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Abstract

A coloring of a tree is convex if the vertices that pertain to any color induce a connected
subtree; a partial coloring (which assigns colors to some of the vertices) is convex if it can
be completed to a convex (total) coloring. Convex colorings of trees arise in areas such as
phylogenetics, linguistics, etc. e.g., a perfect phylogenetic tree is one in which the states of each
character induce a convex coloring of the tree.

When a coloring of a tree is not convex, it is desirable to know ”how far” it is from a convex
one, and what are the convex colorings which are ”closest” to it. In this paper we study a natural
definition of this distance - the recoloring distance, which is the minimal number of color changes
at the vertices needed to make the coloring convex. We show that finding this distance is NP-
hard even for a colored string (a path), and for some other interesting variants of the problem.
In the positive side, we present algorithms for computing the recoloring distance under some
natural generalizations of this concept: the first generalization is the uniform weighted model,
where each vertex has a weight which is the cost of changing its color. The other is the non-
uniform model, in which the cost of coloring a vertex v by a color d is an arbitrary nonnegative
number cost(v, d). Our first algorithms find optimal convex recolorings of strings and bounded
degree trees under the non-uniform model in time which, for any fixed number of colors, is linear
in the input size. Next we improve these algorithm for the uniform model to run in time which is
linear in the input size for a fixed number of bad colors, which are colors which violate convexity
in some natural sense. Finally, we generalize the above result to hold for trees of unbounded
degree.
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1 Introduction

A phylogenetic tree is a tree which represents the course of evolution for a given set of species. The
leaves of the tree are labelled with the given species. Internal vertices correspond to hypothesized,
extinct species. A character is a biological attribute shared among all the species under considera-
tion, although every species may exhibit a different character state. Mathematically, if X is the set
of species under consideration, a character on X is a function C from X into a set C of character
states. A character on a set of species can be viewed as a coloring of the species, where each color
represents one of the character’s states. A natural biological constraint is that the reconstructed
phylogeny have the property that each of the characters could have evolved without reverse or
convergent transitions: In a reverse transition some species regains a character state of some old
ancestor whilst its direct ancestor has lost this state. A convergent transition occurs if two species
possess the same character state, while their least common ancestor possesses a different state.

In graph theoretic terms, the lack of reverse and convergent transitions means that the character
is convex on the tree: for each state of this character, all species (extant and extinct) possessing that
state induce a single block, which is a maximal monochromatic subtree. Thus, the above discussion
implies that in a phylogenetic tree, each character is likely to be convex or ”almost convex”. This
makes convexity a fundamental property in the context of phylogenetic trees to which a lot of
research has been dedicated throughout the years. The Perfect Phylogeny (PP) problem, whose
complexity was extensively studied (e.g. [12, 14, 1, 15, 5, 20]), receives a set of characters on a
set of species and seeks for a phylogenetic tree on these species, that is simultaneously convex on
each of the characters. Maximum parsimony (MP) [10, 18] is a very popular tree reconstruction
method that seeks for a tree which minimizes the parsimony score defined as the number of mutated
edges summed over all characters (therefore, PP is a special case of MP). [11] introduce another
criterion to estimate the distance of a phylogeny from convexity. They define the phylogenetic
number as the maximum number of connected components a single state induces on the given
phylogeny (obviously, phylogenetic number one corresponds to a perfect phylogeny). However,
both the parsimony score and the phylogenetic number of a tree do not specify a distance to some
concrete convex coloring of the given tree: there are colored trees with large phylogenetic numbers
(and large parsimony scores) that can be transformed to convex coloring by changing the color of
a single vertex, while other trees with smaller phylogenetic numbers can be transformed to convex
colorings only by changing the colors of many vertices.

Convexity is a desired property in other areas of classification, beside phylogenetics. For in-
stance, in [4, 3] a method called TNoM is used to classify genes, based on data from gene expression
extracted from two types of tumor tissues. The method finds a separator on a binary vector, which
minimizes the number of “1” in one side and “0” in the other, and thus defines a convex vector of
minimum Hamming distance to the given binary vector. Algorithms which finds this distance for
vectors with any number of letters, in order to handle more types of tumor tissues, are given by
the optimal string recoloring algorithms in this paper. In [13], distance from convexity is used (al-
though not explicitly) to show strong connection between strains of Tuberculosis and their human
carriers.
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In this work we define and study a natural distance from a colored tree to a convex one: the
recoloring distance. In the simplest, unweighted model, this distance is the minimum number of
color changes at the vertices needed to make the given coloring convex (for strings this reduces to
Hamming distance from a closest convex coloring). This measure is naturally motivated by the
scenario of introducing a new character to an existing phylogenetic tree: the new character should
not affect the structure of the tree, and we wish to find the minimum number of state changes needed
to make the new charcter convex. We note that this problem has a natural generalization to the
“big convex recoloring” problem, where one is given a set of characters (colorings) and the goal is
to construct a phylogenetic tree which minimizes the recoloring distance from a perfect phylogeny.
A somewhat a restricted version of this “big convex recoloring” problem, where characters are
restricted to two states only, is studied in [8]. In [2] a similar problem, which relaxes the notion of
compatibility into similarity, is studied. For a given a set of binary characters, a tree that maximizes
the similarity to each of the characters is sought. The problem is shown to be NP-hard and efficient
approximation algorithms for it are presented.

The ”recoloring distance” measure generalizes to a weighted model, where changing the color
of vertex v costs a nonnegative weight w(v). These weighted and unweighted models are uniform,
in the sense that the cost of changing the color of a vertex is independent of the colors involved.
The most general model we study is the non-uniform model, where the cost of coloring vertex v by
a color d is an arbitrary nonnegative number cost(v, d).

We show that finding the recoloring distance in the unweighted model is NP-hard even for
a string (a tree with two leaves), and also for the case where character states are given only at
the leaves (so that changes on extinct species are not counted); we also address a variant of the
problem, in which a block-recoloring is considered as an atomic operation. This operation changes
the color of all the vertices in a given input block. We show that finding the minimum number of
block-recolorings needed to obtain convexity is NP-Hard as well.

On the positive side, we present few algorithms for minimal convex recoloring of strings and
trees. The first algorithms solve the problem in the non-uniform model. The running time of
these algorithms for bounded degree trees is exponential in the number of colors, but for each fixed
number of colors is linear in the input size. Then we improve these algorithms for the uniform
model, so that the running time is exponential only in the number of bad colors, which are colors
that violate convexity (to be defined precisely). These algorithms are noted to be fixed parameter
tractable algorithms ([6]) for bounded degree trees, where the parameter is taken to be the recoloring
distance. Finally, we eliminate the dependence on the degree of the tree in both the non-uniform
and the uniform versions of the algorithms.

The rest of the paper is organized as follows. In the next section we present the notations used
and define the unweighted, weighted and non-uniform versions of the problem. In Section 3 we
show our NP-Hardness results and in Section 4 we present the algorithms. We conclude and point
out future research directions in Section 5.
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2 Preliminaries

A colored tree is a pair (T, C) where T = (V, E) is a tree with vertex set V = {v1, . . . , vn}, and C

is a coloring of T , i.e. - a function from V onto a set of colors C. For a set U ⊆ V , C|U denotes the
restriction of C to the vertices of U , and C(U) denotes the set {C(u) : u ∈ U}. A block in a colored
tree is a maximal set of vertices which induces a monochromatic subtree. A d-block is a block of
color d. The number of d-blocks is denoted by nb(C, d), or nb(d) when C is clear from the context.
A coloring C is said to be convex if nb(C, d) = 1 for every color d ∈ C. The number of d-violations
in the coloring C is nb(C, d) − 1, and the total number of violations of C is

∑
d∈C(nb(C, d) − 1).

Thus a coloring C is convex iff the total number of violations of C is zero (in [9] the above sum,
taken over all characters, is used as a measure of the distance of a given phylogenetic tree from
perfect phylogeny).

The definition of convex coloring is extended to partially colored trees, in which the coloring
C assigns colors to some subset of vertices U ⊆ V , which is denoted by Domain(C). A partial
coloring is said to be convex if it can be extended to a total convex coloring (see [19]). Convexity of
partial and total coloring have simple characterization by the concept of carriers: For a subset U of
V , carrier(U) is the minimal subtree that contains U . for a colored tree (T, C) and a color d ∈ C,
carrierT (C, d) (or carrier(C, d) when T is clear) is the carrier of C−1(d). We say that C has the
disjointness property if for each pair of colors {d, d′} it holds that carrier(C, d)∩carrier(C, d′) = ∅.
It is easy to see that a total or partial coloring C is convex iff it satisfies the disjointness property
(in [7] convexity is actually defined by the disjointness property).

