

X. Lu and W. Zhao (Eds.): ICCNMC 2005, LNCS 3619, pp. 268 – 275, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Least Cost Multicast Spanning Tree Algorithm
 for Local Computer Network

Yong-Jin Lee1 and M. Atiquzzaman2

1 Department of Computer Science, Woosong University,
17-2 Jayang-Dong, Dong-Ku, Taejon 300-718, Korea

yjlee@woosong.ac.kr
2 School of Computer Science, University of Oklahoma,

200 Felgar Street, Norman, OK 73019, USA
atiq@ou.edu

Abstract. This study deals with the topology discovery for the capacitated
minimum spanning tree network. The problem is composed of finding the best
way to link nodes to a source node and, in graph-theoretical terms, it is to
determine a minimal spanning tree with a capacity constraint. In this paper, a
heuristic algorithm with two phases is presented. Computational complexity
analysis and simulation confirm that our algorithm produces better results than
the previous other algorithms in short running time. The algorithm can be
applied to find the least cost multicast trees in the local computer network.

1 Introduction

Topology discovery problem [1,2] for local computer network is classified into
capacitated minimum spanning tree (CMST) problem and minimal cost loop problem
[3]. The CMST problem finds the best way to link end user nodes to a backbone node.
It determines a set of minimal spanning trees with a capacity constraint. In the CMST
problem, end user nodes are linked together by a tree that is connected to a port in the
backbone node. Since the links connecting end user nodes have a finite capacity and
can handle a restricted amount of traffic, the CMST problem limits the number of end
user nodes that can be served by a single tree. The objective of the problem is to form
a collection of trees that serve all user nodes with a minimal connection cost.

Two types of methods have been presented for the CMST problem - exact methods
and heuristics. The exact methods are ineffective for instances with more than thirty
nodes. Usually, for larger problems, optimal solutions can not be obtained in a
reasonable amount of computing time. The reason is why CMST problem is
NP-complete [4]. Therefore, heuristic methods [5,6,7] have been developed in order
to obtain approximate solutions to the problem within an acceptable computing time.
Especially, algorithm [5] is one of the most effective heuristics presented in the
literature for performance evaluation.

In this paper, new heuristic algorithm that is composed of two phases is presented.
This paper is organized as follows. The next section describes the modeling and algo-
rithm for the CMST problem. Section 3 discusses the performance evaluation and
section 4 concludes the paper.

Least Cost Multicast Spanning Tree Algorithm 269

2 Modeling and Algorithm

The CMST problem is represented in Fig. 1. Eq. (1) is the formulation for the CMST
problem.

Fig. 1. CMST problem

The objective of the CMST problem is to find a collection of the least-cost span-
ning trees rooted at the source node. n represents the number of nodes. dij and qi are
distance between node pair (i, j) and traffic requirement at node i (i=1,..,n) respec-
tively. Q shows the maximum traffic to be handled in a single tree and Tk is the kth tree
which has no any cycles.

nx

kQxq

TS

xdMinimize

ji
ij

ij
kTji

i

ij
ji

ij

=

∀≤

∑

∑

∑

∈

,

,

,

,

..
 (1)

 xij = 0 or 1

A particular case occurs when each qi is equal to one. At the time, the constraint
means that no more than Q nodes can belong to any tree of the solution. In this paper,
we present a heuristic that consists of two phases for the CMST problem. In the first
phase, using the information of trees obtained by the EW solution(we will call algo-
rithm [5] as EW solution), which is one of the most effective heuristics and used as a
benchmark for performance evaluation, we improve the solution by exchanging nodes
between trees based on the suggested heuristic rules to save the total linking cost. In
the second phase, using the information obtained in the previous phase, we transfer
nodes to other tree in order to improve solutions.

EW solution performs the following procedure: It first compute gij = dij – Cij for
each node pair (i,j). dij and Ci represent cost of link (i,j) and the minimum cost between
a source node and node set of tree containing node i respectively. At the initialization,
it sets Ci = di0. Then, it finds the node pair (i,j) with the minimum negative gij (we do
not consider node pair’s with the positive gij value). If all gij’s are positive, algorithm

270 Y.-J. Lee and M. Atiquzzaman

is terminated. Next, it check whether the connecting node i and j satisfies the traffic
capacity constraint and forms a cycle together. If no, it sets gij = ∞ and repeats the
above check procedure. Otherwise, it connects node i and j and delete the link
connecting a source node and tree with the higher cost between Ci and Cj. Since new
tree’s formation affects Ci in EW solution, gij values have to be recomputed. When the
number of nodes except the source node is n, the EW solution provides the near
optimum solution with a memory complexity of O(n2) and a time complexity of
O(n2log n) for the CMST problem.

