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Abstract. This study deals with the topology discovery for the capacitated 
minimum spanning tree network. The problem is composed of finding the best 
way to link nodes to a source node and, in graph-theoretical terms, it is to  
determine a minimal spanning tree with a capacity constraint. In this paper, a 
heuristic algorithm with two phases is presented. Computational complexity 
analysis and simulation confirm that our algorithm produces better results than 
the previous other algorithms in short running time. The algorithm can be  
applied to find the least cost multicast trees in the local computer network. 

1   Introduction 

Topology discovery problem [1,2] for local computer network is classified into  
capacitated minimum spanning tree (CMST) problem and minimal cost loop problem 
[3]. The CMST problem finds the best way to link end user nodes to a backbone node. 
It determines a set of minimal spanning trees with a capacity constraint. In the CMST 
problem, end user nodes are linked together by a tree that is connected to a port in the 
backbone node. Since the links connecting end user nodes have a finite capacity and 
can handle a restricted amount of traffic, the CMST problem limits the number of end 
user nodes that can be served by a single tree. The objective of the problem is to form 
a collection of trees that serve all user nodes with a minimal connection cost.  

Two types of methods have been presented for the CMST problem - exact methods 
and heuristics. The exact methods are ineffective for instances with more than thirty 
nodes. Usually, for larger problems, optimal solutions can not be obtained in a  
reasonable amount of computing time. The reason is why CMST problem is  
NP-complete [4]. Therefore, heuristic methods [5,6,7] have been developed in order 
to obtain approximate solutions to the problem within an acceptable computing time. 
Especially, algorithm [5] is one of the most effective heuristics presented in the  
literature for performance evaluation. 

In this paper, new heuristic algorithm that is composed of two phases is presented. 
This paper is organized as follows. The next section describes the modeling and algo-
rithm for the CMST problem. Section 3 discusses the performance evaluation and 
section 4 concludes the paper. 
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2   Modeling and Algorithm 

The CMST problem is represented in Fig. 1. Eq. (1) is the formulation for the CMST 
problem.  

 

Fig. 1. CMST problem 

The objective of the CMST problem is to find a collection of the least-cost span-
ning trees rooted at the source node. n represents the number of nodes. dij and qi are 
distance between node pair (i, j) and  traffic requirement at node i (i=1,..,n) respec-
tively. Q shows the maximum traffic to be handled in a single tree and Tk is the kth tree 
which has no any cycles. 
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                                                                xij = 0 or 1 

A particular case occurs when each qi is equal to one. At the time, the constraint 
means that no more than Q nodes can belong to any tree of the solution. In this paper, 
we present a heuristic that consists of two phases for the CMST problem. In the first 
phase, using the information of trees obtained by the EW solution(we will call algo-
rithm [5] as EW solution), which is one of the most effective heuristics and used as a 
benchmark for performance evaluation, we improve the solution by exchanging nodes 
between trees based on the suggested heuristic rules to save the total linking cost. In 
the second phase, using the information obtained in the previous phase, we transfer 
nodes to other tree in order to improve solutions.  

EW solution performs the following procedure: It first compute gij = dij – Cij for 
each node pair (i,j). dij and Ci represent cost of link (i,j) and the minimum cost between 
a source node and node set of tree containing node i respectively. At the initialization, 
it sets Ci = di0. Then, it finds the node pair (i,j) with the minimum negative gij (we do 
not consider node pair’s with the positive gij value). If all gij’s are positive, algorithm 
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is terminated. Next, it check whether the connecting node i and j satisfies the traffic 
capacity constraint and forms a cycle together. If no, it sets gij = ∞ and repeats the 
above check procedure. Otherwise, it connects node i and j and delete the link  
connecting a source node and tree with the higher cost between Ci and Cj. Since new 
tree’s formation affects Ci in EW solution, gij values have to be recomputed. When the 
number of nodes except the source node is n, the EW solution provides the near  
optimum solution with a memory complexity of O(n2) and a time complexity of 
O(n2log n) for the CMST problem.  