When some (total or partial) input coloring (C, T ) is given, any other coloring C ′ of T is viewed
as a recoloring of the input coloring C. We say that a recoloring C ′ of C retains (the color of) a
vertex v if C(v) = C ′(v), otherwise C ′ overwrites v. Specifically, a recoloring C ′ of C overwrites
a vertex v either by changing the color of v, or just by uncoloring v. We say that C ′ retains
(overwrites) a set of verices U if it retains (overwrites resp.) every vertex in U . For a recoloring C ′

of an input coloring C, XC(C ′) (or just X (C ′)) is the set of the vertices overwritten by C ′, i.e.

XC(C ′) = {v ∈ V : [v ∈ Domain(C)]
∧ [

(v /∈ Domain(C ′) ) ∨ (C(v) 6= C ′(v) )
]}.

With each recoloring C ′ of C we associate a cost, denoted as costC(C ′) (or cost(C ′) when C

is understood), which is the number of vertices overwritten by C ′, i.e. costC(C ′) = |XC(C ′)|.
A coloring C∗ is an optimal convex recoloring of C, or in short an optimal recoloring of C, and
costC(C∗) is denoted by OPT (T, C), if C∗ is a convex coloring of T , and costC(C∗) ≤ costC(C ′)
for any other convex coloring C ′ of C.

The above cost function naturally generalizes to the weighted version: the input is a triplet
(T, C,w), where w : V → R+∪{0} is a weight function which assigns to each vertex v a nonnegative
weight w(v). For a set of vertices X, w(X) =

∑
v∈X w(v). The cost of a convex recoloring C ′ of C

is costC(C ′) = w(X (C ′)), and C ′ is an optimal convex recoloring if it minimizes this cost.
The above unweighted and weighted cost models are uniform, in the sense that the cost of a
recoloring is determined by the set of overwritten vertices, regardless the specific colors involved. A
yet further generalization allows non-uniform cost functions. This version, motivated by weighted
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maximum parsimony [18], assumes that the cost of assigning color d to vertex v is given by an
arbitrary nonnegative number cost(v, d) (note that, formally, no initial coloring C is assumed in
this cost model). In this model cost(C ′) is defined only for a total recoloring C ′, and is given by the
sum

∑
v∈V cost(v, C ′(v)). The non-uniform cost model appears to be more subtle than the uniform

ones. Unless otherwise stated, our results assume the uniform, weighted and unweighted, models.
We complete this section with a definition and a simple observation which will be useful in the

sequel. Let (T,C) be a colored tree. A coloring C∗ is an expanding recoloring of C if in each block
of C∗ at least one vertex v is retained (i.e., C(v) = C∗(v)).

Observation 2.1 let (T, C) be a colored tree. Then there exists an expanding optimal convex
recoloring of C.

Proof. Let C ′ be an optimal recoloring of C which uses a minimum number of colors (i.e. |C ′(V )|
is minimized). We shall prove that C ′ is an expanding recoloring of C.

If C ′ uses just one color d, then by the optimality of C ′, there must be a vertex v such that
C(v) = d and the claim is proved. Assume for contradiction that C ′ uses at least two colors, and
that for some color d used by C ′, there is no vertex v s.t. C(v) = C ′(v) = d. Then there must
be an edge (u, v) such that C ′(u) = d but C ′(v) = d′ 6= d. Note that, in the uniform cost model,
each vertex v s.t. C ′(v) = d has already been overwritten and contributed its weight to the total
cost. Therefore, the coloring C ′′ which is identical to C ′ except that all vertices colored d are now
colored by d′ is an optimal recoloring of C which uses a smaller number of colors - a contradiction.

3 NP-Hardness Results

The main result of this section is that unweighted minimum convex recoloring of strings is NP-Hard.
Then we use reductions from this problem to prove that the unweighted versions of minimal convex
recoloring of leaves, and a natural variant of the problem called minimal convex block recoloring,
in which an atomic operation changes the color of a complete block, are NP-Hard as well.

3.1 Minimal Convex Recoloring of Strings is NP-Hard

A string S = (v1, . . . , vn) is a simple tree with V = {v1, . . . , vn} and E = {(vi, vi+1)|i = 1, . . . , n−1}.
In a colored string (S, C), a d-block is simply a maximal sequence of consecutive vertices colored
by d. A nice property of optimal convex recoloring of strings is given below:

Claim 3.1 Let (S, C) be a colored string, and let C∗ be an optimal recoloring of C. Then each
block of C is either completely retained or completely overwritten by C∗.

Proof. Suppose, for contradiction, that B′ is a d-block in C that is partially overwritten by C∗.
Let C ′ be a recoloring identical to C∗ except that C ′ retains the block B′. Then C ′ is convex and
cost(C ′) < cost(C∗) - a contradiction.
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Figure 1: A Schematic view of the colored string corresponding to F . Informative segments appear
white (in the figure) where junk segments are longer and have distinct colors.

pattern 1 pattern 2

.   .   .

pattern m
ci,`2ci,`2 ci,`3 ci,`1 ci,`2 ci,`3 ci,`1ci,`1 ci,`3

Figure 2: A clause segment. The literals are `1, `2 and `3, and the clause of size 3A consists of A

repetitions of the corresponding triplet. Each block is a single vertex.

We prove that the problem is NP-Hard by reducing the 3 satisfiability problem to the following
decision version of minimal convex recoloring:
Minimal Convex Recoloring of Strings:
Input: A colored string (S,C) and an integer k.

Question: Is there a convex recoloring C∗ of C such that costC(C∗) ≤ k.

Let formula F be an input to the 3 satisfiability problem, F = D1
∧

...
∧

Dm, where Di =
(li1 ∨ li2 ∨ li3) is a clause of three literals, each of which is either a variable xj or its negation ¬xj ,
1 ≤ j ≤ n. We describe below a polynomial time reduction of F to a colored string (S, C) and an
integer k, such that there is a convex coloring C∗ of C with costC(C∗) ≤ k iff F is satisfiable.

In the reduction we define block sizes using parameters A and B, where A and B are integers
satisfying A > m − 2 and B > 2mA. k is set to n(2m + 1)B + 2mA (e.g., possible values are
A = 3m, B = 9m2, and k = 3m2(6mn + 3n + 2)).

We describe the coloring C of S as a sequence of segments, where each segment consists of one
or more consecutive blocks. There will be 2n+m informative segments: one for each clause and one
for each literal, and 2n + m− 1 junk segments separating the informative segments (see Figure 1).
Each junk segment consists of a unique block of k + 1 vertices colored by a distinct color, thus
2n + m− 1 colors are used for the junk segments. The informative segments will use additional n

variable colors d1, . . . , dn and 2nm literal colors {ci,xj , ci,¬xj |i = 1, . . . , m; j = 1, . . . n}.
For each clause Di = (l1 ∨ l2 ∨ l3) there is a clause segment SDi of size 3A, obtained by A

repetitions of the pattern ci,`1 , ci,`2 , ci,`3 (see Figure 2).
for each non-negated literal xj there is a literal segment Sxj , which consists of 2m+1 consecutive

blocks of the same size B. All the m + 1 odd numbered blocks are dj-blocks, called variable blocks.
The m even numbered blocks are literal blocks, colored by ci,xj , i = 1, . . . , m, see Figure 3. Similarly,
for each negated literal ¬xj we have a literal segment S¬xJ , which is similar to Sxj except that the
colors of the literal blocks are ci,¬xj , i = 1, . . . , m (note that each of the literal segments Sxj and
S¬xj contain m + 1 dj-blocks).
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.  .  .
cm,xjc1,xj djdjc2,xjdj dj

Figure 3: Sxj , the segment of the literal xj . m + 1 dj-blocks are interleaved by the m blocks ci,xj ,
i = 1, . . . , m.

.  .  .

.  .  .
djdj dj dj

djdj c2,xj dj djc1,xj cm,xj

¬cm,xj¬c2,xj¬c1,xj

Figure 4: A recoloring of segments S¬xj and Sxj corresponding to the assignment f(xj) = 1. The
segment Sxj is overwritten by dj , while in the segment S¬xj , the dj blocks are overwritten by the
literal colors.

Theorem 3.2 Let (S, C) be the colored string defined by the above reduction. Then OPT (S, C) ≤ k

iff F is satisfiable.

Proof. ⇐= we need to prove that if the formula F is satisfiable, then there is a convex recoloring
C∗ of C such that costC(C∗) ≤ k.