We will improve the EW solution by the simple heuristic rules based on the node
exchange and transfer between two different trees. Starting from the trees obtained by
EW solution, we first exchange nodes between different trees based on the trade-off
heuristic rules (ksij). It is assumed that node i is included in node(inx1), node j is in-
cluded in node(inx2), and inx1 is not equal to inx2. inx1 and inx2 represent indices of
trees including node i and node j respectively. In addition, node(inx1) and node(inx2)
represent sets of nodes included in tree inx1 and inx2 respectively. Exchange heuristic
rule, ksij is defined as Cinx1 + Cinx2 – dij. Cinx1 is the least cost from nodes included in
tree inx1 to the root (source node). That is, Cinx1 = Min {dm0} for m∈node(inx1),
j∈node(inx1). Also, Cinx2 = Min {dm0} for m∈node(inx2), j∈node(inx2). If inx1 is
equal to inx2, both node i and node j are included in the same tree, trade-off value is
set to -∞. Since the sum of node traffic must be less than Q, Both ∑m∈node(inx1) qm+ qj -
qi ≤ Q and ∑m∈node(inx2) qm+ qi - qj ≤ Q must be satisfied. Otherwise, ksij is set to -∞.

An initial topology is obtained by applying EW solution. For each node pair (i, j) in
different trees, heuristic rules (ksij’s) are calculated and ksij’s with negative value are
discarded. From node pair (i, j) with the maximum positive value of ksij, by exchang-
ing node i for node j, two new node sets are obtained. The network cost by applying
the existing unconstrained minimum spanning tree algorithm [8] to two new sets of
nodes is obtained. If the computed cost is less than the pervious cost, the algorithm is
repeated after re-computing heuristic rules (ksij’s). Otherwise the previous ksij’s are
used. If all ksij’s are negative and it is impossible to extend trees further, we terminate
the algorithm.

Node transfer procedure is described as the follows: we improve solutions by trans-
ferring nodes from one tree to another tree based on node transfer heuristic rule (psij).
We first evaluate that the sum of traffics in every tree is equal to Q. If so, the algo-
rithm is terminated. Otherwise, the node pair (i, j) with the minimum negative value
of psij is found. By transferring node j to the tree including node i, the solution is
computed. If inx1 is equal to inx2 or the sum of traffic is greater than Q, node j can
not be transferred to the tree inx1. In this case, psij is set to ∞. Otherwise, transfer
heuristic rule, psij is defined as dij – dmax. Here, dmax = Max {Cinx1, Cinx2}.

If each trade-off heuristic rule (psij) is positive for all node pair (i, j), and no change
in each node set is occurred, we terminate the algorithm. From the above modeling
for the CMST problem, we now present the following procedure of the proposed
algorithm. In the algorithm, step 2 and step 3 perform node exchange and transfer
respectively.

Least Cost Multicast Spanning Tree Algorithm 271

Algorithm: Least-Cost Multicast Spanning Tree
Variable: {TEMPcost: network cost computed in each step of the algorithm

EWcost: network cost computed by EW solution
 NEWcost: current least network cost

lcnt: the number of trees included in any topology }
Step 1: Execute the EW solution and find the initial topology.
Step 2: A. Perform the node exchange between two different trees in the initial topology.
(1) set TEMPcost = EWcost. (or set TEMPcost = NEWcost obtained in Step 3)
(2) For each node pair (i, j) in different trees (i < j, ∀ (i, j)), compute ksij.
 if (ksij < 0), ∀ (i, j), goto B.
(3) while (ksij > 0) {

 1) For node pair (i, j) with the maximum positive ksij,
exchange node i for node j and create node(inx1) and node(inx2).

 2) For node(inx1) and node(inx2), by applying unconstrained MST algorithm,
compute TEMPcost.

 3) if (TEMPcost ≥ NEWcost), exchange node j for node i. set ksij = ∞− and repeat (3).
 else set NEWcost = TEMPcost. set ksij = ∞− and go to (2).