We will improve the EW solution by the simple heuristic rules based on the node 
exchange and transfer between two different trees. Starting from the trees obtained by 
EW solution, we first exchange nodes between different trees based on the trade-off 
heuristic rules (ksij). It is assumed that node i is included in node(inx1), node j is in-
cluded in node(inx2), and inx1 is not equal to inx2. inx1 and inx2 represent indices of 
trees including node i and node j respectively. In addition, node(inx1) and node(inx2) 
represent sets of nodes included in tree inx1 and inx2 respectively. Exchange heuristic 
rule, ksij is defined as Cinx1 + Cinx2 – dij. Cinx1 is the least cost from nodes included in 
tree inx1 to the root (source node). That is, Cinx1 = Min {dm0} for m∈node(inx1), 
j∈node(inx1). Also, Cinx2 = Min {dm0} for m∈node(inx2), j∈node(inx2). If inx1 is 
equal to inx2, both node i and node j are included in the same tree, trade-off value is 
set to -∞. Since the sum of node traffic must be less than Q, Both ∑m∈node(inx1) qm+ qj -
qi ≤ Q and ∑m∈node(inx2) qm+ qi - qj ≤ Q must be satisfied. Otherwise, ksij is set to -∞.  

An initial topology is obtained by applying EW solution. For each node pair (i, j) in 
different trees, heuristic rules (ksij’s) are calculated and ksij’s with negative value are 
discarded. From node pair (i, j) with the maximum positive value of ksij, by exchang-
ing node i for node j, two new node sets are obtained. The network cost by applying 
the existing unconstrained minimum spanning tree algorithm [8] to two new sets of 
nodes is obtained. If the computed cost is less than the pervious cost, the algorithm is 
repeated after re-computing heuristic rules (ksij’s). Otherwise the previous ksij’s are 
used. If all ksij’s are negative and it is impossible to extend trees further, we terminate 
the algorithm. 

Node transfer procedure is described as the follows: we improve solutions by trans-
ferring nodes from one tree to another tree based on node transfer heuristic rule (psij). 
We first evaluate that the sum of traffics in every tree is equal to Q. If so, the algo-
rithm is terminated. Otherwise, the node pair (i, j) with the minimum negative value 
of psij is found. By transferring node j to the tree including node i, the solution is 
computed. If inx1 is equal to inx2 or the sum of traffic is greater than Q, node j can 
not be transferred to the tree inx1. In this case, psij is set to ∞. Otherwise, transfer 
heuristic rule, psij is defined as dij – dmax. Here, dmax = Max {Cinx1, Cinx2}. 

If each trade-off heuristic rule (psij) is positive for all node pair (i, j), and no change 
in each node set is occurred, we terminate the algorithm. From the above modeling 
for the CMST problem, we now present the following procedure of the proposed 
algorithm. In the algorithm, step 2 and step 3 perform node exchange and transfer 
respectively. 
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Algorithm: Least-Cost Multicast Spanning Tree  
Variable: {TEMPcost: network cost computed in each step of the algorithm 

EWcost: network cost computed by EW solution 
  NEWcost: current least network cost 

lcnt: the number of trees included in any topology } 
Step 1: Execute the EW solution and find the initial topology. 
Step 2: A. Perform the node exchange between two different trees in the initial topology. 
(1) set TEMPcost = EWcost. (or set TEMPcost = NEWcost obtained in Step 3) 
(2) For each node pair (i, j) in different trees (i < j, ∀ (i, j)), compute ksij. 
      if (ksij < 0), ∀ (i, j), goto B. 
(3) while (ksij > 0) { 

 1) For node pair (i, j) with the maximum positive ksij,  
exchange node i for node j and create node(inx1) and node(inx2). 

     2) For node(inx1) and node(inx2), by applying unconstrained MST algorithm,  
compute TEMPcost. 