Let f be a satisfying assignment of F . The coloring C∗ is defined for literal segments as follows:
For each variable xj s.t. f(xj) = 1, C∗ overwrites each of the dj-blocks in segment S¬xj (there are
m + 1 such blocks); in the segment Sxj , C∗ overwrites all the ci,xj blocks, for i = 1, . . . , m (see
Figure 4). The coloring when f(xj) = 0 is obtained by interchanging the roles of Sxj and S¬xj .
This requires recoloring of (2m + 1)B vertices for each variable, so the total cost for all literal
segments is n(2m + 1)B.

We now define C∗ on clause segments. Since f is a satisfying assignment, in each clause there
is a literal which is set by f to 1. Assume without loss of generality that xj ∈ Di and f(xj) = 1.
By the written above, C∗ does not color any vertex in the literal segments by ci,xj . Thus we can
transform segment Di to a ci,xj -block by overwriting 2A out of the 3A vertices in this block (since
A vertices are originally colored by ci,xj ). Thus the total cost of coloring all the m clause segments
is 2mA.
=⇒ Now we have to prove that if OPT (S,C) ≤ k, then F is satisfiable. Let C∗ be an expanding
optimal recoloring of C (see Observation 2.1). Clearly, costC(C∗) ≤ k. The proof proceeds through
the following claims.

Claim 3.3 C∗ retains all the junk segments.

Proof. A junk segment, J , consists of a single block of k + 1 vertices. By Claim 3.1 C∗ either
completely overwrites J or completely retains it. Since C∗ overwrites at most k vertices altogether,
the latter possibility must hold.
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Claim 3.4 The coloring C∗ satisfies the following for each pair of literal segments {Sxj , S¬xJ},
j ∈ {1, . . . , n}:

1. In exactly one of these segments, C∗ overwrites all the dj-blocks, and retains all the literal
blocks.

2. In the other segment, C∗ overwrites exactly m blocks.

In particular, C∗ overwrites exactly 2m + 1 blocks in these two segments.

Proof.
consider the substring containing segments Sxj and S¬xj . Then it contains exactly 2m + 1

dj-violation, since each of these segments contains m + 1 dj-blocks. For C∗ to be convex, it must
remove all these violations. Since by claim 3.3 all junk blocks retain their colors, C∗ must overwrite
all the dj-blocks in one of the above segments, and leave at most one dj-block in the other. The
former case clearly requires overwriting each of the m + 1 dj-blocks in the relevant segment, which
leaves m + 1 dj-blocks and (hence) m dj-violations in the other segment, which must be removed.
Since overwriting any single block of C can reduce the number of dj-violations by at most one, at
least m such blocks must be overwritten.

So far we have shown that C∗ must overwrite at least m + 1 blocks in one segment and at
least m blocks in the other, a total of 2m + 1 blocks in each such pair of segments. To complete
the proof it suffices to show that C∗ does not overwrite any other block in the literal segments.
To this end we observe that if for some j at least 2m + 2 blocks are overwritten in the variable
segments Sxj , S¬xj , then C∗ overwrites at least n(2m + 1) + 1 blocks in the literal segments,
and since each such block has B vertices, the total number of overwritten vertices is at least
n(2m+1)B +B > n(2m+1)B +2mA = k (since B > 2mA), contradicting the assumption on C∗.

Using Claim 3.4 above, we can now define a truth assignment f which satisfies F , as follows: for
j = 1, . . . , n, f(xj) = 1 iff C∗ overwrites exactly m blocks in Sxj (and hence exactly m + 1 blocks
in S¬xj ). To simplify notations, we assume in the rest of the proof that for all j, exactly m blocks
are overwritten in Sxj , and hence f(xj) = 1, j = 1, . . . , n. We complete the proof by showing that
f indeed satisfies F .

Claim 3.5 C∗ overwrites at least 2A− 2 vertices at every clause segment.

Proof. Consider a clause segment, D, whose three literal colors are c1, c2 and c3. The claim
trivially holds if all the 3A vertices in D are overwritten, so assume that this is not the case. Since
all junk segments are retained by C∗, we may assume, using argument similar to the one in the
proof of Observation 2.1, that D ⊆ C∗−1({c1, c2, c3}), and thus C∗(D) consists of at most 3 blocks
of these colors. Let the lengths of the ci-block be li (li ≥ 0, l1 + l2 + l3 = 3A). Observe that out of
any 3 consecutive vertices within each such block, C∗ must overwrite exactly 2 vertices. Hence, for
each i the following holds: if li = 0(mod 3) then C∗ overwrites exactly 2

3 li vertices in the ci-block;
if li = 1(mod 3) then at least 2

3(li − 1) vertices are overwritten in that block, and if li = 2(mod 3)
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then at least 2
3(li−2)+1 = 2

3(li +1) vertices are overwritten. Thus, for i = 1, 2, 3, at least 2
3(li−1)

vertices must be overwritten in the ci-block. Altogether at least 2
3(l1+l2+l3−3) = 2

3(3A−3) = 2A−2
vertices must be overwritten in D.

Claim 3.6 At every clause segment, at least one vertex is retained.

Proof. Seeking for contradiction, assume all the 3A vertices in some clause segment SDi are
overwritten. Then by Claim 3.5, C∗ overwrites at least (m−1)(2A−2)+3A = 2mA+A−2m+2 >

2mA vertices in all clauses’ segments (the last inequality holds since A > 2m − 2 by definition).
Adding this to the n(2m + 1)B vertices overwritten in the variable segments, we get that C∗

overwrites more than n(2m + 1)B + 2mA = k vertices - a contradiction.

The proof of Theorem 3.2 is now completed by the following claim:

Claim 3.7 The function f (as defined before Claim 3.5) satisfies F .

Proof. Since f(xj) = 1 for j = 1 . . . , n, we need to show that each clause Di in F contains an
unnegated variable.

By Claim 3.6, at least one vertex is retained in SDi . The color of this vertex can be either ci,¬xj

or ci,xj for some j. By Claim 3.4.1 C∗ retains all the ci,¬xj -blocks in the literal segments, and hence
(by convexity) it cannot retain another such block in any clause segment. Thus the color of the
retained vertex must be of the form ci,xj , meaning that the non negated literal xj is in clause Di.

3.2 NP Hardness of Minimal Convex Recoloring of Leaves

A leaf colored tree is a partially colored tree (T,C) in which the coloring C assigns colors only to
leaves of T . Such trees are common in phylogenetics, where the leaves present existing species, and
internal vertices present extinct ones. Now, given a certain character states on the existing species,
we wish to know what is the minimum number of color changes at colored vertices (leaves) needed
for transforming the input coloring to a convex coloring. The NP hardness result of the previous
section does not apply directly to this problem, and we show in this section that the corresponding
decision problem for the unweighted version of this problem is NP complete.
Minimal Unweighted Convex Recoloring of Leaves
Input: A leaf colored tree (T, C) and an integer k

Question: Is there a convex recoloring C ′ of C s.t. |XC(C ′)| ≤ k

Theorem 3.8 Minimal unweighted convex recoloring of leaves is NP-Complete.

Proof. We reduce the minimal convex string recoloring problem to a minimal convex leaves
recoloring problem. Given a colored string (S, C), we reduce it to a leaf colored tree as follows.
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Figure 5: A caterpillar of length 5.

⇓

Figure 6: A reduction from a fully colored string to a leaf colored caterpillar. The two external
leaves are colored with two new colors. All the internal leaves are colored with the same color as
the corresponding vertex in the string.

For a colored string (S,C) of length n and an integer l, dupl(S, C) = (S′, C ′) is a colored string
of length ln defined as follows: Let V (S) = {v1, . . . , vn}; then V (S′) = {vj

i : 1 ≤ i ≤ n, 1 ≤ j ≤ `}
and E(S′) = {(vj−1

i , vj
i ) : 1 ≤ i ≤ n,1 < j ≤ `} ∪ {(v`

i−1, v
1
i ) : 1 < i ≤ n}. C ′(vj

i ) = C(vi), i =
1, . . . , n, j = 1, . . . , `. Informally, dupl(S, C) is a duplication of every vertex v in (S, C) ` times,
obtaining an `n long colored string. The proof of the following observation follows easily from
Claim 3.1.

Observation 3.9 OPT (dup`(S,C)) = ` ·OPT (S, C).

We now define a type of an unrooted binary tree. A caterpillar is a binary tree having at most
two vertices which are each adjacent to two leaves. A caterpillar is of length n if it has (a string of)
n internal vertices (see Figure 5). Given a (totally) colored string (S,C) of length n we construct a
leaf colored caterpillar of length n, cat(S,C) = (T,C ′) as follows: The internal vertices of T form a
string isomorphic to S, numbered 1 to n from left to right. The leftmost leaf (connected to internal
vertex 1) is colored with a distinct new color, as well as rightmost leaf (connected to internal vertex
n). Each other leaf connected to an internal vertex i inherits its color from vertex i in the colored
string (S,C) (see Figure 6).

