In Theorem 6.3 we claim the tight Z-paddability of several NP-complete problems. We sketch
the proof for tight Z-paddability of two such problems, and leave the rest as easy exercises for the
reader.

Theorem 6.3 The following problems (see [GJ79] for definitions of these problems) are tight Z-
paddable (and thus, tight paddable):

1. 3-SAT.

2. VERTEX COVER.

3. CLIQUE.

4. 3-COLORABILITY.

5. MONOCHROMATIC TRIANGLE.

6. BIPARTITE SUBGRAPH.

7. MULTIPROCESSING SCHEDULING.

8. CYCLIC ORDERING.

9. QUADRATIC DIOPHANTINE EQUATIONS.

10. MAX 2-SAT.

11. DECISION TREE.

Proof sketch: The tight Z-padding function σ for 3-SAT on input x does the following. If x is
not of the correct syntactic form (that is, if there is no boolean formula φ such that x = hbool(φ)),
then clearly x /∈ 3-SAT. Let σ(x) = 10x. Clearly, |x| < |σ(x)| ≤ |x| + 2. From the definition (see
Section 2) of 〈·, ·, . . . , ·〉, it follows that σ(x) has no preimage in 〈·, ·, . . . , ·〉. Thus, σ(x) /∈ 3-SAT.
On the other hand, if x is of the correct syntactic form (that is, there is a boolean formula φ such
that x = hbool(φ)), then σ(x) is defined as follows. Note that in our representation, any nonempty
3CNF boolean formula must have variable x1. Let φ′ = φ ∧ (x1 ∨ x1 ∨ x1). Clearly, φ′ is satisfiable
if and only if φ is satisfiable. Let σ(x) = hbool(φ

′). By the definition of hbool, |σ(x)| = |x|+ 6. Thus,
for each x ∈ Σ∗, |x| < |σ(x)| ≤ |x| + 6. Also, σ is one-to-one, and thus σ is a valid tight Z-padding
function for 3-SAT.

We now describe a tight Z-padding function σ for CLIQUE. On input x, σ checks whether x is a
valid encoding of a CLIQUE instance. If not, σ(x) outputs 10x. From the definition (see Section 2)
of 〈·, ·, . . . , ·〉, it follows that σ(x) has no preimage in 〈·, ·, . . . , ·〉. Otherwise (that is, if x is a valid
encoding of a CLIQUE instance), there is a G and k ∈ N such that such that 〈hgraph(G), k〉 = x.
Let G have n vertices. Let G′ be the graph formed by adding n+1 isolated vertices (that is, vertices
with degree zero) to G. (Note that G′ has 2n + 1 vertices.) Let σ(〈x, k〉) = 〈hgraph(G′), k〉. By
the definition of hgraph, |hgraph(G)| < |hgraph(G′)| ≤ |hgraph(G)| + 2. Thus, for each z ∈ Σ∗, |z| <
|σ(z)| ≤ |z| + 2. Again, note that adding n isolated vertices increases the size of the representation
of the graph by only a constant number of bits because we do not add any additional edges. Thus,
σ is indeed a tight Z-padding function for CLIQUE. ❑

Theorem 6.1 and Theorem 6.3 together imply that the that reduction closures of 3-SAT with
respect to ≤p

li-T , ≤p
s-li-T , and ≤p

ld-T reductions are all exactly PNP. However, we do not know
whether the reduction closure of 3-SAT with respect to ≤p

s-ld-T reductions is identical to PNP. In
other words, we do not know whether ≤p

s-ld-T reductions are more restrictive than Turing reductions.
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In Theorem 6.4, we give evidence that it is somewhat unlikely that the ≤p
s-ld-T reduction has exactly

the same power as the Turing reduction.

Theorem 6.4 If Rp
T (3-SAT) = Rp

s-ld-T (3-SAT), then PNP = PNP[n].

Proof The result follows from the fact that if A ≤p
s-ld-T B via a Turing machine M , then, for each

x, MB(x) asks at most |x| queries to its oracle. ❑
Note that, on input x, the base machine implementing a Turing reduction to SAT can easily

(i.e., in polynomial time) brute-force strings that represent boolean formulas with at most log n
variables (or even k log n variables, for any particular, fixed k) . Thus, for these “small” strings the
machine need not make queries to its oracle. By this observation and the fact that any boolean
formula having m variables appearing in it must need Ω(m log m) bits, Theorem 6.4 can be slightly
improved: For each k ∈ N, even PNP = PNP[n−k log n log log n] can be claimed as the conclusion.