   3) if (TEMPcost ≥ NEWcost), exchange node j for node i. set ksij = ∞−  and repeat (3). 
      else set NEWcost = TEMPcost. set ksij = ∞−  and go to (2).  

      } ; 
B. If it is impossible to extend for all trees, algorithm is terminated. 
     Otherwise, proceed to step 3 
Step 3: A. Perform the node transfer between two different trees obtained in Step 2. 
(1) For all p, (p=1,2,..,lcnt), if ( ∑i∈p Wi == Q), algorithm is terminated. 
      else set NEWcost = TEMPcost. 
(2) For each node pair (i, j) in different trees (i < j, ∀ (i, j)), compute psij. 
      if (psij ≥ 0), ∀ (i, j), goto B. 
(3) while (psij < 0) { 
      1) For node pair (i, j) with the minimum negative psij,  
           transfer node j to node(inx1) and create new node(inx1) and  node(inx2).  

    2) For node(inx1) and node(inx2), by applying unconstrained MST algorithm,  
compute TEMPcost. 

      3) if (TEMPcost ≥ NEWcost), transfer node j to node(inx2). set psij = ∞ and repeat (3). 
           else set NEWcost = TEMPcost. set psij = ∞ and go to (2). 
       }; 
B. If any change in the node set is occurred, goto Step 2. Otherwise, algorithm is terminated. 

3   Performance Evaluation 

3.1   Property of the Proposed Algorithm 

We present the following lemmas in order to show the performance measure of the 
proposed algorithm. 

Lemma 1. Memory complexity of the proposed algorithm is O(n2). 

Proof. dij, ksij, and psij (i=1,..,n; j=1,..,n) used in step 2 ~ step 3 of the proposed algo-
rithm are two-dimensional array memory.  Thus, memory complexity of step 2 and 3 
is O(n2), respectively. Memory complexity of EW solution executed in step 1 of the 
proposed algorithm is O(n2). As a result, total memory complexity is O(n2). 

Lemma 2. Time complexity of the proposed algorithm is O(n2log n) for sparse graph 
and O(Qn2log n) for complete graph when the maximum number of nodes to be in-
cluded in a tree is limited to Q. 
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Proof. Assuming that qi=1, ∀i, Q represents the maximum number of nodes to be 
included in a tree. For any graph, G = (n, a), the range of Q is between 2 and n-1. In 
the Step 2 of the proposed algorithm, trade-offs heuristic rules (ksij) are computed for 
each node pair (i, j) in different trees. At the worst case, the maximum number of 
ksij’s to be computed is 1/2(n-Q)(n+Q-1) for Q=2,..,n-1. In the same manner, the 
maximum number of ksij’s to be computed in the Step 3 is 1/2(n-Q)(n+Q-1) for 
Q=2,..,n-1. Time complexity of minimum spanning tree algorithm is shown to be O(E 
log Q) [8]. E is the number of edges corresponding to Q. Since the proposed algo-
rithm uses minimum spanning tree algorithm for two node sets obtained by exchang-
ing node i for node j in the Step 2 or transferring node j to the tree including node i in 
Step 3, time complexity of the computation for minimum spanning tree is 2O 
(E log Q). In the worst case, let us assume that MST algorithms are used maximum 
number of ksij (or psij) times and EW solution, Step 2 and Step 3 are executed alto-
gether. Time complexity of EW solution is known to be O(n2log n). Now, let the 
execution time of EW solution be TEW, that of Step 2 be TNEA, and that of Step 3 be 
TNCA. Then, for sparse graph (E = Q), TNEA = MAX Q=2 

n-1 TQ = MAX Q=2 
n-1[1/2(n-Q) 

(n+Q-1) O(E log Q)] = O(n2log Q). In the same manner, TNCA = O(n2log Q). There-
fore, total execution time = TEW + TNEA + TNCA = O[MAX (n2log n, n2log Q)] = 
O(n2log n). For complete graph (E = 1/2Q(Q+1)), TNEA = MAXQ=2

n-1 TQ = MAX Q=2 
n-1 

[1/2(n-Q)(n+Q-1)O(E log Q)] = O(Qn2log n). In the same manner, TNCA = O(Qn2log 
n). Hence, total execution time = TEW + TNEA + TNCA = O[MAX (n2log n, Qn2log n)] = 
O(Qn2log n). 