Claim 3.10 Let (S, C) be a colored string, where C uses nc colors, and let (T, CT ) = cat(dupnc(S,C)).
Then,

[OPT ((S, C)) = k] ⇐⇒ [nc(k − 1) < OPT ((T, CT )) ≤ nck] .

Proof. We assume first that OPT (S,C) = k and prove the two inequalities at the right hand
side.
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⇓

Figure 7: A convex recoloring of the caterpillar of Figure 6. Two internal leaves have colors different
from their neighbors.

Let (S′, C ′) = dupnc(S, C). By Observation 3.9, (S′, C ′) has a recoloring C∗ with costC′(C∗) =
nck. We transform C∗ to a total convex coloring C∗

T of (T, CT ) as follows: C∗
T duplicates C∗ on the

internal vertices of T , and it colors the leaves of T with the color of their neighbors. C∗
T is convex,

and costCT
(C∗

T ) = costC′(C∗) = nck. This proves the right inequality.
To prove the other (strict) inequality, let C∗

T be an optimal expanding convex recoloring of
(T, CT ). First observe that C∗

T on the internal vertices of T induces a convex recoloring on S′,
which we will call C∗.

Since C∗
T uses at most nc colors, it has at most nc − 1 blocks of size one, hence the number of

leaves whose color under C∗
T is different than the color of their neighboring internal vertices is at

most nc − 1 (see Figure 7). Hence costC′(C∗) < costCT
(C∗

T ) + nc. Thus we have

nck ≤ costC′(C∗) < costCT
(C∗

T ) + nc = OPT ((T, CT )) + nc,

which implies the left inequality.
The proof of the other direction is similar, and omitted.

By Claim 3.10 above a polynomial time solution for minimal convex recoloring of leaves will
imply such a solution for the minimal convex recoloring of strings, which completes the proof of
the theorem.

3.3 NP Hardness of Minimum Block-Recoloring

A block-recoloring corresponds to changing the colors of all the vertices in a block to a unique
different color. Such an operation seems a reasonable modelling of removing a mutation from a
phylogenetic tree. Indeed, mutation is an edge (u, v) such that C(u) 6= C(v), and the removal of
a mutation implies changing the color of a block at one end of the edge to the color of the block
at the other end. Note that a block-recoloring which corresponds in this way to the removal of
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⇓

Figure 8: Removing the mutation at the left edge implies the removal of the one at the right

a given mutation can imply the elimination of other mutations, as depicted in Figure 8. Also, as
in Observation 2.1 we can show that allowing block-recoloring by arbitrary colors (i.e., not only
by colors of adjacent blocks) cannot reduce the minimum number of block-recoloring needed to
transform a given coloring to a convex one. Therefore we can model the problem of minimizing the
number of mutation removals as minimizing the number of block-recoloring needed to transform
the input coloring to a convex one.

By Claim 3.1, convex recoloring of unweighted strings can be reduced to the problem of convex
block recoloring of weighted strings, by collapsing each block B in the input string to a single vertex
whose weight is the number of vertices in B. Hence, by Theorem 3.2, convex block recoloring of
weighted strings is NP-Hard. In the rest of this section we show that the unweighted version of this
problem is NP-Hard as well. We actually prove the following stronger result: Let a Zebra string
be a colored string (S,C) in which for every edge (u, v) ∈ E it holds that C(u) 6= C(v) (i.e., every
block is a single vertex).

Theorem 3.11 Minimal unweighted convex recoloring of Zebra strings is NP-Hard.

Proof. The proof is by reduction from the minimum convex recoloring of strings. Let (S, C) be a
colored string of n vertices. We reduce it to a Zebra string (Sz, Cz) of length 16n such that (S, C) has
a recoloring C ′ with costC(S, C ′) = k iff (Sz, Cz) has a recoloring C ′

z with costCz(Sz, C
′
z) = 5n+k−1.

The Zebra string (Sz, Cz) consists of three neighboring segments: an informative segment, a junk
segment and a counter-weight segment, in this order. The segments are constructed as follows:

• Informative segment: A 2n − 1 long segment comprised of the input string in which a
spacer vertex, colored with a new color ds, is inserted between any neighboring vertices u and
v (See Figure 9).

• Junk segment A 6n long segment in which the vertices are colored by 6n new distinct colors,
used to separate between the informative segment and the counter-weight segment.

• Counter-weight segment A 8n + 1 long segment comprised of 2n consecutive quartets
[ds, d1, ds, d2] appended with a ds-vertex, where ds is the spacer color used in the informative
segment and d1 and d2 are new additional colors (See Figure 10).

we now show that (S,C) has a convex recoloring C ′ of cost k if and only if (Sz, Cz) has a convex
recoloring C ′

z of cost m = 5n + k − 1.
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⇓

dsds ds ds dsds

Figure 9: The input string (S, C) and the corresponding informative segment in (Sz, Cz).

=⇒ Assume that (S,C) has a convex recoloring C ′ of cost k. The corresponding convex recoloring
C ′

z of Sz is defined as follows:
In the informative segment, the n vertices corresponding to the input string (S, C) are colored

as defined by C ′, and then the n−1 remaining ds-vertices are overwritten by expanding the coloring
of their neighbors. Thus the cost of C ′

z in the informative segment is n + k − 1. In addition, the
4n vertices colored by d1 and d2 in the counter-weight segment are colored by ds.

The total cost of C ′
z is m, as required. It is easy to verify that C ′

z is a convex coloring of Sz.
⇐= Assume now that C ′

z is a convex recoloring of (Sz, Cz) of cost m. W.l.o.g. we may assume
that C ′

z is an expanding recoloring of Cz. We construct a recoloring C ′ of (S, C) of cost k, using
the following observations.

Observation 3.12 If C ′
z retains a ds-vertex in the counter-weight segment, then it overwrites all

the ds-vertices in the informative segment.

Proof. If C ′
z retains ds-vertices in both the informative and counter-weight segments, then it

must overwrite (by ds) all the 6n vertices in the junk segment, but 6n > m.

Observation 3.13 C ′
z retains a ds-vertex in the counter-weight segment.

Proof. Any convex recoloring of the counter-weight segment must overwrite either a d1-vertex or
a d2-vertex in 2n− 1 out of the 2n quartets in this segment. This sums to at least 2n− 1 vertices.
If C ′

z overwrites also all the 4n+1 ds-vertices in the counter-weight segment, then it overwrites (in
this segment) 6n > m vertices, a contradiction.

Observation 3.14 C ′
z overwrites at least 4n vertices in the counter-weight segment.

quartet 1 quartet 2 quartet 2n

... dsdsds dsds dsds

Figure 10: The counter-weight segment in Ss.
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Proof. It is straightforward to show that any optimal convex coloring of the counter-weight
segment must overwrite two vertices in each quartet (eg, the coloring which transforms it to a
ds-block), and such a coloring overwrites exactly 4n vertices.

Observation 3.14 implies that C ′
z overwrites at most m − 4n = n + k − 1 vertices in the

informative segment, and observations 3.12 and 3.13 imply that n− 1 of them must be ds-vertices.
The remaining k vertices in the informative segments which are overwritten by C ′

z belong to the
copy of (S,C), and define a convex recoloring of (S, C) of cost k.

Note: In a Zebra string, overwriting a single vertex is also a block recoloring. Thus Theorem
3.11 also implies that the problem of minimizing the total number of vertex recoloring and block
recoloring needed to transform a colored string to a convex one is NP-Hard.

4 Optimal Convex Recoloring Algorithms

In this section we present dynamic programming algorithms for optimal convex recoloring of totally
colored strings or trees. The input is either a totally colored string (S, C) or a totally colored tree
(T, C), which will be clear from the context. The algorithms are formulated so that they return
the cost of an optimal convex recoloring, but are easily modified to return actual optimal convex
recolorings, which will be either total or partial, as will be detailed.

The basic ingredient in all the algorithms is coloring with forbidden colors: A convex recoloring
of the whole tree is constructed by extending convex recolorings of smaller subtrees, and in order
to maintain convexity of the coloring, in each subtree certain colors cannot be used.

The computational costs of the algorithms depend either on nc, the total number of colors used,
or on n∗c , the number of colors which violate convexity in the input tree, defined as follows: A color
d is a good color for a totally colored tree (T, C) if (T,C) contains a unique d-block. Else d is a bad
color. n∗c denotes the number of bad colors in the input. In the sequel, a good (bad) color refers to
a color that is good (bad) for some input coloring C, which will be obvious from the context.

We start with basic algorithms which are valid for the general non-uniform cost model, and their
time complexity in bounded degree trees is Poly(n)Exp(nc). We then modify these algorithms to
run in time Poly(n)Exp(n∗c) in the uniform weighted model. Finally, we remove the degree bound
and modify the algorithms to run in Poly(n)Exp(n∗c) time for arbitrary trees.

