
ar
X

iv
:1

10
2.

40
05

v1
 [

cs
.D

S]
 1

9
Fe

b
20

11

Approximating the Online Set Multicover Problems Via

Randomized Winnowing∗

Piotr Berman†

Department of Computer Science and Engineering

Pennsylvania State University

University Park, PA 16802

Email: berman@cse.psu.edu

Bhaskar DasGupta‡

Department of Computer Science

University of Illinois at Chicago

Chicago, IL 60607

Email: dasgupta@cs.uic.edu

August 27, 2018

Abstract

In this paper, we consider the weighted online set k-multicover problem. In this problem,
we have a universe V of elements, a family S of subsets of V with a positive real cost for every
S ∈ S, and a “coverage factor” (positive integer) k. A subset {i0, i1, . . .} ⊆ V of elements are
presented online in an arbitrary order. When each element ip is presented, we are also told the
collection of all (at least k) sets Sip ⊆ S and their costs to which ip belongs and we need to
select additional sets from Sip if necessary such that our collection of selected sets contains at
least k sets that contain the element ip. The goal is to minimize the total cost of the selected
sets1. In this paper, we describe a new randomized algorithm for the online multicover problem
based on a randomized version of the winnowing approach of [15]. This algorithm generalizes
and improves some earlier results in [1, 2]. We also discuss lower bounds on competitive ratios
for deterministic algorithms for general k based on the approaches in [2].

1 Introduction

In this paper, we consider the Weighted Online Set k-multicover problem (abbreviated as WOSCk)
defined as follows. We have an universe V = {1, 2, . . . , n} of elements, a family S of subsets of U
with a cost (positive real number) cS for every S ∈ S, and a “coverage factor” (positive integer) k.
A subset {i0, i1, . . .} ⊆ V of elements are presented in an arbitrary order. When each element ip is
presented, we are also told the collection of all (at least k) sets Sip ⊆ S in which ip belongs and
we need to select additional sets from Sip , if necessary, such that our collection of sets contains at
least k sets that contain the element ip. The goal is to minimize the total cost of the selected sets.
The special case of k = 1 will be simply denoted by WOSC (Weighted Online Set Cover). The
unweighted versions of these problems, when the cost any set is one, will be denoted by OSCk or
OSC.

∗A preliminary version of these results appeared in 9th Workshop on Algorithms and Data Structures, F. Dehne,
A. López-Ortiz and J. R. Sack (editors), LNCS 3608, pp. 110-121, 2005.

†Supported by NSF grant CCR-0208821.
‡Supported in part by NSF grants DBI-0543365, IIS-0612044 and IIS-0346973.
1Our algorithm and competitive ratio bounds can be extended to the case when a set can be selected at most a

prespecified number of times instead of just once; we do not report these extensions for simplicity and also because
they have no relevance to the biological applications that motivated our work.

1

http://arxiv.org/abs/1102.4005v1

The performance of any online algorithm can be measured by the competitive ratio, i.e., the
ratio of the total cost of the online algorithm to that of an optimal offline algorithm that knows the
entire input in advance; for randomized algorithms, we measure the performance by the expected

competitive ratio, i.e., the ratio of the expected cost of the solution found by our algorithm to the
optimum cost computed by an adversary that knows the entire input sequence and has no limits
on computational power, but who is not familiar with our random choices.

The following notations will be used uniformly throughout the rest of the paper unless otherwise
stated explicitly:

• V is the universe of elements;

• m = max
i∈V

|{S ∈ S | i ∈ S}| is the maximum frequency, i.e., the maximum number of sets in

which any element of V belongs;

• d = max
S∈S

|S| is the maximum set size;

• k is the coverage factor;

• e is the base of natural logarithm.

None of m, d or |V | is known to the online algorithm in advance.

1.1 Motivations and applications

One of our main motivation for investigating these problems, especially for large values of the
“coverage factor”, is their applications to reverse engineering problems in systems biology. However,
other applications have also been noted in previous literatures and below we mention one such
application in addition to the biological motivations.

1.1.1 Client/server protocols [2]

Such a situation is modeled by the problem WOSC in which there is a network of servers, clients
arrive one-by-one in arbitrary order, and each client can be served by a subset of the servers based
on their geographical distance from the client. The extension to WOSCk handles the scenario in
which a client must be attended to by at least a minimum number of servers for, say, reliability,
robustness and improved response time. In addition, in our motivation, we want a distributed
algorithm for the various servers, namely an algorithm in which each server locally decide about
the requests without communicating with the other servers or knowing their actions (and, thus
for example, not allowed to maintain a potential function based on a subset of the servers such as
in [2]).

1.1.2 Reverse engineering of gene/protein networks [4, 7, 8, 10, 13, 14, 18, 20]

We briefly explain this motivation here due to lack of space; the reader may consult the references for
more details. This motivation concerns unraveling (or “reverse engineering”) the web of interactions
among the components of complex protein and genetic regulatory networks by observing global
changes to derive interactions between individual nodes. In this application our attention is focused
solely on one such approach, originally described in [13, 14], further elaborated upon in [4, 18],

2

and reviewed in [10, 20]. Here one assumes that the time evolution of a vector of state variables
x(t) = (x1(t), . . . , xn(t)) is described by a system of differential equations:

∂~x

∂t
= f(~x,~p) ≡

∂x1
∂t

= f1(x1, . . . , xn, p1, . . . , pm)
∂x2
∂t = f2(x1, . . . , xn, p1, . . . , pm)

...
∂xn
∂t = fn(x1, . . . , xn, p1, . . . , pm)

where ~p = (p1, . . . , pm) is a vector of parameters, such as levels of hormones or of enzymes, whose
half-lives are long compared to the rate at which the variables evolve and which can be manipu-
lated but remain constant during any given experiment. The components xi(t) of the state vector
represent quantities that can be in principle measured, such as levels of activity of selected proteins
or transcription rates of certain genes. There is a reference value p̄ of ~p, which represents “wild
type” (that is, normal) conditions, and a corresponding steady state x̄ of ~x, such that f(x̄, p̄) = 0.
We are interested in obtaining information about the Jacobian of the vector field f evaluated at
(x̄, p̄), or at least about the signs of the derivatives ∂fi/∂xj(x̄, p̄). For example, if ∂fi/∂xj > 0,
this means that xj has a positive (catalytic) effect upon the rate of formation of xi. To be more
precise, the goal is to find as much information as possible about an unknown matrix A ∈ R

n×n

which is the Jacobian matrix ∂f/∂x. The critical assumption is that, while we may not know the
form of f, we often do know that certain parameters pj do not directly affect certain variables xi.

This amounts to a priori biological knowledge of specificity of enzymes and similar data. Such a
knowledge can be summarized by a binary matrix C = (cij) ∈ {0, 1}n×m, where “cij = 1” means
that pj does not appear in the equation for ẋi, that is, ∂fi/∂pj ≡ 0. In our current context, each
row of C correspond to an element, each column of C correspond to a set, and 0-1 entries indicate
the memberships of elements in sets. A crucial contribution of the above-mentioned references in
this context is as follows. Suppose that we solve this set-multicover instance in which each element
is covered at least some β times. Then with β = n − 1 we can recover the elements of A uniquely

up to a scalar multiple (and, thus can know the signs of the derivatives ∂fi/∂xj(x̄, p̄) precisely)
and with β = n − k for some small k we can recover the elements of A up to a modest ambiguity
that can be tolerated in practice. If the corresponding experimental protocols are carried out using
measurements via a suitable biological reporting mechanisms such as fluorescent proteins in an
online fashion, one arrives at the online set multicover problems discussed in this paper.

1.2 Summary of prior work

Offline versions WSCk and SCk of the problems WOSCk and OSCk, in which all the |V | elements
are presented at the same time, have been well studied in the literature. Following a brief summary
of some of the results only about these problems. Assuming NP 6⊆ DTIME(nlog logn), the SC1

problem in general cannot be approximated to within a factor of (1 − ε) ln |V | for any constant
0 < ε < 1 in polynomial time [11] and cannot be approximated to within a factor of lnd−O(ln lnd)
in polynomial time when restricted to set-cover instances with maximum set size d for all sufficiently
large d unless P=NP. On the other hand, an instance of the SCk problem can be (1 + lnd)-
approximated in O(|V | · |S | · k) time by a simple greedy heuristic that, at every step, selects a
new set that covers the maximum number of those elements that has not been covered at least
k times yet [12, 22]; these results were recently improved upon in [7] who provided a randomized
approximation algorithm with an expected performance ratio of (1 + o(1)) ln

(
d
k

)
when d/k is at

least about e2 ≈ 7.39, and for smaller values of d/k the expected performance ratio was 1+2
√
d/k.