Lemma 3. All elements of trade-off matrix in the algorithm are become negative in 
finite steps. 

Proof. Assume that psij's are positive for some i,j. For node pair(i,j) with the positive 
ksij, our algorithm set ksij to -∞ after exchanging node i for node j. At the worst case, 
if all node pair(i,j) are exchanged each other, all ksij are set to -∞. Since trade-off 
matrix has finite elements, all elements of trade-off matrix are become negative in 
finite steps. 

Lemma 4. The proposed algorithm can improve EW solution. 

Proof. Let the solution by the proposed algorithm be NEWcost, the EW solution be 
EWcost. Also, assume that the number of trees by EW solution is lcnt, the set of nodes 
corresponding to trees j (j=1,2..,lcnt) is Rj and the corresponding cost is C(Rj). Then 
EWcost is ∑j=1

lcnt C(Rj). In this case, ∩j=1
lcnt Rj = null and C(Rj) is the MST cost corre-

sponding to Rj. in the step 2, NEWcost is replaced by Ewcost. And only in the case that 
the cost (TEMPcost) obtained in step 2 is less than EWcost, TEMPcost is replaced by 
NEWcost, so, TEMPcost = NEWcost < EWcost. Now, one of cases which TEMPcost is less 
than EWcost is considered. Let two sets of nodes changed after changing nodes in step 
2 be Rsub1, Rsub2 and the corresponding sets of nodes obtained by EW solution R'sub1, 
R'sub2. If cardinalities of R'sub1, R'sub2  are | R'sub1| = |R'sub2 | = Q, at the same time, |Rsub1| 
= |Rsub2 | = Q where Q is the maximum number of nodes. Assume that link costs, di1,i2 
< di2,i3 <,.. < dik-2,ik-1 < dik-1,ik = dik-1,jk-1 < dik,jk-2 < dik,jk-1 < dik,jk < dj1,j2 <.. < djk-1,jk < other 
link cost(dij), and in EW solution, gi1,i2 < gi2,i3 <,..< gik-1,ik = gik-1,jk-1 < gik,jk-2 < gik,jk-1 < 
gik,jk < gj1,j2 <..< gjk-1,jk < 0 (other gij’s > 0) are obtained. Then, R'sub1 = {i1,i2,.,ik}, the 
corresponding tree is (0-i1-i2-..-ik) and R'sub2 = {j1,j2,.,jk}, the corresponding tree is 
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(0-j1-j2-..-jk). Therefore, C(R'sub1) = d0,i1 + di1,i2 +,.. + dik-2,ik-1 + dik-1,ik and C(R'sub2) = 
d0,j1 + dj1,j2 + ,..+ djk-2,jk-1 + djk-1,jk. But, edges (ik-1, jk-1), (ik, jk-2), (ik, jk) with the less 
g value are excluded in the solution because |Rsub1| is equal to Q. By assumption, dik,jk-2 
+ dik,jk < djk-2,jk-1 + djk-1,jk and dik-1,ik = dik-1,jk-1. If exchanging node(ik) for node(jk-1), 
Rsub1 = {i1,i2,..,ik-1,jk-1} and  Rsub2 = {j1,j2,..,jk-2,ik,jk}. Applying MST algorithm to 
the above two sets, since C(Rsub1), C(Rsub2) are the minimum cost trees,  C(Rsub1) be-
comes d0,i1 + di1,i2 +,.. + dik-2,ik-1 + dik-1,jk-1 and C(Rsub2) becomes d0,j1 + dj1,j2 +,..,+ dik,jk-2 
+ dik,jk. Thus, since C(Rsub1) = C(R'sub1) and C(Rsub2) < C(R'sub2), C(Rsub1) + C(Rsub2) < 
C(R'sub1) + C(R'sub2). Total cost, TEMPcost = ∑ j=1,j≠ sub1,sub2 