4.1 Basic Algorithms for the Non-Uniform Cost Model

Our first algorithms find optimal convex recoloring of strings and trees in the non-uniform model,
where for each vertex v and each color d ∈ C, the cost of coloring v by d is an arbitrary nonnegative
number cost(v, d). The running times of both algorithms are governed by 2nc , the number of
subsets of the set of colors C. First we present an algorithm for colored strings, and then extend it
to colored trees.
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4.1.1 Non-Uniform Optimal Convex Recoloring of Strings

Throughout this section (S, C) is a fixed, n-long input colored string, where S = (v1, . . . , vn). The
algorithm scans the string from left to right. After processing vertex vi, it keeps for each subset of
colors D ⊆ C, and for each color d /∈ D, the cost of the optimal coloring of the i leftmost vertices
v1, . . . , vi which does not use colors from D, and the rightmost vertex vi is colored by d. We define
this more formally now:

Definition 4.1 Let D ⊆ C be a set of colors and i ∈ {1, . . . , n}. A coloring C ′ is a (D, i)-coloring
(of the string S = (v1, . . . , vn)) if it is a convex coloring of (v1, . . . , vi), the i leftmost vertices of S,
such that C ′({v1, . . . , vi}) ∩ D = ∅. opt(D, i) is the cost of an optimal (D, i)-recoloring of (S, C).

[The reason for defining D as the set of colors which are not used by the coloring, rather then
defining it as the set of permitted colors, which appears more natural, is that this definition fits
better to the presentation of the main algorithm, in Section 4.2.2.]
It is easy to see that by the above definition, opt(∅, n) is the cost of an optimal convex recoloring
of (S,C).

Definition 4.2 For a set of colors D, a color d, and i ∈ {1, . . . , n}, a coloring C ′ is a (D, d, i)-
coloring if it is a (D, i)-coloring and C ′(vi) = d. opt(D, d, i) is the cost of an optimal (D, d, i)-
coloring. opt(D, d, i) = ∞ when no (D, d, i)-coloring exists (eg when d ∈ D).

Observation 4.1 opt(D, i) = min
d∈C

opt(D, d, i).

For the recursive calculation of opt(D, d, i) we use the following function R, defined for a color
set D ⊆ C, a color d ∈ C and i ∈ {1, . . . , n}:

R(D, d, i) = min{opt(D ∪ {d}, i), opt(D \ {d}, d, i)}

That is, R(D, d, i) is the minimal cost of a convex recoloring of the leftmost i vertices, which
does not use colors from D \ {d}, and may use the color d only as the color of the last (rightmost)
block in (v1, . . . , vi). By convention, opt(D, d, 0) = 0 for all D ⊆ C and d /∈ D. Note that
R(D, d, i) = R(D ∪ {d}, d, i) = R(D \ {d}, d, i); we will usually use this function when d /∈ D.

Theorem 4.2 For a color set D, a color d /∈ D and i ∈ {1, . . . , n}:

opt(D, d, i) = cost(vi, d) + R(D, d, i− 1)

Proof. Let C ′ be an optimal (D, d, i)-coloring. Then, since C ′ is convex and C ′(vi) = d, the
restriction of C ′ to (v1, . . . , vi−1) is either a (D, d, i − 1)-coloring or a (D ∪ {d}, i − 1)-coloring.
Hence the cost of this restriction is at least R(D, d, i − 1). This proves that opt(D, d, i) is at
least the righthand side of the equation. Conversely, let C ′ be a coloring of (v1, . . . , vi−1) of cost
R(D, d, i−1) which does not use colors from D, and uses color d only if C(vi) = d. Then by setting
C ′(vi) to d we get a (D, d, i)-coloring whose cost is the righthand side of the equation. Therefore
this cost is at least the cost of an optimal (D, d, i)-coloring.
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Theorem 4.2 yields the following dynamic programming algorithm for the minimal convex string
recoloring:

Non-Uniform Optimal Convex String Recoloring

1. for every D ⊆ C and for every d /∈ D, opt(D, d, 0) ← 0

2. for i = 1 to n

for every D ⊆ C

(a) for every d /∈ D, opt(D, d, i) ← cost(vi, d) + R(D, d, i− 1)

(b) opt(D, i) ← min
d

opt(D, d, i).

3. return opt(∅, n)

Each of the n iterations of the algorithms requires O(nc · 2nc) time. So the running time of the
above algorithm is O (n · nc2nc).

4.1.2 Non-uniform Optimal Convex Recoloring of Trees

We extend the algorithm of the previous section for optimal convex recoloring of trees. First, we
root the tree at some vertex r. For each vertex v ∈ V , Tv is the subtree rooted at v. A convex
recoloring of Tv denotes a convex recoloring of the colored subtree (Tv, C|V (Tv)). We extend the
definitions of the previous section to handle trees:

Definition 4.3 Let D ⊆ C be a set of colors and v ∈ V . Then a coloring C ′ is a (D, Tv)-coloring if
it is a recoloring of Tv s.t. C ′(V (Tv))∩D = ∅. opt(D, Tv) is the cost of an optimal (D, Tv)-coloring.

Again, a (D, Tv)-coloring is a (convex) coloring on Tv that does not use any color of D. Thus
opt(∅, Tr) is the cost of an optimal coloring of T = Tr.

Definition 4.4 For a set of colors D ⊆ C, a color d and v ∈ V , a coloring C ′ is a (D, d, Tv)-
coloring if it is a (D, Tv)-coloring such that C ′(v) = d. opt(D, d, Tv) is the cost of an optimal
(D, d, Tv)-coloring; in particular, if d ∈ D then opt(D, d, Tv) = ∞.

If v is a leaf and d /∈ D, then opt(D, d, Tv) = cost(v, d). For the recursive calculation of opt(D, d, Tv)
at internal vertices we need the following generalization of the function R used for the string
algorithm:

R(D, d, Tv) = min{opt(D ∪ {d}, Tv), opt(D \ {d}, d, Tv)}
That is, R(D, d, Tv) is the minimal cost of a convex recoloring of Tv, which uses no colors from

D \ {d} and does not include a d-block which is disjoint from the root v.
The calculation of opt(D, d, Tv) at an internal vertex with k children v1, . . . , vk uses the notion

of k-ordered partition of a set S, which is a k-tuple (S1, . . . , Sk), where each Si is a (possibly empty)
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subset of S, s.t. Si ∩ Sj = ∅ for i 6= j and ∪k
i=1Si = S. The set of k|S| k-ordered partitions of a set

S is denoted by PART k(S).

Theorem 4.3 Let v be an internal vertex with children v1, . . . , vk. Then, for a color set D and a
color d /∈ D:

opt(D, d, Tv) = cost(v, d) + min
(E1,...,Ek)∈PART k(C\(D∪{d})

k∑
i=1

R(C \ Ei, d, Tvi)

Proof.
≥: Let C ′ be an optimal (D, d, Tv)-coloring. Then cost(C ′) = opt(D, d, Tv). For i = 1, . . . , k, let
E ′i = C ′(Tvi)\{d}, that is: E ′i is the set of colors different from d which C ′ uses in coloring Tvi . Since
C ′ is convex and C ′(v) = d, we must have that, for i 6= j, E ′i ∩ E ′j = ∅. Since E ′i cannot contain a

color from D∪{d}, we have that
k⋃

i=1
E ′i ⊆ C \ (D∪{d}). If

k⋃
i=1

E ′i is strictly included in C \ (D∪{d}),
then replace E ′1 by a larger set which includes all the missing colors from C \ (D ∪ {d}). With this
modification, (E ′1, . . . , E ′k) is an ordered partition of C \ (D∪ {d}), and for each i, C ′|Tvi

is a convex
recoloring of Tvi which uses only colors from E ′i ∪ {d}, and if it uses d then C ′(vi) = d. Therefore,
for every 1 ≤ i ≤ k, cost(C ′|Tvi

) ≥ R(C \ Ei, d, Tvi). Hence cost(C ′) is at least the righthand side of
the equation.
≤: Let (E1, . . . , Ek) be an ordered partition which minimizes the righthand side of the equation,
and let C ′

i be the coloring of Tvi attaining the cost R(C \ Ei, d, Tvi) (i = 1, . . . , k). Let C ′ be the
coloring of Tv defined by C ′|Tvi

= C ′
i and C ′(v) = d. Then cost(C ′) equals the righthand side of

the equation. Also, by the construction, C ′ is a convex recoloring of Tv which does not use colors
from D and C ′(v) = d. Hence cost(C ′) is at least opt(D, d, Tv).