Regarding previous results for the online versions, the authors in [1, 2] considered the WOSC
problem and provided both deterministic and simple randomized algorithms with a competitive

3

ratio or expected competitive ratio of O(logm log |V |) and an almost matching lower bound of

Ω
(

log |S | log |V |
log log |S |+log log |V |

)
on the competitive ratio for any deterministic algorithm for almost all values2

of |V | and |S |. The authors of [5] provided an efficient randomized online approximation algorithm
and a corresponding matching lower bound (for any randomized algorithm) for a different version
of the online set-cover problem in which one is allowed to pick at most k sets for a given k and the
goal is to maximize the number of presented elements for which at least one set containing them
was selected on or before the element was presented. Concurrent to our conference publication,
Alon, Azar and Gutner [3] considered the weighted online set-cover problem with repetitions which
is studied in a bigger context of admissions control problem in general networks. Here, an element
can be presented multiple times and, if the element is presented k times, our goal is to cover it by at
least k different sets. For this problem [3] contains a randomized O(logm log |V |)-competitive algo-
rithm as well as a deterministic bi-criteria approximation algorithm, i.e., a deterministic algorithm
that has a competitive ratio of O(logm log |V |) and covers an element by at least (1− ε)k different
sets for any fixed ε > 0; it is easy to see that these bounds carry over to the problemWOSCk. Con-
versely, it is not difficult to see that our algorithm A-Universal and analysis can easily be adapted
to this problem to achieve an expected competitive ratio of log2m lnd+O(log2m+ lnd) with ar-
bitrary set weights; one would need to modify appropriate places of Section 3.4. For unweighted
sets, via Corollary 2(b), Algorithm A-Universal provides an improved expected competitive ratio

of “roughly” (neglecting small constants) max
{
5 log2m, log2m ln

(
d

k log2m

)}
and the constants

involved in this bound are further improved in Theorem 10.

1.3 Summary of our results and techniques

Let r(m,d, k) denote the competitive ratio of any online algorithm for WOSCk as a function of m,
d and k. In this paper, we describe a new randomized algorithm for the online multicover problem
based on a randomized version of the winnowing approach of [15]. Our main contributions are then
as follows:

• We first provide a uniform analysis of our algorithm for all cases of the online set multicover
problems. As a corollary of our analysis, we observe the following.

– For OSC, WOSC and WOSCk our randomized algorithm has E [r(m,d, k)] equal to
log2m ln d plus small lower order terms. While the authors in [1, 2] did provide a deter-
ministic algorithm and a simple randomized algorithm for WOSC with a competitive
ratio and an expected competitive ratio of O(logm log |V |), respectively, the improve-
ments of our approach and analysis are as follows:

∗ We provide better constant factors and lower-order terms. Note that tight analysis
of the approximability or inapproximability bounds for set-cover type problems in-
volving tight estimates of the constants and lower-order terms is not a new idea; for
example, see [6, 7, 17, 19, 21].

∗ We use the maximum set size d rather than the larger universe size |V | in the
competitive ratio bound.

∗ For large coverage factor k (the case of utmost importance in our applications to sys-
tems biology in Section 1.1.2), our uniform analysis via the quantity κ (see Section 3)

2To be precise, when log2 |V | ≤ |S | ≤ e
|V |

1
2

−δ

for any fixed δ > 0; we will refer to similar bounds as “almost all
values” of these parameters in the sequel.

4

provides an expected competitive ratio of roughly

max

5 log2m, log2m ln

 d

max
{
1,
(
k log2m

c

)}

where c ≥ 1 is the ratio of the largest to the smallest weight among the sets in an
optimal solution. This provides a smooth transition of the expected competitive
ratio between “roughly” log2m lnd plus small lower order terms for WOSCk when

the weights are arbitrary positive numbers to max
{
5 log2m, log2m ln

(
d

k log2m

)}

for OSCk when all the weights are the same.

∗ As a corollary of the above, for (the unweighted version) OSCk for general k the
expected competitive ratio E [r(m,d, k)] decreases logarithmically with decreasing
d/k with a value of roughly 5 log2m in the limit3 for all sufficiently large k.

• We next provide an improved analysis of E [r(m,d, 1)] for OSC with better constants.

• We next provide an improved analysis of E [r(m,d, k)] for OSCk with better constants and
asymptotic limit for large k. The case of large k is important for its application in reverse
engineering of biological networks as outlined in Section 1.1. More precisely, we show that
E [r(m,d, k)] is at most

(
1
2 + log2m

)
·
(
2 ln d

k + 3.4
)
+ 1+ 2 log2m if k ≤ (2e) · d and at most

1 + 2 log2m otherwise.

• Finally, we discuss lower bounds on competitive ratios for deterministic algorithms for OSCk

and WOSCk for general k using the approaches in [2]. The lower bounds obtained are

Ω

(
log

|S|

k
log

|V |

k

log log
|S|

k
+log log

|V |

k

)
for OSCk and Ω

(
log |S | log |V |

log log |S |+log log |V |

)
for WOSCk for many values of

the parameters.

1.4 Comparison With Previous Work

The structure of our algorithm is similar to and the analysis method of our algorithm is motivated
by the implicit randomized algorithm (which was subsequently derandomized) in the paper The

online set cover problem by Alon et al. [2].
For every set we maintain a number that will guide the process of selection; we use αp[S], Alon

et al. use wS. When a new element is received, and it is not covered (or sufficiently covered) yet,
in both papers this number is multiplied by a constant — if the new element belongs to S (in the
weighted case, this number is incremented by a constant divided by cS). The process of set selection
is a bit different: we simply select set S with probability that equals the increment of αp[S], while
Alon et al. the procedure is achieving a similar effect rather indirectly — it very much looks like a
de-randomization of our approach (we knew their approach when we worked on ours, so ours was
a de-de-randomization).

The analysis of Alon et al. uses an ingenious potential function, while we use three classes of
accounts. In either case, this is a form of amortized analysis. The two approaches offer distinct
advantages. Alon et al. had a much shorter proof and could obtain a de-randomized version. As
our choices were more explicitly related to Poisson trial, we applied our own versions of Chernoff
bound to tighten the analysis considerably.

3Notice the similarity of this dependence of the expected competitive ratio on d/k to that in our results in [7] for
the offline version of the problem where we provided an approximation algorithm with an expected performance ratio
of about max{(1+ o(1)) ln

(

d
k

)

, 1+ 2
√

d/k}.

5

A fractional solution to the set cover problem is implicit in these solutions, as the “guiding num-
bers” can be interpreted as fractional choices, and making the “guided choices” can be interpreted
as rounding. However, neither our analysis, nor that of Alon et al. use that fact explicitly.

2 A Generic Randomized Winnowing Algorithm

We first describe a generic randomized winnowing algorithm A-Universal below in Fig. 1. The
winnowing algorithm has two scaling factors: a multiplicative scaling factor µ

cS
that depends on

the particular set S containing i and another additive scaling factor |Si|
−1 that depends on the

number of sets that contain i. These scaling factors quantify the appropriate level of “promotion”
in the winnowing approach. In the next few sections, we will analyze the above algorithm for the
various online set-multicover problems. The following notations will be used uniformly throughout
the analysis:

• J ⊆ V be the set of elements received in a run of the algorithm.

• T ∗ be an optimum solution.

2.1 A Guided Tour — Rough Sketch of the Analysis of A-Universal for the

Unweighted Case

We first sketch the overall analysis of A-Universal for the case when every set has cost 1 to
provide the reader an intuition behind the overall analysis of the algorithm. Bear in mind that this

analysis is neither the most precise nor the simplest, but it can be extended to the general case. In
particular we may overestimate or underestimate the constants slightly in the description to omit
tedious details in favor of providing a better intuition.

Since the function Stat always returns 1, we can remove line A4 and simplify line A6 to
p[S]← min(αp[S] + |Si|

−1, 1).
The cost of handling an element i by A-Universal is the number of sets that are selected. The

analysis is conditional on quantity s = ξ(i), where ξ(i) is the sum of αp[S]’s over S ∈ Si−T ∗ at the
time when i is received, and we take the worst case over all possible values s. We define event E(b)
that exactly b sets from Si − T ∗ were already selected before element i was received. Note that
these selections were successes in Poisson trials that have sum of probabilities s, so the probability
of E(b) can be expressed as some p(s, b), e.g. using Lemma 13.