Theorem 6.3 shows that several natural NP-complete problems are tight Z-paddable. Are all
NP-complete sets tight Z-paddable? What about other NP sets? We prove that each NP set (except
∅ and Σ∗) is polynomial-time many-one equivalent to both a tight Z-paddable set and one which is
not tight paddable set (and thus, certainly not tight Z-paddable). Since each set that is polynomial-
time many-one equivalent to an NP-complete set is itself NP-complete, we obtain as a corollary that
there are NP-complete sets that are not tight paddable (and thus, certainly not tight Z-paddable).
Similarly, we obtain as a corollary that there are polynomial-time computable sets that are tight
Z-paddable (and thus, certainly tight paddable).

Theorem 6.5 Each set, except ∅ and Σ∗, is polynomial-time many-one equivalent to a set that is
not tight paddable.

Proof Let A be an arbitrary set other than ∅ and Σ∗. If A is a finite set, let B be the set of all
strings whose lengths are perfect squares. That is, let B = {x | (∃n ∈ N)[|x| = n2]}. Otherwise
(that is, if A is an infinite set), we will encode (in B) at length n2 membership of all strings (in A)
of length n. Formally, B = {x ∈ Σ∗ | (∃n, r ∈ N)[n2 = |x|, the lexicographic rank of x among all
strings of length n2 is r, r ≤ 2n, and the lexicographically rth string of length n is in A]}.

Clearly, A ≤p
m B, and B ≤p

m A in both cases (i.e., when A is finite and when A is infinite). Now,
assume for the purpose of deriving a contradiction that B is tight paddable. Under this assumption
there exists a function σ : Σ∗ → Σ∗ and k ∈ N such that for each x ∈ Σ∗, |x| < |σ(x)| < |x|+ k, and

x ∈ B if and only if σ(x) ∈ B. If A is an a finite set, let x = 0n2

, where n is the smallest integer in
N such that (n + 1)2 > n2 + k. Otherwise (that is, if A is an infinite set), let x be a string such that
x ∈ B and (b

√

|x|c+ 1)2 > |x|+ k. Note that in both cases (that is, when A is finite and when A is

infinite), x is well defined. Also, in both cases x ∈ B. Now, |x| < |σ(x)| < |x| + k < (b
√

|x|c + 1)2.
Since B is only nonempty at lengths that are perfect squares, and the smallest perfect square that
is greater than |x| is (b

√

|x|c + 1)2, it follows that |σ(x)| is not a perfect square, and thus σ(x) is
not in B, which is a contradiction. ❑

As an immediate corollary, we have the following result.

Corollary 6.6 1. Each set in NP, except ∅ and Σ∗, is many-one equivalent to a set that is not
tight paddable (and thus, not tight Z-paddable).

2. There exists an NP-complete set that is not tight paddable (and thus, not tight Z-paddable).

3. There exists a polynomial-time computable set that is not tight paddable (and thus, not tight
Z-paddable).

Turning to the positive side, we have the following result.

Theorem 6.7 Every set is polynomial-time many-one equivalent to a tight Z-paddable set.
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Proof ∅ and Σ∗ are each tight Z-paddable via the function σ(x) = 0x. Let A be a set other than
∅ and Σ∗. We will now define B, a tight Z-paddable set such that A is polynomial-time many-one
equivalent to B. Informally speaking, B at length n + 1 encodes, in the first 2n+1 − 1 strings,
membership (in A) of all strings of length at most n. Formally, B = {x ∈ Σ∗ | |x| > 0 ∧ (∃r ∈
N)[1 ≤ r ≤ 2|x|− 1, x is the rth string in lexicographic order among all strings of length |x|, and the
string with lexicographic rank r (in Σ∗) is in A]}. Note that 1n is the last string in lexicographic
order among all strings of length n. By the definition of B above, for each n, 1n /∈ B.