lcnt C(Rj) + C(Rsub1) + 
C(Rsub2) < ∑ j=1,j≠ sub1,sub2 C(Rj) + C(R'sub1) +C(R'sub2) = EWcost. Hence, there exists the 
case which TEMPcost is less than EWcost. 

Table 1 represents the comparison of several algorithms. In the time complexity of 
algorithm[7], the practical range of S is from n/Q to nlog(n/Q). Algorithm[6] repre-
sents the results when every traffic requirement is one. If the traffic requirements are 
different or Q is not the power of 2, the results are inferior to that of EW solution. For 
the complete graph, since the time complexity of algorithm[6] is O(Qn3), the comput-
ing time is increased more sharply than the proposed algorithm with the time com-
plexity of O(Qn2log n) as Q is increased. 

Table 1. Comparison of memory and time complexity 

algorithm memory complexity time complexity 

EW solution O(n2) O(n2 log n) 
Algorithm[7] O(n2) O(S3nlog n) 
Algorithm[6] O(n2) O(n3) 
Proposed algorithm O(n2) O(n2log n) 

3.2   Simulation 

In order to evaluate the proposed algorithm, we carried out the computational experi-
ments on IBM-PC. The coordinates of nodes were randomly generated in a square 
grid of dimensions 100 by 100. The savings rate is defined as Eq. (2). 

Savings Rate = (A - B) / A× 100                                           (2) 

In Eq. (2), A is the cost by EW solution and B is the cost by the proposed algorithm 
suggested in this paper.  

We assumed that the traffic requirements have Poisson distribution. Let exponential 
random number be X, the average traffic rate of network be λ, the following expres-
sion is obtained. 

                                              )
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 λ
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−
=                                                       (3) 

In Eq. (3), U is uniformly distributed random variable between 0 and 1. Using Eq. (3), 
n Poisson random number are generated and used as the traffic requirements. 20, 30, 
40, and 50 as the value of λ and 30, 50, 70 as the number of nodes (n) are used respec-
tively. Maximum traffic handled in a single tree is used between the maximum value 
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among the Poisson random number by the simulation and n/4. Fig. 2 shows the mean 
savings rate. Increasing of λ and n do not affect the results of savings rate. Thus, to 
derive the expression describing the relation between λ or n and solution exactly is 
difficult. 
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Fig. 2. Mean Savings Rate 

As shown in Fig. 2, our proposed algorithm improves the EW solution up to 5 %. 
Mean savings rate of algorithm[7] is 1.9 % and that of algorithm[6] ranges from 1 % 
to 5 %. Thus, it is known that no algorithm produces the best result. The reason is 
because the solution is affected by the generated location of nodes. However, since 
the time complexity of the proposed algorithm is the least as shown in Table 1, we 
can state that the proposed algorithm produces reasonable improvements over the EW 
solution in the short running time in comparison with other heuristics. 

4   Conclusions 

In this paper, we present new heuristic algorithm and its computational property for 
the capacitated minimum spanning tree (CMST) problem. The proposed algorithm 
can be applied to find the least cost multicast trees and topology discovery in the local 
computer network. It improves solutions by exchanging or transferring nodes between 
trees based on the suggested heuristic rules. It has the small memory and time com-
plexities and produces good improvements over the benchmark solution in compari-
son with other existing heuristics. Simulation results show that the proposed algo-
rithm does not limit the type of traffic requirements, has not the fluctuation of solu-
tion, and is more efficient when the traffic volume of network is light. Future work 
includes the more efficient algorithm considering a mean delay constraint. 
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