The cost is split into three components: (i) selections of sets from T ∗, (ii) selections from Si−T ∗

made in lines A8-9, and (iii) selection from Si − T ∗ made in lines A11-12.
Selections of type (i) are charged to account(T ∗), obviously the final value of this account

contributes at most 1 to the competitive ratio.
Rather than paying for the actual cost of selections of type (ii) and (iii), we pay the expected cost

of these selections, and on average we will be paying enough. We estimate this cost as s+ deficit,
and we pay it as follows: we charge a fixed amount 1+ψ to every account(S) such that S ∈ Si∩T

∗−T ,
and the left-over cost is charged to account(i).

The contribution of account(S) to the competitive ratio is the ratio of the expected final value of
account(S) to the portion of c(T ∗) attributed to S, and the latter happens to be 1 (in the unweighted
case!). Thus this contribution is (1+ψ)β where β is the expected number of times we can charge
account(S). We introduce function Λ(S) to estimate β. The initial value of Λ(S) = log2 1 = 0.
When we charge account(S) after receiving element i, the value of ξ(S) increases from some x to at
least x+ x+m−1, so mx+ 1 increases to at least 2mx+ 2, so Λ(S) increases by at least 1 — except

6

F1 function Stat(B, j)
F2 A← ∅
F3 while (|A| < j) do // select j least cost sets from B //
F4 S←least cost set from B −A; insert S to A
F5 return cS // return the cost of the last selected set //

// definition //
D1 for (i ∈ V)
D2 Si ← {s ∈ S : i ∈ S}

// initialization //
I1 T ← ∅ // T is our collection of selected sets //
I2 for (S ∈ S)
I3 αp[S]← 0 // accumulated probability of each set //

// after receiving an element i //
A1 deficit← k− |Si ∩ T | // k is the coverage factor //
A2 if deficit ≤ 0 // we need deficit more sets for i //
A3 finish the processing of i
A4 µ← Stat(Si − T , deficit)
A5 for (S ∈ Si − T)

A6 p[S]← µ
cS

(
αp[S] + |Si|

−1
)

// probability for this step //

A7 αp[S]← αp[S] + p[S] // accumulated probability //
A8 with probability min{p[S], 1}
A9 insert S to T // randomized selection //
A10 deficit← k− |Si ∩ T |

A11 repeat deficit times // greedy selection //
A12 insert a least cost set from Si − T to T

Figure 1: Algorithm A-Universal

when ξ[S] increases to x+ 1 and S is deterministically selected. smaller. The average final value of
Λ(S) is at most log2m (cf. Lemma 4). Thus account(S)’s contribute roughly (1+ψ) log2m to the
competitive ratio.

Note that there must be at least deficit many sets in Si ∩ T ∗ − T , so 1 term in 1 + ψ surely
covers the cost of selections of type (iii). If there are b such sets and s > bψ, we charge s − bψ
to account(i). To find the contribution of account(i) to the competitive ratio we must ascribe part
of c(T ∗) to i and to estimate the final value of account(i). If we have received b elements so far,
c(T ∗) ≥ kb/d, so we can ascribe k/d to i.

Note that we make only one charge to account(i). How can we estimate this charge under
condition E(j − 1)? First, because j − 1 “incorrect” sets were already selected, deficit would be
0 if only j − 1 “correct” sets remained unselected, so the charges are 0 unless we have at least j
unselected “correct” sets. Thus under condition E(j − 1), if we make any charges at all, at least
jψ was charged to account(S)’s to cover the average cost of selections of type (ii). Thus under
condition E(b) we charge at most s − (b + 1)ψ to account(i). As we estimate the probability of

E(b) with p(s, b), we can estimate the average final value of account(i) as
∑⌊s/ψ⌋
j=1 p(s, j− 1)[s− jψ].

7

Using Lemma 13, one can show that ψ = max{2, ln(k/d)} assures that account(i) do not con-
tribute more than a log2m factor to the competitive ratio.

3 An Uniform Analysis of Algorithm A-Universal

In this section, we present a uniform analysis of Algorithm A-Universal that applies to all versions
of the online set multicover problems, i.e., OSC, OSCk, WOSC and WOSCk. Abusing notations
slightly, define c(S ′) =

∑
S∈S ′ cS for any subcollection of sets S ′ ⊆ S. Our bound on the competitive

ratio will be influenced by the parameter κ defined as: κ = min
i∈J & S∈Si∩T ∗

{
c(Si ∩ T ∗)

cS

}

. It is easy

to check that κ =

1 for OSC
k for OSCk

≥ 1 for WOSC and WOSCk

. The main result proved in this section is

the following theorem.

Theorem 1 The expected competitive ratio E [r(m,d, k)] of Algorithm A-Universal is at most

1 + log2m×max

{

5, 2+ ln
d

κ log2m

}

Corollary 2
(a) For OSC, WOSC and WOSCk, setting κ = 1 we obtain E [r(m,d, k)] to be at most log2m lnd
plus lower order terms.

(b) For OSCk, setting κ = k, we obtain E [r(m,d, k)] to be at most

1 + log2m×max
{
5,
(
2+ ln d

k log2m

)}

≈ log2m×max
{
5, ln d

k log2m

}

(c) Let c ≥ 1 is the ratio of the largest to the smallest weight among the sets in an optimal solution.

Then, setting κ = max
{
1, kc
}
, we obtain E [r(m,d, k)] to be at most

1 + log2m×max

{

5,

(
2 + ln d

max{1, kc } log2m

)}

≈ log2m×max

{

5, ln

(
d

max
{
1,
(
k log2 m

c

)}

)}

In the next few subsections we prove the above theorem.

3.1 The overall scheme

We first roughly describe the overall scheme of our analysis. The average cost of a run of A-
Universal is the sum of average costs that are incurred when elements i ∈ J are received. We
will account for these costs by dividing these costs into three parts cost1 +

∑
i∈J cost

i
2+
∑
i∈J cost

i
3

where:

cost1 ≤ c(T
∗) upper bounds the total cost incurred by the algorithm for selecting sets in T ∩ T ∗.

costi2 is the cost of selecting sets from Si − T ∗ in line A9 for each i ∈ J .

costi3 is the cost of selecting sets from Si − T ∗ in line A12 for each i ∈ J .

8

We will use the accounting scheme to count these costs by creating the following three types of
accounts:

account(T ∗);
account(S) for each set S ∈ T ∗ − T ;
account(i) for each received element i ∈ J .

cost1 obviously adds at most 1 to the average competitive ratio; we will charge this cost to
account(T ∗). The other two kinds of costs, namely costi2+costi3 for each i, will be distributed
to the remaining two accounts. Let D = d

κ log2m
. The distribution of charges to these two accounts

will satisfy the following:

•
∑
i∈J account(i)≤ log2m · c(T ∗). This claim in turn will be satisfied by:

– dividing the optimal cost c(T ∗) into pieces ci(T
∗) for each i ∈ J such that

∑
i∈J ci(T

∗) ≤
c(T ∗); and

– showing that, for each i ∈ J , account(i)≤ log2m · ci(T
∗).

•
∑
S∈T ∗account(S)≤ log2m ·max{4, lnD + 1} · c(T ∗).

This will obviously prove an expected competitive ratio of at most the maximum of 1+5(1+log2m)

and 1+ (1 + log2m)(2 + lnD), as promised.
We will perform our analysis from the point of view of each received element i ∈ J . To define

and analyze the charges we will define several quantities:

µ(i) the value of µ calculated in line A4 after receiving i
ξ(i) the sum of αp[S]’s over S ∈ Si − T ∗ at the time when i is received
a(i) |T ∩ Si − T ∗| at the time when i is received
Λ(S) log2(m · αp[S] + 1) for each S ∈ S;

it changes during the execution of A-Universal

Finally, let ∆(X) denote the amount of change (increase or decrease) of a quantity X when an
element i is processed.

3.2 The role of Λ(S)

We will ensure the invariant account(S)≤ max{4, lnD+1}·Λ(S)·cS for every S ∈ T ∗. We will simply
not accept larger charges to the accounts of sets than this invariant allows. This invariant is useful
because we will prove a universal upper bound U on the expected final value of Λ(S), and thus the
contribution of the accounts of sets to the expected competitive ratio will be max{4, lnD+ 1} ·U.