 } ;
B. If it is impossible to extend for all trees, algorithm is terminated.
 Otherwise, proceed to step 3
Step 3: A. Perform the node transfer between two different trees obtained in Step 2.
(1) For all p, (p=1,2,..,lcnt), if (∑i∈p Wi == Q), algorithm is terminated.
 else set NEWcost = TEMPcost.
(2) For each node pair (i, j) in different trees (i < j, ∀ (i, j)), compute psij.
 if (psij ≥ 0), ∀ (i, j), goto B.
(3) while (psij < 0) {
 1) For node pair (i, j) with the minimum negative psij,
 transfer node j to node(inx1) and create new node(inx1) and node(inx2).

 2) For node(inx1) and node(inx2), by applying unconstrained MST algorithm,
compute TEMPcost.

 3) if (TEMPcost ≥ NEWcost), transfer node j to node(inx2). set psij = ∞ and repeat (3).
 else set NEWcost = TEMPcost. set psij = ∞ and go to (2).
 };
B. If any change in the node set is occurred, goto Step 2. Otherwise, algorithm is terminated.

3 Performance Evaluation

3.1 Property of the Proposed Algorithm

We present the following lemmas in order to show the performance measure of the
proposed algorithm.

Lemma 1. Memory complexity of the proposed algorithm is O(n2).

Proof. dij, ksij, and psij (i=1,..,n; j=1,..,n) used in step 2 ~ step 3 of the proposed algo-
rithm are two-dimensional array memory. Thus, memory complexity of step 2 and 3
is O(n2), respectively. Memory complexity of EW solution executed in step 1 of the
proposed algorithm is O(n2). As a result, total memory complexity is O(n2).

Lemma 2. Time complexity of the proposed algorithm is O(n2log n) for sparse graph
and O(Qn2log n) for complete graph when the maximum number of nodes to be in-
cluded in a tree is limited to Q.

272 Y.-J. Lee and M. Atiquzzaman

Proof. Assuming that qi=1, ∀i, Q represents the maximum number of nodes to be
included in a tree. For any graph, G = (n, a), the range of Q is between 2 and n-1. In
the Step 2 of the proposed algorithm, trade-offs heuristic rules (ksij) are computed for
each node pair (i, j) in different trees. At the worst case, the maximum number of
ksij’s to be computed is 1/2(n-Q)(n+Q-1) for Q=2,..,n-1. In the same manner, the
maximum number of ksij’s to be computed in the Step 3 is 1/2(n-Q)(n+Q-1) for
Q=2,..,n-1. Time complexity of minimum spanning tree algorithm is shown to be O(E
log Q) [8]. E is the number of edges corresponding to Q. Since the proposed algo-
rithm uses minimum spanning tree algorithm for two node sets obtained by exchang-
ing node i for node j in the Step 2 or transferring node j to the tree including node i in
Step 3, time complexity of the computation for minimum spanning tree is 2O
(E log Q). In the worst case, let us assume that MST algorithms are used maximum
number of ksij (or psij) times and EW solution, Step 2 and Step 3 are executed alto-
gether. Time complexity of EW solution is known to be O(n2log n). Now, let the
execution time of EW solution be TEW, that of Step 2 be TNEA, and that of Step 3 be
TNCA. Then, for sparse graph (E = Q), TNEA = MAX Q=2

n-1 TQ = MAX Q=2
n-1[1/2(n-Q)

(n+Q-1) O(E log Q)] = O(n2log Q). In the same manner, TNCA = O(n2log Q). There-
fore, total execution time = TEW + TNEA + TNCA = O[MAX (n2log n, n2log Q)] =
O(n2log n). For complete graph (E = 1/2Q(Q+1)), TNEA = MAXQ=2

n-1 TQ = MAX Q=2
n-1

[1/2(n-Q)(n+Q-1)O(E log Q)] = O(Qn2log n). In the same manner, TNCA = O(Qn2log
n). Hence, total execution time = TEW + TNEA + TNCA = O[MAX (n2log n, Qn2log n)] =
O(Qn2log n).

Lemma 3. All elements of trade-off matrix in the algorithm are become negative in
finite steps.

Proof. Assume that psij's are positive for some i,j. For node pair(i,j) with the positive
ksij, our algorithm set ksij to -∞ after exchanging node i for node j. At the worst case,
if all node pair(i,j) are exchanged each other, all ksij are set to -∞. Since trade-off
matrix has finite elements, all elements of trade-off matrix are become negative in
finite steps.