Theorem 4.3 above leads to a straightforward dynamic programming algorithm. In order to
compute opt(D, d, Tv) for each D ⊆ C and d /∈ D, we only need the corresponding values at v’s
children. This can be achieved by a post order visit of the vertices, starting at r. To evaluate the
complexity of the algorithm, we first note that each subset of colors D and a k-ordered partition
(E1, . . . , Ek) of C \ (D ∪ {d}) corresponds to the (k + 1)-ordered partition (D, E1, . . . , Ek) of C \ {d}.
For each such ordered partition, O(k) computation step are needed. As there are nc colors, the
total time for the computation at vertex v with k children is O(knc(k + 1)nc−1). Since k ≤ ∆− 1,
the time complexity of the algorithm for trees with bounded degree ∆ is O(n · nc ·∆nc).

We conclude this section by presenting a simpler linear time algorithm for optimal recoloring
of a tree by two colors d1, d2. For this, we compute for i = 1, 2 the minimal cost convex recoloring
Ci which sets the color of the root to di (i.e. Ci(r) = di). The required optimal convex recoloring
is either C1 or C2. The computation of C1 can be done as follows:
Compute for each vertex v 6= r a cost defined by

cost(v) =
∑

v′∈Tv

cost(v′, d2) +
∑

v′ 6∈Tv

cost(v′, d1))

This can be done by one post order traversal of the tree. Then, select the vertex v0 which minimizes
this cost, and set C1(w) = d2 for each w ∈ Tv0 , and C1(w) = d1 otherwise.
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4.2 Enhanced Algorithms for the Uniform Cost Model

The running times of the algorithms in Section 4.1 do not improve even when the input coloring is
convex. However, for the uniform cost model, we can modify these algorithms so that their running
time on convex or nearly convex input (string or tree) is substantially smaller. The new algorithms,
instead of returning a total coloring, return a convex partial coloring, in which some of the new
colors assigned to the vertices are unspecified. For the presentation of the algorithms we need the
notion of convex cover which we define next.

A set of vertices X is a convex cover (or just a cover) for a colored tree (T, C) if the (partial)
coloring CX = C|[V \X] is convex (i.e., C can be transformed to a convex coloring by overwriting
the vertices in X). Thus, if C ′ is a convex recoloring of (T,C), then XC(C ′), the set of vertices
overwritten by C ′, is a cover for (T, C). Moreover, deciding whether a subset X ⊆ V is a cover
for (T, C), and constructing a total convex recoloring C ′ of C such that X (C ′) ⊆ X in case it
is, can be done in O(n · nc) time. Also, in the uniform cost model, the cost of a recoloring C ′ is
w(X (C ′)). Therefore, in this model, finding an optimal convex total recoloring of C is polynomially
equivalent to finding an optimal cover X, or equivalently a partial convex recoloring C ′ of C so
that w(X (C ′)) = w(X) is minimized.

4.2.1 Optimal String Recoloring via Relaxed Convex Recoloring

The enhanced algorithm for the string, makes use of the fact that partially colored strings can be
characterized by the following property of “local convexity”:

Definition 4.5 A color d is locally convex for a partially colored tree (T, C) iff C(carrier(C, d)) =
{d}, that is carrier(C, d) does not contain a vertex of color different from d.

Observation 4.4 A partially colored string (S,C) is convex iff it is locally convex for each color
d ∈ C.
Note that Observation 4.4 does not hold for partially colored trees, since every leaf-colored tree is
locally convex for each of its colors.

Given a colored string (S, C) and a color d, (S, C) is a d-relaxed convex coloring if it can be
completed to total coloring such that for every color d′ 6= d there is a unique d′-block.

Observation 4.5 C is a d-relaxed convex coloring of a string S if and only if each color d′ 6= d is
locally convex for (S, C).

Given a colored string (S,C), we transform C to a coloring Ĉ as follows:
For every vertex v ∈ V (S):

Ĉ(v) =

{
d̂ if C(v) is a good color
C(v) otherwsise.

where d̂ is a new color. Figure 11 illustrates such a transformation.
A set of vertices X ⊆ V is a d-relaxed cover of (S, C) if the partial coloring C|V \X , denoted CX ,

is a d-relaxed convex coloring of (S, C).
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⇓
Ĉ

C

Figure 11: All good colors are replaced by a the new color d̂, represented by F.

⇓
Ĉ

C

Figure 12: A cover of C implies a relaxed cover of Ĉ (color d̂ is represented by F).

Theorem 4.6 Let (S,C) and Ĉ be as above. Then X ⊆ V is a cover for (S, C) if and only if X

is a d̂-relaxed cover for (S, Ĉ).

Proof. Assume that X is a cover for (S, C). Then clearly all colors are locally convex for CX ,
which implies that every color d′ 6= d̂ is locally convex for ĈX . Hence, by Observation 4.5, ĈX is
a d̂-relaxed convex cover. The converse is also true: If each color d′ 6= d̂ is locally convex for ĈX ,
then each bad color (for C) is locally convex for ĈX , and hence also for CX . Each good color for C

is trivially locally convex for CX . Thus by observation 4.4, CX is convex. The theorem follows.

Figures 12, 13 depict Theorem 4.6 above.
Theorem 4.6 implies that an optimal convex cover (and hence an optimal convex recoloring)

of (S, C) can be obtained as follows: transform C to Ĉ, and then compute an optimal d̂-relaxed
convex recoloring, C ′, for (S, Ĉ). The d̂-relaxed cover defined by C ′ is an optimal cover of (S, C).
An optimal convex recoloring of (S, Ĉ) can be obtained by replacing step 2(a)of the non-uniform
string recoloring algorithm of Section 4.1.1 by:

opt(D, d, i) ← w(v)δC(vi),d +

{
opt(D, i− 1) if d = d̂

R(D, d, i− 1) otherwise.
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⇓

Ĉ

C

Figure 13: A relaxed cover of Ĉ implies a cover of C

v

Figure 14: {v} is not a cover, but as ¥ is a good color, {v} is a relaxed cover.

where R is defined in Section 4.1.1, and where δd,d′ is the complement of Kronecker delta:

δd,d′ =

{
1 if d 6= d′

0 otherwise

The improved algorithm has running time of O
(
n∗cn2n∗c

)
. In particular, for each fixed value of

n∗c the running time is polynomial in the input size.

4.2.2 Extension for Trees

The technique of getting convex recoloring by treating all good colors as a special color d̂ and then
finding a d̂-relaxed cover does not apply to trees, as can be seen in Figure 14: In this example there
is a unique good color d, thus d = d̂ and C = Ĉ; {v} is a d-relaxed cover for (T, Ĉ), but it is not a
cover for (T,C).

Let (T = (V,E), C) be a (totally) colored tree, and let C∗ be the set of bad colors. For a vertex
v ∈ V , let C∗v = C∗ ∪ {C(v)} (note that if C(v) ∈ C∗ then C∗v = C∗). Assume that the children
of v are v1, . . . , vk. The crucial observation for our improved algorithm for convex recoloring of
trees is that only colors from C∗v may appear in more than one subtree Tvi of Tv. This observation
enables us to modify the recursive calculation of the algorithm of Section 4.1.2 so that instead of
computing opt(D, d, Tv) for all subsets D of C and each d /∈ D, it computes similar values only for
subsets D ⊆ C∗v and d ∈ C∗v \D, and thus to reduce the exponential factor in the complexity bound
from 2nc to 2n∗c .
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To enable the bookkeeping needed for the algorithm, it considers only optimal partial recolorings
of (T,C), which use good colors in a very restricted way: no vertex is overwritten by a good color
(ie vertices are either retained, or uncolored, or overwritten by bad colors), and good colors are
either retained or overwritten (by bad colors), but are never uncolored. The formal definition is
given below.

Definition 4.6 A partial convex recoloring C ′ of the input coloring C is conservative if it satisfies
the following:

1. If C ′(v) 6= C(v) then C ′(v) ∈ C∗ (a color can be changed only to a bad color).

2. If C(v) /∈ C∗ then v ∈ Domain(C ′) and C ′(v) ∈ {C(v)} ∪ C∗ (a good color is either retained
or overwritten by a bad color, but not uncolored).

3. For every d ∈ C, C
′−1(d) is connected (if a vertex is left uncolored then it does not belong to

any carrier of C ′).

The fact that a conservative recoloring of minimum possible cost is an optimal convex recoloring
follows from the following lemma, which seems to be of independent interest:

Lemma 4.7 Let X be a convex cover of a colored tree (T, C). Then there is a convex total recoloring
Ĉ of (T, C) so that X (Ĉ) ⊆ X and for each vertex v for which C(v) /∈ C∗, Ĉ(v) = C(v) or Ĉ(v) ∈ C∗
(that is, Ĉ does not overwrite a good color by another good color). In particular, there is an optimal
total recoloring Ĉ of (T, C) which never overwrites a good color by another good color.