Definition 3 When we determine the charges to accounts made when element i is received, we

classify sets from Si ∩ T ∗ − T as heavy if cS ≥ µ(i) and light otherwise.

When i is received we charge accounts of S ∈ T ∗ ∩ Si − T in the following manner:

• for a light set, ∆(account(S)) = cS while we can show that ∆(Λ(S)) > 1 and

• for a heavy set ∆(account(S)) = max{4, lnD+ 1}µ(i) while ∆(Λ(S)) ≥ µ(i)/cS.

9

The above estimates of ∆(Λ(S)) are easy to show: in lines A6-7 we increment αp[S] +m−1 with

µ(i)

cS
(αp[S] + |Si|

−1) ≥
µ(i)

cS
(αp[S] +m−1),

which increments Λ(S) = log2(αp[S] + |Si|
−1) − log2m by at least log2(1 + µ(i)/cS); for a light set

this increment is at least log22 = 1, and for a heavy set we have µ(i)/cS ≤ 1, and we use the
following fact:

log2(1 + x) ≥ x for x ≤ 1.

Of course, such an approach makes sense only if we can prove an upper bound on E [Λ(S)].
Note that in step A6 we may calculate a value of p[S] that is larger than 1.

We analyze E [Λ(S)] from the following point of view: consider a fixed sequence of p[S] over the
execution of the algorithm; each time p[S] > 0 there is a chance that S gets selected and this is the
last step when Λ(S) increases. Our bound will hold true for every possible sequence.

Lemma 4 E [Λ(S)] ≤ log2m for m ≥ 7.

Proof. We want to find the expected final value of Λ(S) = log2(m·αp[S]+1) = log2m+log2(αp[S]+
m−1). It is a function of the sequence of probabilities, say p1, p2, . . ., that p[S] computed when
elements of S were received.

We will be working with sequences formed from possible sequences of probabilities by deleting
an initial part; let the sum of this initial part and m−1 is z. We define βpi = z +

∑i−1
j=1 pj which

stands for the value of αp[S] +m−1 in line A6 when we compute pi. We say that ~p = (p1, p2, . . .)

is z-legal if for i ≥ 1 we have 0 ≤ pi ≤ βpi, and if pi ≥ 1 then pi is the last term of ~p. Let
tail(~p) = (p2, . . .).

We define F(z,~p) as follows. If ~p is an empty sequence then F(z,~p) = 0, otherwise

F(z,~p) = p1 log2(p1 + z) + (1 − p1)F(z + p1, tail(~p)) (∗)

In turn, F(z) is the supremum value of F(z,~p) over all z-legal sequences. Our goal is to show that
F(1/m) < 0 for m ≥ 7.

We first show that if the supremum defining F(z) is limited to infinite sequences, then it is finite.
By repetitively applying formula (*) we get

F(z, p) =

∞∑

i=1

i−1∏

j=1

(1 − pj)pi log2(βpi + pi) < e
z

∫∞

z

e−x log2(x+ 1)dx

where the summation can be converted to an integral as follows: pi can be a sum of dx’s over an
interval of length pi, say from βpi to βpi+1, the product can be the probabilistic density function
that can be bounded from above with ez−x and log2 can be the function that we compute expectation
of, and it can be estimated from above with log2(x + 1); this justifies the estimate with of F(z,~p)
with a convergent integral.

Next we show that for z ≥ log2 e we have F(z) = F(z, (z)) = 1 + log2 z. Suppose that F(z) >
1 + log2 z. Then for some finite ~p and for some z ≥ log2 e we have F(z,~p) > F(z, (z)) = 1 + log2 z.
Consider a shortest such sequence. Because of (∗) we can conclude that ~p has length 2, since
otherwise F(z + p1, tail(~p)) ≤ F(z + p1, (z + p1)), but in that case we can replace tail(~p) with the

10

single term z+ p1. So we can assume that ~p = (x, z+ x) for some x > 0. Then we have

F(z,~p) = x log2(z+ x) + (1 − x) log2(z + x+ z+ x) > 1+ log2 z
which implies

x log2(z+ x) + (1 − x)(1 + log2(z + x)) > 1 + log2 z
which implies

x
(
log2 z+ log2

z+x
z

)
+ (1 − x)

(
1 + log2 z+ log2

z+x
z

)
> 1 + log2 z

which implies
log2

z+x
z > x

The latter is not possible, because for x ≥ z ≥ log2 e the derivative of the left-hand-side is log2 e

z+x ≤ 1,
while the derivative of the right-hand-side is 1.

In a z-legal sequence ~p we have p1 ≤ min{1, z}. As the third observation we can show that if βp
has more than one term, then p1 + p2 > min{1, z}, otherwise we increase F(z,~p) when we coalesce
the first two terms of ~p into one. Let p1 = x, p2 = y, p1 + p2 = p, we have

x log2(z+ x) + (1 − x)y log2(z + p) + (1 − x)(1 − y)F(z + p) < p log2(z + p) + (1 − p)F(z+ p)

which implies

x
(
log2

z+x
z+p + log2(z+ p)

)
+ (1 − x)y log2(z + p) + xyF(z+ p) < p log2(z+ p)

which implies
x log2

z+x
z+p − xy log2(z + p) + xyF(z+ p) < 0

which implies

F(z+ p) < log2(z + p) +
1
y log2

(
1 + y

z+p−y

)

Because we always have F(z) ≤ log2(z) + 1, it suffices to show that 1
y log2(1 +

y
z+p−y) > 1. This

follows from the fact that for x < log2 e the derivative of log2 x is larger than 1.
The methods used to show the last two fact allow to characterize the optimal (or worst case)

sequences: if z ≥ log2 e, use 1-term sequence consisting of z, otherwise start from min{z, 1, log e−z}.
As a consequence, if 12 log2 e ≤ z ≤ log2 e then F(z) = F(z, (log2 e − z, log2 e) = log2 log2 e+ 1 −

log2 e+ z, and for z ≤ 1
2 log2 e we know that F(z) = z log2(2z) + (1 − z)F(2z). It is easy to see that

for F(z/2) < F(z), and we can compute the values of F(1/m) for m = 2, 3, . . . , 7:

m 1 2 3 4 5 6 7 8

F(1/m) 1.086 0.543 0.397 0.157 0.120 0.067 −0.016 −0.112

❑

Observe that it is very easy to show the competitive ratio of m, so for m = 1 it makes no sense
to discuss the competitive ratio, while for 1 < m ≤ 16, since 4 log2m ≥ m, the upper bound we
are proving is trivial.

3.3 Charges due to the costs of line A12

When we make greedy selections in line A12, there are at least deficit many sets in Si ∩ T ∗ − T ;
we can order them according to their costs, say S1, S2, . . .; and let cSi = ai. Because we could make
greedy selections of these sets, the costs of actual selections cannot be larger, so if these costs are
ordered b1 ≤ . . . ≤ bdeficit, we have bi ≤ ai for i = 1, . . . , deficit.

Therefore we can charge bi to account(Si) and the expected sum of such charges made to
each account(S) is at most cS · log2m. Therefore these charges contribute log2m to the expected
competitive ratio.

11

3.4 Charges due to the costs of line A9

The expected sum of charges due to the costs of line A9 equals µ(i)ξ(i) + µ(i): every set from
Si−T −T ∗ contributes, regardless of its weight, µ(i)(αp[S]+ |Si|

−1), αp[S] terms add to ξ(i), while
|Si|

−1 terms add to 1. We will refer to these two terms as A9a charges and A9b charges.
A9b charges will be given to an arbitrary account of a heavy set (in the worst case, there is

only one).
A9a charges are distributed among the accounts of heavy sets and account(i). The idea is the

following: we will fix the A9a charge to each heavy set account to some ψ such that the contribution
of these charges to the competitive ratio will be exactly µ(i)ψ. We estimate the number of the
heavy sets as follows.

Lemma 5 There are at least a(i) + 1 heavy sets.

Proof. Our assumption is that at the time i is received, a(i) sets from Si−T ∗ are already selected
to T . Thus when we compute µ(i) in a call to Stat(Si − T) in line A4 we can form set A from
Si ∩ T ∗ after excluding a(i) sets with the largest cost. Would we do that, µ(i) would become the
largest cost in Si∩T ∗−T , after excluding a(i) costs that are yet larger, so we indeed have at least
a(i) sets of cost µ(i) or more — hence heavy. When we include other sets in A as well, the value
of µ(i) can only decrease, and then the number of heavy sets can only increase. ❑

Therefore at most µ(i)(ξ(i)− (a(i)+ 1)ψ) will be charged to account(i). Thus we need to show
that E [ξ(i) − (a(i) + 1)ψ] is sufficiently small.