A ≤p
m B via a function that, roughly speaking, maps each string x to the string y at length |x|+1

such that the rank of y among strings of length |x| + 1 is rank(x). B ≤p
m A via a function σ′ that

on any input x /∈ {1n | n ≥ 1}, outputs the string y such that rank(y) is equal to the lexicographic
rank of x among all strings of length |x|. For each n, σ′(1n) outputs a fixed string that is not in A.
(Such a string exists because A 6= Σ∗.) Thus, A and B are polynomial-time many-one equivalent.

Now, consider the function σ : Σ∗ → Σ∗ defined in the following manner. For each n ∈ N,
σ(1n) = 1n+1. For each string x such that x /∈ {1n | n ≥ 1}, let r be the lexicographic rank of x
among all strings of length |x|. Note that since x 6= 1|x|, it follows that 1 ≤ r ≤ 2|x| − 1. σ(x)
outputs y, where y is the string of length n + 1 that has rank r among all strings of length n + 1.
Clearly, σ is one-to-one. Note that x ∈ B if and only if the lexicographically rth string (in Σ∗) is
in A. Also, y ∈ B if and only if the lexicographically rth string is in A. Thus x ∈ B if and only if
y ∈ B. Since |σ(x)| = |x|+ 1, for each x, it follows that σ is a tight Z-padding function for B. ❑

As an immediate corollary, we obtain the following result.

Corollary 6.8 1. Every NP set is polynomial-time many-one equivalent to a tight Z-paddable
set.

2. Every NP-complete set is polynomial-time many-one equivalent to a tight Z-paddable set.

3. Every polynomial-time computable set is polynomial-time many-one equivalent to a tight Z-
paddable set.

In Theorems 6.1, 6.5, and 6.7, we explored the reducibility properties of tight paddable (and
tight Z-paddable) NP sets. It is interesting to ask whether there are some structural properties that
are common to all paddable sets in NP. We show that all S-paddable NP sets are self-witnessing.
Self-witnessing NP (or SelfNP) was studied by Homan and Thakur [HT03b] in their study of one-way
permutations and the relationships between an NP set and the set of witnesses (accepting paths of
some NPTM) of the strings in the set. SelfNP is the subclass of NP containing all sets L such that,
relative to some NPTM, the set of witnesses of strings in L is exactly equal to L.

Definition 6.9 [HT03b]

1. For each NPTM N and each x ∈ L(N), y is a witness of N on input x if y is an accepting path
in N(x), that is, y is a sequence of nondeterministic guesses that results in N(x) accepting.

2. For each NPTM N , witN is a function that maps each x ∈ L to the set of witnesses of N on
input x.

3. SelfNP = {L | (∃ NPTM N)[L(N) = L ∧
⋃

x∈L witN (x) = L]}.

Homan and Thakur prove that even though SelfNP and NP are unlikely to be the same,
Rp

m(SelfNP) = NP. We show in Theorem 6.12 that any S-paddable NP set is self-witnessing (that
is, in SelfNP). The proof of this result will use a result due to Homan and Thakur, which we state
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as Theorem 6.11. Before stating Theorem 6.12, we state some definitions that will be required in
the statement of Theorem 6.11 as well as the proof of Theorem 6.12.

Definition 6.10 [HT03b]

1. An NPTM M is self-contained witnessing if
⋃

x∈L(M) witM (x) ⊆ L(M).

2. An NPTM M is honest if there exists a polynomial p such that for all x ∈ L(M), there exists
a w ∈ witM (x) such that p(|w|) ≥ |x|.

Homan and Thakur show that if an NP set is accepted by a self-contained witnessing NPTM, then
it is in SelfNP.

Theorem 6.11 [HT03b] For each language L ∈ NP, if there exists a self-contained witnessing,
honest NPTM that accepts L, then L ∈ SelfNP.

We can now show that each S-paddable set (and thus, each Z-paddable set) in NP is self-
witnessing.

Theorem 6.12 If L ∈ NP and L is S-paddable (see Definition 2.6), then L ∈ SelfNP.

Proof Let L ∈ NP via NPTM N such that p is a monotonically increasing polynomial bounding
the length of paths in N . Let L be S-paddable. From Proposition 2.7, we can claim w.l.o.g. that
L is S-paddable via σ : Σ∗ × Σ∗ → Σ∗ such that σ is invertible in both arguments and, for each
x, y ∈ Σ∗, |σ(x, y)| > |x|. Let q be a monotonically increasing polynomial bounding the length of
output of σ. Thus, for each x, y, |σ(x, y)| ≤ q(|x| + |y|). We will prove that L is accepted by a
self-contained witnessing, honest NPTM. From Theorem 6.11, it follows that L ∈ SelfNP.