Proof. The proof is by induction on |X|. If |X| = 0 (i.e. C is convex) then let Ĉ = C. Assume
correctness for k ≥ 0, and let |X| = k + 1. If X contains a convex cover X ′ of cardinality ≤ k then
by induction there is a convex recoloring Ĉ which does not overwrite a good color by another good
color and X (Ĉ) ⊆ X ′ ⊂ X, and the lemma holds. So assume that no proper subset X ′ of X is a
convex cover (i.e., X is a minimal convex cover). Let CX = C|V \X be the partial (convex) coloring
defined by X. If C(X) ⊆ C∗ then the lemma holds for each convex recoloring Ĉ with X (Ĉ) = X,
so assume that C(u) /∈ C∗ for some u ∈ X. This implies, by the minimality of X, that there is a
vertex v ∈ X such that C(v) = d for some good color d /∈ C∗, and v is a leaf in the unique d-block
of C. Let X ′ = X \ {v}. By the minimality of X, X ′ is not a convex cover. Let CX′ = C|V \X′ be
the (non-convex) partial coloring defined by X ′.

By assumption CX′ is not convex, and the only color whose carrier under CX′ is different
from its carrier under CX is d. Hence, there is a color d′ 6= d s.t. carrier(CX′ , d) (which is
carrier(C−1

X (d)∪{v})) intersects with carrier(CX , d′). Since carriers of good colors do not intersect,
each such color d′ is a bad color. Hence either v ∈ carrier(CX , d′) for some d′ ∈ C∗, or there
is a vertex u which is the first vertex on the path from v to carrier(CX , d) which belongs to
carrier(CX , d′) for some d′ ∈ C∗ (see Figure 15; note that all vertices on the path from v to u must
be in X).

Let C ′ be the total coloring which is identical to C except that C ′(v) = d′ (see Figure 16).
Then C ′ and C use the same colors, and every color which is good for C is good also for C ′ (this is
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d′ =d =

X

u

v

Figure 15: u is the first vertex on the path from v to carrier(CX , d), which belongs to carrier of
another color.

u

v

Figure 16: C ′ is obtained from C by changing the color of v from N to •.

trivial for good colors other than d, and also for d since v is a leaf in the unique d-block of C). Let
C ′

X′ = C ′|V \X′ . Then for any color d′′ 6= d′, carrier(C ′
X′ , d′′) = carrier(CX , d′′), and by the way

d′ was selected, also carrier(C ′
X′ , d′) ∩ carrier(C ′

X′ , d′′) = ∅. Hence all color carriers in C ′|X′ are
disjoint, meaning that X ′ is a convex cover for (T, C ′) with |X ′| = k. By applying the induction
hypothesis on C ′ and X ′, there is a convex recoloring Ĉ of C ′ so that XC′(Ĉ) ⊆ X ′ and no good
color (of C ′, and hence also of C) is overwritten by another good color. Consider now Ĉ as a
recoloring of C. Then Ĉ still satisfies the above, and since XC′(C) ⊆ X ′, we have that XC(Ĉ) ⊆ X,
and the lemma is proved.

Let Ĉ be a convex total recoloring satisfying Lemma 4.7. Then it can be easily verified that
the partial coloring obtained from Ĉ by uncoloring all the vertices v for which Ĉ(v) 6= C(v) and
Ĉ(v) /∈ C∗, is a conservative recoloring. Hence a conservative recoloring of minimum possible cost
is an optimal convex recoloring.

For our algorithm we need variants of the functions opt and R, adapted for conservative re-
colorings, which we define next. A coloring C ′ is a (D, Tv)-conservative recoloring if it is a con-
servative recoloring of Tv which does not use colors from D. If in addition C ′(v) = d, then C ′ is
a (D, d, Tv)-conservative recoloring; a (D, Tv)-conservative recoloring in which v is uncolored is a
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(D, ∗, Tv)-conservative recoloring. Note that for certain combinations of D ⊆ C, f ∈ (C \ D) ∪ {∗},
and v ∈ V , no (D, f, Tv)-conservative recoloring exists (eg, when C(v) and f are two distinct good
colors).

For f ∈ C ∪ {∗}, a set of colors D ⊆ C and v ∈ V , ôpt(D, f, Tv) is the cost of an optimal
(D, f, Tv)-conservative recoloring (ôpt(D, f, Tv) = ∞ if no (D, f, Tv)-conservative recoloring exists).
ôpt(D, Tv), the optimal cost of a conservative recoloring of Tv which does not use colors from D,
is given by minf ôpt(D, f, Tv). By Lemma 4.7, the cost of an optimal recoloring of a colored tree
(T, C) is given by ôpt(Tr, ∅), where r is the root of T . The recursive computation of this value uses
the function R̂, given by

R̂(D, d, Tv) = min{ôpt(D ∪ {d}, Tv), ôpt(D \ {d}, d, Tv)}

Recall that C∗v = C∗ ∪{C(v)}. Rather than computing the functions ôpt (and R̂) at each vertex
v for all subsets D of C, our algorithm computes ôpt(D, f, Tv) at a vertex v only for subsets of C∗v .
The correctness and complexity of the algorithm follows from following two lemmas.

Lemma 4.8 For a vertex v with children v1, . . . , vk, a set of colors D ⊆ C∗v , and a color d ∈ C∗v :

1. If d ∈ D then ôpt(D, d, Tv) = ∞. If d ∈ C∗v \ D then:

ôpt(D, d, Tv) = w(v)δC(v),d + min
(E1,...,Ek)∈PART k(C∗v\(D∪{d}))

k∑

i=1

R̂(C∗v \ Ei, d, Tvi)

2. If C(v) /∈ C∗ then ôpt(D, ∗, Tv) = ∞. Else (ie C(v) ∈ C∗ and C∗v = C∗):

ôpt(D, ∗, Tv) = w(v) + min
(E1,...,Ek)∈PART k(C∗v\D)

k∑

i=1

ôpt(C∗v \ Ei, Tvi)

Proof.

1. ≥: If d ∈ D then there is no (D, d, Tv)-conservative recoloring. Otherwise the proof goes along
the same lines of the proof of Theorem 4.3, only that this time we consider only colors from C∗v .
Let C ′ be an optimal (D, d, Tv)-conservative recoloring. By the same arguments of the proof
of Theorem 4.3, C ′ induces an ordered partition (E ′1, . . . , E ′k) on C∗v \ (D ∪ {d}), such that, for
i = 1, . . . , k, C ′|Tvi

overwrites all the colors in C∗v \E ′i. Now, since C ′(v) = d, and C ′ is convex,
for each i either C ′(vi) = d or d /∈ C ′(Tvi). Also, w(v) is added to the cost iff C(v) 6= d.
Hence, the cost of C ′ is at least w(v)δC(v),d +

∑k
i=1 R̂(C∗v \E ′i, d, Tvi), which is at least as large

as the minimum of this sum over all ordered partitions in PART k(C∗v \ (D ∪ {d}).
≤: Let (E1, . . . , Ek) be an ordered partition of C∗v \ (D ∪ {d}) which minimizes the sum
at the righthand side of the equation, and for i = 1, . . . , k let C ′

i be the corresponding
conservative recoloring of Tvi , with cost(C ′

i) = R̂(C∗v \ Ei, d, Tvi). Then, since the colorings C ′
i

are conservative, for each color d′ /∈ C∗v there is at most one i s.t. d′ ∈ C ′(Tvi). Hence, for
i 6= j, C ′

i(Tvi) ∩C ′
j(Tvj ) ⊆ {d}, and d is used by C ′

i only if C ′
i(vi) = d. Let C ′ be the coloring
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which equals C ′
i on Tvi (i = 1, . . . , k), and C ′(v) = d. Then C ′ is a (D, d, Tv)-conservative

recoloring. Hence the cost of an optimal conservative recoloring is at most the cost of C ′,
which is given in the righthand side.

2. If C(v) /∈ C∗ then there is no (D, ∗, Tv)-conservative coloring. The proof for the case that
C(v) ∈ C∗ is similar to that of the previous item but simpler, and is omitted.

Lemma 4.8 implies a dynamic programming algorithm similar to the one presented in Sec-
tion 4.1.2. The algorithm computes for each vertex v, for each subset of colors D ⊆ C∗v and for each
f ∈ (C∗v \ D) ∪ {∗}, the values of ôpt(D, d, Tv). when v is a leaf, this value for each D ⊆ C∗v and
each d ∈ D is given by ôpt(D, d, Tv) = w(v)δC(v),d, and the value of ôpt(D, ∗, Tv) when C(v) ∈ C∗ is
w(v). So it remains to show that these values can be computed at internal vertices, assuming they
were previously computed at their children.