The intuition is that when ξ(i) is small, the charges cannot be made, and when ξ(i) is large,
the average value of a(i) is equally large and thus the probability of making charges is sufficiently
small to assure a very small average value.

In the next subsection we analyze these probabilities, but it is easy to see that the higher ψ,
the smaller E [ξ(i) − (a(i) + 1)ψ]. We want to set the average charge to account(i) in such a way
that the expected contribution of these accounts to the competitive ratio is at most log2m. So the
question is: how large portion of c(T ∗) can we attribute to element i?

To simplify our calculations, we rescale the costs of sets so µ(i) = 1 and thus cS ≥ 1 for each
heavy set S and the sum of charges due to line A9 is simply ξ(i).

We associate with i a piece ci(T
∗) of the optimum cost c(T ∗):

ci(T
∗) =

∑

S∈Si∩T ∗

cS/|S| ≥
1

d
c(Si ∩ T ∗) ≥

κ

d
µ(i) = κ/d.

It is then easy to verify that

∑

i∈J

ci(T
∗) ≤

∑

i∈J

1

d
c(Si ∩ T ∗) ≤ c(T ∩ T ∗) ≤ c(T ∗)

Thus we can charge account(i) in such a way that on average it receives (κ/d) log2m, and let
D−1 = (κ/d) log2m. In the next subsection, we find a sufficiently high value of ψ to make it so. For
now observe that the competitive ratio will be 1+(3+ψ) log2m: 1 for the charges to account(T ∗),
log2m for the charges due to line A12, log2m for the charges to account(i)’s, log2m for A9b charges
and ψ log2m for A9a charges.

12

3.5 Split of A9a charges between i and the heavy sets

In this section we prove that for ψ = max{2, lnD − 1} we have E [ξ(i) − (a(i) + 1)ψ] ≤ D−1.
Define

E(i, b) =

{
1 if a(i) ≤ b
0 otherwise

Let charge(i, ψ, ℓ, x) be the formula for the charge to account(i) assuming we use ψ with ℓψ ≤ x =
ξ(i) ≤ (ℓ + 1)ψ. We can estimate charge(i, ψ, ℓ, x) in the following manner:

• If E(i, ℓ − 1) = 1, then a(i) + 1 = ℓ, the total charge to all the heavy sets is ℓψ and thus we
have to charge account(i) with x− ℓψ.

• if E(i, ℓ − 2) = 1 then we also have E(i, ℓ − 1) = 1, so we charged account(i) with x − ℓψ
already, but we need to charge account(i) with an additional amount of ψ.

• Continuing in a similar manner, it follows that for each b ≤ ℓ − 2, if E(i, b) = 1 we charge
account(i) with an additional amount of ψ.

Thus we get the following estimate:

E [charge(i, ψ, ℓ, x)] = Pr [E(i, ℓ − 1) = 1] · (x − ℓψ) +ψ

ℓ−2∑

j=0

Pr [E(i, j) = 1] .

Since ψ(a(i) + 1) < ξ(i) and ψ ≥ 2, a(i) + 1 is less than 1
2
ξ(i). Thus, we can use Lemma 13 with

X = x = ξ(i) and a = j to obtain Pr [E(i, j) = 1] < e−x x
j

j! for j = ℓ− 1, ℓ− 2, . . . , 0. Let C(ψ, ℓ, x) be
the estimate of of E [charge(i, ψ, ℓ, x)] thus obtained:

C(ψ, ℓ, x) = e−x

 xℓ−1

(ℓ− 1)!
(x− ℓψ) +ψ

ℓ−2∑

j=0

xj

j!

 .

Lemma 6 If ψ ≥ 2, x ≥ 1 and ℓ = ⌊x/ψ⌋ ≥ 1 then C(ψ, ℓ, x) ≤ e−(ψ+1).

Proof. We first consider the case of ℓ = 1. Because E(i,−1) is not possible, charge(i, ψ, 1, x) =
E(i, 0)(x − ψ) and C(ψ, 1, x) = e−x(x − ψ). Now since ∂

∂xC(ψ, 1, x) = e−x(−x + ψ + 1), C(ψ, 1, x)

is maximized for x = ψ+ 1 with a maximum value of e−(ψ+1).
For ℓ ≥ 2 the summation part of the formula for C(ψ, ℓ, x) is non-trivial; in that case one can

calculate that
∂

∂x
C(ψ, ℓ, x) = e−x

xℓ−2

(ℓ − 1)!
(−x2 + ℓ(ψ+ 1)x − (ℓ2 − 1)ψ).

As we see, this derivative is a product of a positive function with a trinomial. This trinomial has
the maximum for x = ℓ(ψ+1)/2, so in our range, ℓψ ≤ x ≤ (ℓ+1)ψ, it is decreasing. For x = ℓψ the
value of the trinomial is ψ > 0, and for x = ℓψ+ 2/ℓ the value of the trinomial is 2−ψ− 4ℓ−2 < 0.
Therefore the maximum must occur in the interval between ℓψ and ℓψ + 2/ℓ and it will suffice to
prove our claim in this range.

For x = ℓψ+ z with 0 < z < 2/ℓ the inequality we want to prove is equivalent to

LHS =
(ℓψ+ z)ℓ−1

(ℓ − 1)!
z+ψ

ℓ−2∑

j=0

(ℓψ+ z)j

j!
≤ e(ℓ−1)ψ−1+z = RHS (1)

13

Suppose that (1) is true for some ψ; then for ψ ′ = ψ+ ε RHS increases by a factor of e(ℓ−1)ε, while

each monomial (ℓψ+z)j

j! , for j = 0, 1, . . . , ℓ − 1, increases by a factor of
(
1+ ε

ψ+ z
ℓ

)j
≤
(
1 + ε

ψ

)ℓ−1
<

e(ℓ−1)
ε
ψ and thus the entire LHS increases by a factor of at most ψe(ℓ−1)

ε
ψ < e(ℓ−1)ε. Because LHS

increases less that RHS, the inequality for ψ implies that for ψ+ ε and thus for every higher value.
For this reason it suffices to prove the inequality for ψ = 2 and for ℓψ < x < ℓψ + 2/ℓ (thus, for
0 < z < 2/ℓ). For ψ = 2, our claim is reduces to

LHS =
(2ℓ + z)ℓ−1

(ℓ − 1)!
z+ 2

ℓ−2∑

j=0

(2ℓ + z)j

j!
≤ e2ℓ−3+z = RHS

For convenience, let y = 2ℓ + z. Thus, we need to prove

LHS =
yℓ−1

(ℓ− 1)!
(y− 2ℓ) + 2

ℓ−2∑

j=0

yj

j!
≤ ey−3 = RHS

subject to 2ℓ < y < 2ℓ + 2
ℓ . Since ℓ ≥ 2, y < 2ℓ + 2

ℓ < 2(ℓ + 1) and thus y − 2ℓ < 2. Thus

LHS < 2
∑ℓ−1
j=0

yj

j! , and since, by the well-known series expansion, ey =
∑∞
j=0

yj

j! it suffices to show
that

2e3
ℓ−1∑

j=0

Tj ≤
∞∑

j=0

Tj

for ℓ ≥ 2, 2ℓ < y < 2ℓ+ 2
ℓ
and Tj =

yj

j!
. First, we verify by induction that Tj ≥

∑j−1
i=0 Ti for 1 ≤ j ≤ ℓ.

Note that for 1 ≤ j ≤ ℓ, Tj/Tj−1 = y/j > 2. For the basis case of j = 1, it is therefore obvious.