Lemma 4. The proposed algorithm can improve EW solution.

Proof. Let the solution by the proposed algorithm be NEWcost, the EW solution be
EWcost. Also, assume that the number of trees by EW solution is lcnt, the set of nodes
corresponding to trees j (j=1,2..,lcnt) is Rj and the corresponding cost is C(Rj). Then
EWcost is ∑j=1

lcnt C(Rj). In this case, ∩j=1
lcnt Rj = null and C(Rj) is the MST cost corre-

sponding to Rj. in the step 2, NEWcost is replaced by Ewcost. And only in the case that
the cost (TEMPcost) obtained in step 2 is less than EWcost, TEMPcost is replaced by
NEWcost, so, TEMPcost = NEWcost < EWcost. Now, one of cases which TEMPcost is less
than EWcost is considered. Let two sets of nodes changed after changing nodes in step
2 be Rsub1, Rsub2 and the corresponding sets of nodes obtained by EW solution R'sub1,
R'sub2. If cardinalities of R'sub1, R'sub2 are | R'sub1| = |R'sub2 | = Q, at the same time, |Rsub1|
= |Rsub2 | = Q where Q is the maximum number of nodes. Assume that link costs, di1,i2
< di2,i3 <,.. < dik-2,ik-1 < dik-1,ik = dik-1,jk-1 < dik,jk-2 < dik,jk-1 < dik,jk < dj1,j2 <.. < djk-1,jk < other
link cost(dij), and in EW solution, gi1,i2 < gi2,i3 <,..< gik-1,ik = gik-1,jk-1 < gik,jk-2 < gik,jk-1 <
gik,jk < gj1,j2 <..< gjk-1,jk < 0 (other gij’s > 0) are obtained. Then, R'sub1 = {i1,i2,.,ik}, the
corresponding tree is (0-i1-i2-..-ik) and R'sub2 = {j1,j2,.,jk}, the corresponding tree is

Least Cost Multicast Spanning Tree Algorithm 273

(0-j1-j2-..-jk). Therefore, C(R'sub1) = d0,i1 + di1,i2 +,.. + dik-2,ik-1 + dik-1,ik and C(R'sub2) =
d0,j1 + dj1,j2 + ,..+ djk-2,jk-1 + djk-1,jk. But, edges (ik-1, jk-1), (ik, jk-2), (ik, jk) with the less
g value are excluded in the solution because |Rsub1| is equal to Q. By assumption, dik,jk-2
+ dik,jk < djk-2,jk-1 + djk-1,jk and dik-1,ik = dik-1,jk-1. If exchanging node(ik) for node(jk-1),
Rsub1 = {i1,i2,..,ik-1,jk-1} and Rsub2 = {j1,j2,..,jk-2,ik,jk}. Applying MST algorithm to
the above two sets, since C(Rsub1), C(Rsub2) are the minimum cost trees, C(Rsub1) be-
comes d0,i1 + di1,i2 +,.. + dik-2,ik-1 + dik-1,jk-1 and C(Rsub2) becomes d0,j1 + dj1,j2 +,..,+ dik,jk-2
+ dik,jk. Thus, since C(Rsub1) = C(R'sub1) and C(Rsub2) < C(R'sub2), C(Rsub1) + C(Rsub2) <
C(R'sub1) + C(R'sub2). Total cost, TEMPcost = ∑ j=1,j≠ sub1,sub2

lcnt C(Rj) + C(Rsub1) +
C(Rsub2) < ∑ j=1,j≠ sub1,sub2 C(Rj) + C(R'sub1) +C(R'sub2) = EWcost. Hence, there exists the
case which TEMPcost is less than EWcost.

Table 1 represents the comparison of several algorithms. In the time complexity of
algorithm[7], the practical range of S is from n/Q to nlog(n/Q). Algorithm[6] repre-
sents the results when every traffic requirement is one. If the traffic requirements are
different or Q is not the power of 2, the results are inferior to that of EW solution. For
the complete graph, since the time complexity of algorithm[6] is O(Qn3), the comput-
ing time is increased more sharply than the proposed algorithm with the time com-
plexity of O(Qn2log n) as Q is increased.