We will first describe the proof idea informally and then describe it in detail. We construct from
N an honest NPTM N ′ that accepts the same language (namely, L) as N , but the witnesses of N ′

are all members of L. Suppose w is a witness of x in N . Then, our construction will ensure that
the corresponding witness of x in N ′ is σ(x,w). Since x has a witness (namely, w) in N , x ∈ L.
Since σ is an S-padding function for L, σ preserves membership in L. Thus, σ(x,w) ∈ L. Also,
|σ(x,w)| > |x| ensures that N ′ is honest.

Let N ′ be a nondeterministic Turing machine that on any input x ∈ Σ∗ does the following:

Nondeterministically guess a string w of length at most q(|x|+p(|x|)). Compute whether
w has a preimage in σ. That is, (deterministically) compute whether there exist x′ and w′

such that σ(x′, w′) = w. (Note that σ is polynomial-time invertible in both arguments,
so we can deterministically compute the preimage of w.) If w has no preimage in σ,
then reject on the current path. Otherwise, let x′ and w′ be such that σ(x′, w′) = w. If
x′ 6= x, then reject on the current path. If x′ = x, then accept on the current path if and
only if N(x) on the path w′ accepts.

Let x ∈ L. Then, by definition, there exists a path w of length at most p(m) such that N(x)
accepts. By our construction above, N ′(x) accepts on the path σ(x,w) and |σ(x,w)| > |x|. On the
other hand, if x /∈ L, then on each path w in N(x), it rejects. By construction, N ′(x) rejects on all
paths. Thus, L(N ′) = L(N) = L, and N ′ (since, for all x and y, |σ(x, y)| > |x|) is an honest NPTM.
To see that N ′ is a self-contained NPTM note that, by construction, if w is a witness in N(x),
then w = σ(x,w′), for some w′ and x ∈ L. Thus, from the properties of σ, it follows that w ∈ L.
Thus, N ′ is a self-contained witnessing, honest NPTM and L(N ′) = L. Thus, by Theorem 6.11,
L ∈ SelfNP. ❑

Note that all natural NP-complete problems are known to be S-paddable [BH77]. Thus, it follows
from Theorem 6.12 that essentially all natural NP-complete languages are in fact in SelfNP.
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7 Conclusion and Open Problems

In this paper, we introduced a notion of query-monotonicity in Turing reductions that forces
oracle Turing machines to make a rapid progression through their information source. We defined
various query-monotonic reductions and compared the power of these reductions to those of Turing
reductions. We proved that even though in general these reductions are different (weaker) from
Turing reductions, there are classes for which these notions coincide. In particular, we defined a
structural property, namely tight paddability, on sets that is sufficient to ensure that query-increasing
and query-decreasing Turing reductions coincide with Turing reductions. It would be interesting to
find interesting structural conditions on a set that are necessary to ensure that query-increasing and
query-decreasing Turing reductions are equivalent to Turing reductions to that set.

Recall that in the introduction we mentioned that the motivation for our study was formalizing
the notion of rapid progress through an information source (database/oracle). We mentioned that
our reductions have a “use it when you can” flavor: Once one query at or beyond a length is asked,
the rest of the information at that length is forever lost to direct access, on the current input. The
rapidness of progress in query-increasing and query-decreasing reductions is enforced by the strict
length increasing (decreasing) nature of those reductions. Similarly, the rapidness of progress in
query-nondecreasing (query-nonincreasing) reductions is enforced by each query being required to
be at least as long (at most as long) as the previous query. We leave as an open issue the study of a
different notion: requiring each query to be lexicographically greater than (less than) the previous
query. This notion allows up to a polynomial number of “hits” of the information at each length (in
contrast to the one “hit” of query-increasing/ query-decreasing reductions), yet retains a stronger
notion of progress though the information source than do query-nondecreasing/query-nonincreasing
reductions.

Acknowledgment We thank Chris Homan for a helpful conversation and Mitsunori Ogihara for
helpful suggestions, both related to the material of Section 6.
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