Otherwise, Tj > 2Tj−1 > Tj−1+
∑j−2
i=0 Ti =

∑j−1
i=0 Ti by inductive hypothesis. Thus, it suffices to show

that

2e3Tℓ ≤
∞∑

j=0

Tj

For ℓ + 1 ≤ j ≤ 2ℓ, Tj/Tj−1 = y/j > 1. Thus,
∑∞
j=0 Tj ≥ ℓTℓ, and thus it suffices to show that

2e3Tℓ ≤ ℓ · Tℓ which holds provided ℓ ≥ 2e3 ≈ 40.17. Thus, the claim holds for ℓ > 40.
For 2 ≤ ℓ ≤ 40 and ψ = 2, we can verify our claim by easy numerical calculation. Notice

that we just need to verify C(2, ℓ, x0) ≤ e−3 where x0 is the real root of the quadratic function
f(x) = −x2 + 3ℓx− 2(ℓ2 − 1) that lies in the range 2ℓ < x < 2ℓ+ 2/ℓ. By numerical calculation, one
can tabulate the results as shown in Table 1 and verify that C(2, ℓ, x0) < 0.049 < e−3.

❑

Now, since ψ = max{2, lnD − 1} ≥ 2 we conclude using Lemma 6 that the average charge to
account(i) is at most e− lnD = D−1.

4 Improved Analysis of Algorithm A-Universal for Unweighted

Cases

In this section, we provide improved analysis of the expected competitive ratios of Algorithm A-
Universal or its minor variation for the unweighted cases of the online set multicover problems.
These improvements pertain to providing improved constants in the bound for E [r(m,d, k)]. The
following notations will be used in this section:

14

ℓ x0 C(2, ℓ, x0)

40 80.049938 0.000000267802482750

39 78.051215 0.000000367770130466

38 76.052559 0.000000505162841918

37 74.053975 0.000000694037963620

36 72.055470 0.000000953753092710

35 70.057050 0.000001310973313578

34 68.058722 0.000001802442476141

33 66.060495 0.000002478811076980

32 64.062378 0.000003409926108503

31 62.064382 0.000004692144890365

30 60.066519 0.000006458452590756

29 58.068802 0.000008892465898008

28 56.071247 0.000012247826675415

27 54.073872 0.000016875076361489

26 52.076697 0.000023258920058581

25 50.079746 0.000032069930688629

24 48.083046 0.000044236337186173

23 46.086630 0.000061043767052413

22 44.090537 0.000084273925651732

21 42.094810 0.000116397546202183

20 40.099505 0.000160843029165595

19 38.104686 0.000222370693445282

18 36.110434 0.000307594429791974

17 34.116844 0.000425709065373619

16 32.124038 0.000589504628397967

15 30.132169 0.000816780125566277

14 28.141428 0.001132311971151022

13 26.152067 0.001570588251431389

12 24.164414 0.002179590204991318

11 22.178908 0.003025980931596380

10 20.196152 0.004202124182703906

9 18.216991 0.005835328094363729

8 16.242641 0.008099376451161879

7 14.274917 0.011227174827357965

6 12.316625 0.015519482245119539

5 10.372281 0.021333034990024608

4 8.449490 0.028995023101223379

3 6.561553 0.038468799615120751

2 4.732051 0.048129928161242959

Table 1: Verification of C(2, ℓ, x0) < e−3 for 2 ≤ ℓ ≤ 40.

15

σp[i] =
∑
S∈Si

p[S];

σαp[i] =
∑
S∈Si

αp[S];

T̃ is the set of elements of T for which line A5 was executed.

4.1 Improved performance bounds for OSC

Theorem 7 E [r(m,d, 1)] ≤
log2m ln d, if m > 15(
1
2 + log2m

)
(1 + lnd), otherwise

In the rest of the section, we prove the above theorem via a series of claims. Note that for OSC we
substitute µ = cS = k = 1 in the psuedocode of Algorithm A-Universal and that deficit ∈ {0, 1}.

Lemma 8 For any T ∈ T ∗, E
[
|T̃ |
]
≤

1
2 + log2m, if m ≤ 7
log2m, otherwise

Proof. We can use the proof of Lemma 4 with small exceptions. The sequence of probabilities
that are computed are always doubling the previous one, so for z ≥ 1 we always use probability 1
and as the result, F(z) = log2 z + 1, and thus F(1) = 1. Similarly, for 1

2 ≤ z ≤ 1 we have F(z) =

z(log2 z+1)+(1−z)(log2 z+2) = log2 z+2−z, and thus F(z) = 1
2
. In turn, E

[
|T̃ |
]
= log2m+F(1/m),

so for m ≥ 2 we have E
[
|T̃ |
]
≤ log2m + 1

2 and for m ≥ 7 we have E
[
|T̃ |
]
≤ log2m. ❑

Obviously E [|T |] is equal to the sum of probabilities used in line A12 plus the number of times
we execute line A12. Let ξ(i) be the value of σαp[i] at the time the algorithm receives element i as
the input. If the test of line A2 is false, the sum of probabilities used in line A6 is ξ(i)+1, while by
Lemma 13 with α = 0 line A12 is executed with probability at most 1

e
< 0.37, so the contribution

of i to the expected cost is smaller than ξ(i) + 1.37.

Lemma 9 For T ∈ T ∗, if |T̃ | > 0 then E
[∑

i∈T̃
ξ(i)

]
< E

[
|T̃ |
] (

ln |T | − lnE
[
|T̃ |
])
.

Proof. Before the condition in line A2 is evaluated for element i the algorithm performs in-
dependent random selections of sets from Si with the sum of probabilities of success equal to
ξ(i). By Lemma 13 with α = 0 the probability that all these selections fail, and thus the test

in line A2 is false, is Pr
[
i ∈ T̃

]
< e−ξ(i). Let Γ be a parameter to be established later, and let

ζ(i) = max{0, ξ(i) − ln |T | + Γ }. Clearly,

E

∑

i∈T̃

ξ(i)

 ≤ E

[
|T̃ |
]
(ln |T | − Γ) +

∑

i∈T

Pr
[
i ∈ T̃

]
ζ(i)

Let T ′ = {i ∈ T : ζ(i) > 0}. Then

∑

i∈T

Pr
[
i ∈ T̃

]
ζ(i) ≤

∑

i∈T ′

e−ζ(i)−ln |T |+Γζ(i) = |T |−1eΓ
∑

i∈T ′

e−ζ(i)ζ(i) < eΓ−1.

where the last inequality follows from Fact 2 and T ′ ⊆ T . Thus,

E

∑

i∈T̃

ξ(i)

 ≤ E

[
|T̃ |
]

ln |T | − Γ +

eΓ−1

E
[
|T̃ |
]

16

We can use Γ = 1+ lnE
[
|T̃ |
]
to get the desired estimate. ❑

Now, we are ready to finish the proof of the claim on E [r(m,d, 1)] in the theorem.

E [r(m,d, 1)] =
E[|T |]

|T ∗|
<

∑
T∈T ∗ E[

∑
i∈T̃

ξ(i)+1.37]
|T ∗|

<
∑
T∈T ∗ E[|T̃ |](ln |T |−lnE[|T̃ |]+1.37)

|T ∗|
(by Lemma 9)

= E
[
|T̃ |
] (

ln |T | − lnE
[
|T̃ |
]
+ 1.37

)

The last quantity is an increasing function of E
[
|T̃ |
]
, so we can replace it with its overestimate. For

every m ≥ 2 we can use estimate E
[
|T̃ |
]
≤ 0.5 + log2m and the fact that ln(0.5 + log2 2) > 0.37.

For m ≥ 16 we can use estimate E
[
|T̃ |
]
≤ log2m and the fact that ln log2 16 > 1.37.

4.2 Improved performance bounds for OSCk

Note that for OSCk we substitute µ = cS = 1 in the psuedocode of Algorithm A-Universal and
that deficit ∈ {0, 1, 2, . . . , k}. For improved analysis, we change Algorithm A-Universal slightly,
namely, line A6 (with µ = cS = 1)

A6 p[S]← min
{(
αp[S] + |Si|

−1
)
, 1
}
// probability for this step //

is changed to

A6’ p[S]← min
{(
αp[S] + deficit · |Si|

−1
)
, 1
}
// probability for this step //

Theorem 10 With the above modification of Algorithm A-Universal,

E [r(m,d, k)] ≤

{ (
1
2
+ log2m

)
·
(
2 ln d

k
+ 3.4

)
+ 1+ 2 log2m if k ≤ (2e) · d

1 + 2 log2m otherwise

We now proceed with the proof of the above theorem. As before, T ∗ is an optimal solution and
for T ∈ T ∗ we define T̃ as the set of elements of T for which line S3 was executed. Since Lemma 8
is still true with the same proof, we have E

[
T̃
]
≤ log2m+ 1

2 for all m.