Table 1. Comparison of memory and time complexity

algorithm memory complexity time complexity

EW solution O(n2) O(n2 log n)
Algorithm[7] O(n2) O(S3nlog n)
Algorithm[6] O(n2) O(n3)
Proposed algorithm O(n2) O(n2log n)

3.2 Simulation

In order to evaluate the proposed algorithm, we carried out the computational experi-
ments on IBM-PC. The coordinates of nodes were randomly generated in a square
grid of dimensions 100 by 100. The savings rate is defined as Eq. (2).

Savings Rate = (A - B) / A× 100 (2)

In Eq. (2), A is the cost by EW solution and B is the cost by the proposed algorithm
suggested in this paper.

We assumed that the traffic requirements have Poisson distribution. Let exponential
random number be X, the average traffic rate of network be λ, the following expres-
sion is obtained.

)
1

11

U
(ln

 λ

 X

−
= (3)

In Eq. (3), U is uniformly distributed random variable between 0 and 1. Using Eq. (3),
n Poisson random number are generated and used as the traffic requirements. 20, 30,
40, and 50 as the value of λ and 30, 50, 70 as the number of nodes (n) are used respec-
tively. Maximum traffic handled in a single tree is used between the maximum value

274 Y.-J. Lee and M. Atiquzzaman

among the Poisson random number by the simulation and n/4. Fig. 2 shows the mean
savings rate. Increasing of λ and n do not affect the results of savings rate. Thus, to
derive the expression describing the relation between λ or n and solution exactly is
difficult.

Mean Savings Rate

0

1

2

3

4

5

6

20 30 40 50

Traffic Requirements (λ)

M
ea

n
Sa

vi
ng

s
R

at
e

(%
)

n = 30 n = 50 n = 70

Fig. 2. Mean Savings Rate

As shown in Fig. 2, our proposed algorithm improves the EW solution up to 5 %.
Mean savings rate of algorithm[7] is 1.9 % and that of algorithm[6] ranges from 1 %
to 5 %. Thus, it is known that no algorithm produces the best result. The reason is
because the solution is affected by the generated location of nodes. However, since
the time complexity of the proposed algorithm is the least as shown in Table 1, we
can state that the proposed algorithm produces reasonable improvements over the EW
solution in the short running time in comparison with other heuristics.

4 Conclusions

In this paper, we present new heuristic algorithm and its computational property for
the capacitated minimum spanning tree (CMST) problem. The proposed algorithm
can be applied to find the least cost multicast trees and topology discovery in the local
computer network. It improves solutions by exchanging or transferring nodes between
trees based on the suggested heuristic rules. It has the small memory and time com-
plexities and produces good improvements over the benchmark solution in compari-
son with other existing heuristics. Simulation results show that the proposed algo-
rithm does not limit the type of traffic requirements, has not the fluctuation of solu-
tion, and is more efficient when the traffic volume of network is light. Future work
includes the more efficient algorithm considering a mean delay constraint.

Least Cost Multicast Spanning Tree Algorithm 275

References

1. Bjerano, Y., Breitbart, M. and Rastogi, R.: Physical topology discovery for large multi-
subnet networks. INFOCOM. (2003) 342-352.

2. Huffaker, B., Plummer, D., and Claffy, K.: Topology discovery by active probing. Applica-
tions and the Internet (SAINT) Workshops. (2002) 90-96.

3. Lee, Y.: Minimal cost heuristic algorithm for delay constrained loop network. International
Journal of Computer Systems Science & Engineering, Vol. 19. CRL Publishing. (2004)
209-219.

4. Papadimitriou, C.H.: The complexity of the capacitated tree problem. Networks, Vol. 8.
(1978) 217-230.

5. Esau, L.R. and Williams, K.: On teleprocessing system design, part II. IBM syst. J., Vol. 5.
(1966) 142-147.

6. Gavish, B. and Altinkemer, K.: Parallel savings heuristics for the topological design of local
access tree networks. Proceedings IEEE-INFOCOM '86. (1986) 139-139.

7. Kershenbaum, K., Boorstyn, R. and Oppenheim, R.: Second-order greedy algorithms for
centralized teleprocessing network design. IEEE Trans. on Comm., Vol. 28. (1980) 1835-
1838.

8. Sedgewick, R.: Algorithms. Addison-Wesley. (1989) 452-461.

	Introduction
	Modeling and Algorithm
	Performance Evaluation
	Property of the Proposed Algorithm
	Simulation

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