For an internal vertex v with children v1, . . . , vk, the algorithm uses Lemma 4.8(1) to compute
the values ôpt(D, d, Tv) for each D ⊆ C∗v and for each d ∈ C∗v \ D. If C(v) ∈ C∗, then Lemma 4.8(2)
is used to compute the value of ôpt(D, ∗, Tv). There is however a subtle point in the realization
of this algorithm, which stems from the fact that the sets C∗v which define the values computed at
each vertex v may vary from vertex to vertex. The following claim guarantees that all the values
needed for the calculations at an internal vertex v are calculated by its children v1, . . . , vk.

Lemma 4.9 Let v be an internal vertex with children v1, . . . , vk, and assume that v is visited by the
algorithm after its children. Then for each subset of colors D ⊆ C∗v and each f ∈ C∗v ∪ {∗}, all the
values required for computing ôpt(D, f, Tv) by Lemma 4.8 (1) and (2) are computed by v1, . . . , vk.

Proof. By our assumption, for each i = 1, . . . , k, for each D ⊆ C∗vi
and for each f ∈ C∗vi

∪ {∗}, the
value of ôpt(D, f, Tvi) is computed by vi. We have to prove that these values suffice to compute
the formulas at (1) and (2) of Lemma 4.8.

Consider first the formula at (1). To compute the function R̂(C∗v \Ei, d, Tvi), we need to compute
ôpt(C∗v \ Ei, Tvi) and ôpt(C∗v \ (Ei ∪ {d}), d, Tvi). Since d must be a member of C∗v , and Ei a subset
of C∗v \ {d}, these values can be computed if we can compute ôpt(D′, f, Tvi) for all D′ ⊆ C∗v and
f ∈ C∗v ∪ {∗}.

By our assumption, the values of ôpt(D′, f, Tvi) are computed at vi whenever D′ ⊆ C∗vi
and

f ∈ C∗vi
∪{∗}, so we only need to consider the cases where D′ 6⊆ C∗vi

or f /∈ C∗vi
∪{∗}. If f /∈ C∗vi

∪{∗}
then there is no (D′, f, Tvi)-conservative coloring, and hence ôpt(D′, f, Tvi) = ∞. Thus we are left
with the case that D′ 6⊆ C∗vi

and f ∈ C∗vi
∪ {∗}.

Since C∗v \ C∗vi
⊆ {C(v)} and D′ ⊆ C∗v , in this case we must have that D′ \ C∗vi

= {C(v)}. That
is: C(v) is a good color and C(v) /∈ C(Tvi). Hence, in this case we have that every (D′, d, Tvi)-
conservative recoloring of Tvi is also a (D′ \ {C(v)}, d, Tvi)-conservative recoloring of Tvi , and vice
versa. Therefore, ôpt(D′, d, Tvi) = ôpt(D′ \ {C(v)}, d, Tvi), and since D′ \ {C(v)} ⊆ C∗vi

, the value of
ôpt(D′ \ {C(v)}, d, Tvi) is computed at vi.
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Consider now the formula at (2) of Lemma 4.8. The values needed at v here are ôpt(Di, Tvi)
for all Di ⊆ C∗v . Since in this case C(v) ∈ C∗, we have that C∗v = C∗ ⊆ C∗vi

, and hence these values
are computed at vi’s as well.

Combining the results so far, we have

Theorem 4.10 Optimal convex recoloring of totally colored trees with n vertices can be computed
is O(n · n∗c∆n∗c+2) time, where n∗c is the number of bad colors and ∆ is the maximum degree of
vertices in T .

Proof. The correctness of the algorithm follows from Lemma 4.8. The complexity analysis is
similar to the one after Theorem 4.3: By Lemma 4.9, the computation at each vertex v with k

children can be done by using the formulas of Lemma 4.8, in time which is proportional to k < ∆
for each k+1-ordered partition of C∗v and color d. As |C∗v | ≤ n∗c +1, the number of ordered partitions
of C∗v , is at most ∆n∗c+1. The theorem follows.

4.3 Fixed Parameter Tractable Recoloring Algorithms

A fixed parameter tractable algorithm for the unweighted convex recoloring problem is one which
computes the optimal solution for an input of size n in time which is bounded by poly(n)f(k),
where f is an arbitrary function and k is the value of the optimal solution, namely the minimum
number of overwrites needed to make the coloring convex. This is a fixed parameter tractable
solution to the problem, where the parameter is the value of the optimal solution (see [6]). As n∗c ,
the number of bad colors, provides a lower bound on the number of overwrites, (effectively, the
number of overwrites is at least n∗c

2 ), the algorithm of the previous section is a fixed parameter
tractable algorithm for each class of trees of bounded degree. In this section we remove the degree
bound from this result. For this, we show below a modification of the algorithm that replaces the
need to inspect ordered-partitions by inspecting unordered partitions of sets of colors. The running
time is improved to Poly(n)Bell(n∗c), where Bell(n) is the number of (unordered) partitions of n

elements to any number of nonempty subsets1. The algorithm, which is based on minumum weight
perfect matching algorithms, is presented for the calculation of ôpt(D, d, Tv), but it can easily be
adapted for the calculation of ôpt(D, ∗, Tv).

Let v be an internal vertex with children v1, v2, . . . , v∆. Let D ⊆ C∗v and let d ∈ C∗v \ D. Rather
than calculating ôpt(D, d, Tv) by considering all the ∆-ordered partitions of C∗v \ (D ∪ {d}), we
consider only unordered non-empty partitions of C∗v \ (D∪{d}) to at most ∆ subsets. For each such
partition {E1 . . . E`} we construct a complete weighted bipartite graph (V1, V2, E, w) as follows:

1. V1 = {vi : 1 ≤ i ≤ ∆} contains a vertex for each child of v,

2. V2 = {Ej : 1 ≤ j ≤ `} ∪ {φj : ` + 1 ≤ j ≤ ∆} contains a vertex for each of the ` nonempty
subsets Ei, and additional ∆− ` vertices that represent ”copies” of the empty set.

1Bell(n) is asymptotically smaller than
�

n
ln n

�n
. More on Bell numbers can be found, eg, in [21]
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3. w(vi, Ej) = R̂(C∗v \ Ej , d, Tvi), and w(vi, φj) = R̂(C∗v , d, Tvi). That is, the weight function of
each edge is the value of R̂ which corresponds to the subtree Tvi and the set of colors Ej .

Observation 4.11 Given a partition {E1, . . . , E`}, a min weight perfect matching on the above
graph, outputs the minimum cost recoloring out of all the k-ordered partitions of C∗v \ (D ∪ {d}) in
which the non empty sets are {E1, . . . , E`}.

We remark that performing the task of Observation 4.11 above requires in the original algorithm
to consider

(
∆
`

)
`! distinct ordered partitions, a number which is not necessarilly bounded by a

function of the form Poly(n)f(n∗c).

Theorem 4.12 Using the above construction, the runing time of the algorithm is O(n4n∗cBell(n∗c)).

Proof. We first observe that at a vertex v, the min-weight perfect matching is executed once per
every (unordered) partition of C∗v \ D. The number of such partitions is bounded by O(Bell(n∗c)).
Using the Hungarian algorithm for minimum weighted perfect matching in a bipartite graph [16]
which runs in time O(n3), yields the following bound.

We note that applying the same technique to the algorithm for non-uniform cost, provides an
FPT algorithm in which the parameter is the number of colors (and not the cost of the optimal
solution).

5 Discussion and Future Work

In this work we studied the complexity of computing the distance from a given coloring of a tree
or string to a convex coloring. We considered few natural definitions for that distance, along with
few model variants of the problem, and proved that the problem is NP-Hard in each of them. We
then presented exact algorithms to solve the problem under the non-uniform and the uniform cost
models.

Few interesting research directions which suggest themselves are:

• Is there an efficient algorithm for the “big convex recoloring” problem for any fixed number
of colors?

• Similarly to the above, but rather then bounding the number of colors, the bound now is on
the number of color changes, which is the recoloring distance from convexity. The goal is to
decide whether there is a tree within this distance from a perfect phylogeny over the given
set of characters. This corresponds to a fixed parameter tractable algorithm for constructing
an optimal tree.

• Can our results for the uniform cost model from Section 4.2 be extended for the non-uniform
cost model.
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• Phylogenetic network are accumulating popularity as a model for describing evolutionary
history. This trend, motivates the extension of our problem to more generic cases such as
directed acyclic graphs or general graphs. It would be interesting to explore the properties of
convexity on these types of graphs.
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