We will distribute the average cost of the obtained solution as follows. Each element of T̃ gives
a charge to T and a charge to its elements. If the algorithm have received the set of element X ⊆ U,
then clearly |T ∗| ≥ |X|·k

d
; our goal is to give charges to the elements so that their expected sum

equals xk/d ≤ |T ∗|.
We will again perform an analysis of the average cost of receiving an element i for which the

test in line A2 is false. We define or redefine the following notations:

σαp[i] =
∑
S∈Si−T ∗ αp[S];

ξ(i) is the value of σαp[i] when line A1 is executed for i;
β(i) = |(Si ∩ T ∗) − (Si ∩ T)|;
ψ(i) = |(Si ∩ T) − (Si ∩ T ∗)|;

17

The value of deficit in line A1 is at most β(i) − ψ(i). Element i will belong to some T̃ only if
ψ(i) < β(i). We will view ξ(i) and β(i) as fixed parameters of the event when i is received. The
quantity ψ(i) is the number of successes in independent trials with success probabilities that add
to ξ(i). Let p(i) = Pr [ψ(i) < β(i)].

We charge element i with a value of πe(i) = k
dp(i)

. The intuition is that, because we make

this charge with probability p(i), on an average it equals p(i)πe(i) = k/d and the sum of these
charges therefore cannot be larger that |T ∗|. We then distribute the remaining cost equally among
ψ(i) < β(i) many elements of (Si ∩ T ∗) − (Si ∩ T).

Clearly, each of the value of deficit computed in line A1 and computed in line A10 cannot
exceed β(i). The term deficit · |Si|

−1 in line A6’ adds at most deficit to the sum of probabilities
computed in line A6’, thus the cost attributable to this term, as well as the cost due to line A12
add to at most 2 per T ∈ T ∗. It remains to estimate the cost due to the terms αp[S]. We decrease
this cost by the charge made to i, so each set T ∈ T ∗ such that i ∈ T̃ receives a charge of at most

πs(i) = max
{
0,
ξ(i)−πe(i)
β(i)

}
= max

{

0,
ξ(i)− k

dp(i)

β(i)

}

.

The expected number of sets selected by us is therefore at most
∑
T∈T ∗

∑
i∈T̃

(πs(i) + 2) +
∑
i∈X p(i)πe(i)

≤ |T ∗| ·
∑
i∈T̃
πs(i) + 2 · |T̃ | · |T

∗| +
|X|·k
d

≤
((
1
2 + log2m

)
πs(i) + 2 log2m+ 1

)
· |T ∗|

which means we need to estimate the quantity πs(i). For this, we first need to calculate a bound
for p(i). Remember that ψ(i) is the number of successes of a set of independent trials with success
probabilities that add up to ξ(i). The standard Chernoff bound theorem [9, 16] states that if we
have a set of independent trials with the sum of success probabilities µ, the probability that the
number of successes is below (1 − δ)µ is below e−δ

2µ/2. In our case, µ = ξ(i) and (1 − δ)µ is β(i).
We introduce the following notations for simplicity: β = β(i), φ = ξ(i)/β and κ = d/k. Now

µ = φβ and δ = (φ−1)/φ; thus via Chernoff bound we have p(i) < e
−

(φ−1)2

2φ2
φβ

= e−
(φ−1)2

2φ
β. Hence

πs(i) < max

{

0,φ −
1

κβ
e

(φ−1)2

2φ
β

}

< max

{

0,φ −
1

κβ
e(
φ
2
−1)β

}

By using simple calculus and the fact that β ≥ 1, it can be shown that the maximum value of the

function f(φ) = φ − 1
κβe

(
φ
2
−1)β is at most 2 ln κ+ 2 ln(2e) < 2 ln κ+ 3.4. This shows that

πs(i) <

{
2 ln κ+ 3.4 if k < (2e) · d
0 otherwise

4.3 Lower bounds on competitive ratios for OSCk and WOSCk

Lemma 11 4 There exists an instance with m = |S | sets over n = |V | elements such that for any

fixed δ > 0 any deterministic algorithm must have a competitive ratio of

(i) Ω
(

log m
k
log n

k

log log m
k
+log log n

k

)
for OSCk provided k log2

n
k+1

≤ m ≤ (k+ 1)e(
n
k)
1
2
−δ

and k < min{m,n};

(ii) Ω
(

logm logn
log logm+log logn

)
for WOSCk provided

k+ log2 (n − 1− ⌈log2(k + 1)⌉) ≤ m ≤ k+ e(n−1−⌈log2(k+1)⌉)
1
2
−δ

and k < 1
2 ·min{m,2n−1}.

4The relationships between m, n and k were referred to as “for almost all values of the parameters” before.

18

Proof.
(i) Alon et al. [2] provided an instance of OSC with m ′ sets and n ′ elements with such that the

optimal (offline) cover contains just one set but any online cover must use Ω
(

logm ′ logn ′

log logm ′+log logn ′

)

sets as long as log2 n
′ ≤ m ′ ≤ e(n

′)
1
2
−δ

for any fixed δ > 0. Consider a given k. We will use one
additional element x and k additional sets such that x appears in all these sets. To make these k sets
mutually different, we will use an additional ⌈log2(k + 1)⌉ elements (which we will never present)
and add a distinct subset of these additional elements to each of the k sets. We will also have k
copies of the instances of Alon et al. [2] with elements renamed to make each copy distinct from the
rest; each element of each copy is also added to exactly k− 1 of the k additional sets we mentioned
at first. The total number of elements n satisfies kn ′ < n = kn ′ + 1 + ⌈log2 k⌉ < (k + 1)n ′,
and the total number of sets is m = k + km ′ < (k + 1)m ′ since k < m. We first present the
element x to force the adversary to select the k additional sets; these sets also cover any element
in the k copies of Alon et al. [2] exactly k − 1 times. After this, we present the elements in the k
copies of Alon et al. [2] following their scheme, presenting elements in one copy completely before
presenting elements in the next copy. Now the optimal uses at most 2k sets, whereas by a reasoning

similar to that in Alon et al. [2] any online algorithm must use Ω
(
k+ k · logm ′ logn ′

log logm ′+log logn ′

)
sets;

thus the performance ratio is at least Ω
(

logm ′ logn ′

log logm ′+log logn ′

)
= Ω

(
log m

k
log n

k

log log m
k
+log log n

k

)
. Moreover, the

relationship between m and n is given by

k · log2
n

k+ 1
< k · log2 n

′ ≤ km ′ <m < (k+ 1)m ′ ≤ (k+ 1) · e(n
′)
1
2
−δ

< (k+ 1) · e(
n

k
)
1
2
−δ

(ii) We again use one additional element x plus ⌈log2(k + 1)⌉ additional elements (that we will
never present) to create k additional sets such that x appears in all these sets. We set the cost
of each of these sets to be arbitrarily close to zero, say ε. This time we just use one copy of the
instance of Alon et al. [2] with each set of cost 1 and, as before, each element of this copy is also
added to exactly k− 1 of the k additional sets we mentioned at first. The total number of elements
n satisfies n ′ < n = n ′ + 1 + ⌈log2 k⌉, and the total number of sets m satisfies m ′ < m = k+m ′.
We again first present the element x to force the adversary to select the k additional sets; these
sets also cover any element in the copy of Alon et al. [2] exactly k− 1 times. After this, we present
the elements in the copy of Alon et al. [2] with n ′ elements and m ′ sets following their scheme.
Overall, the optimal uses sets of total cost 1 + ε whereas by a reasoning similar to that in Alon

et al. [2] any online algorithm must use sets of total cost at least ε +Ω
(

logm ′ logn ′

log logm ′+log logn ′

)
; thus

setting ε to be sufficiently small we achieve a competitive ratio of

Ω
(

logm ′ logn ′

log logm ′+log logn ′

)

= Ω
(

log(m−k) log(n−1−⌈log2(k+1)⌉)
log log(m−k)+log log(n−1−⌈log2(k+1)⌉)

)

= Ω
(

logm logn
log logm+log logn

)

where the last equality holds since k < 1
2 ·min{m,2n−1}. Moreover, the relationship between m and

n is given by

k+ log2 (n− 1 − ⌈log2(k + 1)⌉) = k+log2 n
′ ≤ k+m ′ = m ≤ k+e(n

′)
1
2
−δ

= k+ e(n−1−⌈log2(k+1)⌉)
1
2
−δ

❑

19

Acknowledgments. DasGupta thanks the organizers of the Online Algorithms 2004 Workshop
(OLA-2004) in Denmark for invitation which provided motivations to look at these cover problems.
We also thank Eduardo Sontag for providing us with valuable insights into the biological applica-
tions of the online problems, and Yossi Azar for sending us their recent results [1, 3] as well as very
useful discussions that led to better understanding of these results.

References

[1] N. Alon, B. Awerbuch, Y. Azar, N. Buchbinder and J. Naor. A general approach to online

network optimization problems, proceedings of the 15th ACM-SIAM Symposium on Discrete
Algorithms, pp. 570-579, 2004.

[2] N. Alon, B. Awerbuch, Y. Azar, N. Buchbinder, and J. Naor. The online set cover problem,
proceedings of the 35th annual ACM Symposium on the Theory of Computing, pp. 100-105,
2003.

[3] N. Alon, Y. Azar and S. Gutner. Admission control to minimize rejections and online set cover

with repetitions, proceedings of the 17th ACM Symposium on Parallelism in Algorithms and
Architectures, Las Vegas, NV, USA, July 17-20, pp. 238-244, 2005.

[4] M. Andrec, B.N. Kholodenko, R.M. Levy, and E.D. Sontag. Inference of signaling and gene

regulatory networks by steady-state perturbation experiments: Structure and accuracy, J. The-
oretical Biology, Vol. 232, No. 3, pp. 427-441, 2005.

[5] B. Awerbuch, Y. Azar, A. Fiat and T. Leighton. Making commitments in the face of un-

certainty: how to pick a winner almost every time, proceedings of the 28th annual ACM
Symposium on the Theory of Computing, pp. 519-530, 1996.

[6] P. Berman, B. DasGupta and M. Kao. Tight approximability results for test set problems in

bioinformatics, Journal of Computer & Systems Sciences, Vol. 71, Issue 2, pp. 145-162, 2005.

[7] P. Berman, B. DasGupta and E. Sontag. Randomized approximation algorithms for set multi-

cover problems with applications to reverse engineering of protein and gene networks, Discrete
Applied Mathematics, Vol. 155, Issues 6-7, pp. 733-749, 2007.

[8] P. Berman, B. DasGupta and E. Sontag. Algorithmic issues in reverse engineering of protein

and gene networks via the modular response analysis method, to appear in Annals of the New
York Academy of Sciences (volume title: Reverse Engineering Biological Networks: Opportu-
nities and Challenges in Computational Methods for Pathway Inference, edited by Gustavo
Stolovitsky, Andrea Califano and Jim Collins), November 2007.

[9] H. Chernoff. A measure of asymptotic efficiency of tests of a hypothesis based on the sum of

observations, Annals of Mathematical Statistics, 23: 493–509, 1952.

[10] E.J. Crampin, S. Schnell, and P.E. McSharry. Mathematical and computational techniques to

deduce complex biochemical reaction mechanisms, Progress in Biophysics & Molecular Biology,
86, pp. 77-112, 2004.

[11] U. Feige. A threshold for approximating set cover, Journal of the ACM, Vol. 45, 1998, pp.
634-652.

20

[12] D. S. Johnson. Approximation algorithms for combinatorial problems, Journal of Computer
and Systems Sciences, Vol. 9, 1974, pp. 256-278.

[13] B. N. Kholodenko, A. Kiyatkin, F. Bruggeman, E.D. Sontag, H. Westerhoff, and J. Hoek.
Untangling the wires: a novel strategy to trace functional interactions in signaling and gene

networks, Proceedings of the National Academy of Sciences USA 99, pp. 12841-12846, 2002.

[14] B. N. Kholodenko and E.D. Sontag. Determination of functional network structure from local

parameter dependence data, arXiv physics/0205003, May 2002.

[15] N. Littlestone. Learning quickly when irrelevant attributes abound: a new linear-threshold al-

gorithm, Machine Learning, 2, pp. 285-318, 1988.

[16] R. Motwani and P. Raghavan. Randomized algorithms, Cambridge University Press, New York,
NY, 1995.

[17] P. Slavik. A tight analysis of the greedy algorithm for set cover, proceedings of the 28th ACM
Symposium on Theory of Computing, 1996, pp. 435-439.

[18] E.D. Sontag, A. Kiyatkin, and B.N. Kholodenko. Inferring dynamic architecture of cellular

networks using time series of gene expression, protein and metabolite data, Bioinformatics 20,
pp. 1877-1886, 2004.

[19] A. Srinivasan. Improved approximations of packing and covering problems, proceedings of the
27th Annual ACM Symposium on Theory of Computing, 1995, pp. 268-276.

[20] J. Stark, R. Callard and M. Hubank. From the top down: towards a predictive biology of

signaling networks, Trends Biotechnol. 21, pp. 290-293, 2003.

[21] L. Trevisan. Non-approximability results for optimization problems on bounded degree instances,
proceedings of the 33rd annual ACM Symposium on the Theory of Computing, pp. 453-461,
2001.

[22] V. Vazirani. Approximation algorithms, Springer-Verlag, July 2001.

Appendix

A Some combinatorial and probabilistic facts and results

Fact 1 If f is a non-negative integer random function, then E [f] =
∑∞
i=1 Pr [f ≥ i] .

Fact 2 The function f(x) = xe−x is maximized for x = 1.

The subsequent lemmas deal with N independent 0-1 random variables τ1, . . . , τN called trials
with event{τi = 1} is the success of trial number i and s =

∑N
i=1 τi is the number of successful trials.

Let xi = Pr [τi = 1] = E [τi] and X =
∑N
i=1 xi = E [s].

Lemma 12 If 0 < 2α ≤ X+ 1 than Pr [s = α] > Pr [s = α− 1].

21

Proof. Our elementary events are 0/1 vectors τ = (τ1, . . . , τN). Let Eα be the event {s = α}, i.e.
the set of elementary events with α 1’s. Given τ ∈ Eα−1 we can form an elementary event from Eα
by converting some 0 into 1. If we do it with τi, call the result τi; observe that Pr

[
τi
]
> xiPr [τ].

Therefore the sum of probabilities of elementary events formed from τ is at least Pr [τ]
∑
i: τi=0

xi ≥
(X− α+ 1)Pr [τ] ≥ αPr [τ].

This shows that the sum of probabilities of the multi-set of elementary events formed from
elements of Eα−1 is larger than αPr [Eα−1]; in turn, every elements in this multi-set belongs to Eα
and it is present in this multi-set exactly α times. Thus Pr [Eα] ≥ α

−1αPr [Eα−1]. ❑

Lemma 13 If 0 ≤ α ≤ X/2 then Pr [s ≤ α] < e−XXα/α!.

Proof. The case of α = 0 is easy since Pr [s ≤ 0] = Πni=1(1− xi) < Π
n
i=1e

−xi = e−X. So, we assume
in the remaining that α > 0.

We will show how to alter the probabilities so that X remains constant and Pr [s ≤ α] does not
decrease. Let x0 = x1+ x2, s

′ = s− τ1− τ2 and let qα = Pr [s ′ ≤ α]. We assume that x0 ≤ 1. Then

Pr [s ≤ α] = Pr [τ1 = τ2 = 0 & s ′ ≤ α] + Pr [τ1 + τ2 = 1 & s ′ ≤ α− 1]

+Pr [τ1 = τ2 = 1 & s ′ ≤ α− 2]

= (1 − x1)(1 − x1)qα + [(1 − x1)x2 + x1(1 − x2)]qα−1 + x1x2qα−2
= (1 − x0 + x1x2)qα + (x0 − 2x1x2)qα−1 + x1x2qα−2
= [P = (1 − x0)qα + x0qα−1] + x1x2(qα − 2qα−1 + qα−2)

= P + x1x2(Pr [s
′ = α] − Pr [s ′ = α− 1])

If we keep x1+x2 fixed, P is constant and we maximize the latter expression when x1 = x2 (because
2α ≤ (X− x1 − x2) + 1, by Lemma 12, the difference of probabilities in the parenthesis is positive).

This shows that Pr [s = α] is maximized when all xi’s are equal. We can “pad” the vector of xi’s
with zeros, i.e. add trials with zero probability of success. This shows that we can overestimate
our probability when we go to the limit with N→∞ and all xi’s equal to X/N. We can now finish
the proof by observing the following from standard estimates in probability theory:

lim
N→∞

N!

(N − α)!α!

(
1−

X

N

)N−α(
X

N

)α
=

Xα

eXα!

❑

22

