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Abstract. Clustering is a fundamental task in Spatial Data Mining
where data consists of observations for a site (e.g. areal units) descrip-
tive of one or more (spatial) primary units, possibly of different type,
collected within the same site boundary. The goal is to group structured
objects, i.e. data collected at different sites, such that data inside each
cluster models the continuity of socio-economic or geographic environ-
ment, while separate clusters model variation over the space. Continuity
is evaluated according to the spatial organization arising in data, namely
discrete spatial structure, expressing the (spatial) relations between sep-
arate sites implicitly defined by their geometrical representation and po-
sitioning. Data collected within sites that are (transitively) connected in
the discrete spatial structure are clustered together according to the sim-
ilarity on multi-relational descriptions representing their internal struc-
ture. CORSO is a novel spatial data mining method that resorts to a
multi-relational approach to learn relational spatial data and exploits
the concept of neighborhood to capture relational constraints embedded
in the discrete spatial structure. Relational data are expressed in a first-
order formalism and similarity among structured objects is computed
as degree of matching with respect to a common generalization. The
application to real-world spatial data is reported.

1 Introduction

Within both social and environmental sciences much of data is collected in a
spatial framework, where data consists of measurements or observations of one or
more attributes taken at specific sites which are spatially-referenced. This means
that geometrical representation and relative positioning of sites are recorded to
express the spatial organization arising in social and environmental data. A
simple form of spatially referenced data is point data where observations are
taken at fixed point sites of space and represented as triple {(x;,y;), 2:}, such
that (z;,y;) references the location of a point ¢ with respect to some coordinate
system, while z; is the vector of measured attributes observed at site i. However,
operations and activities of private and public institutions generally deal with
space in terms of areas (irregular partitions or regular grid) and not points.
Areal data can be represented as point data by identifying each area with its
centroid [24], but this is restrictive when observations for an area are descrip-
tive of one or more (spatial) primary units, possibly of different type, collected
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within the same area boundary. In this case, data includes both attributes that
relate to primary units or areas and attributes that refer to relations between
primary units (e.g., contact frequencies between households) and between areal
units (e.g., migration rates). Moreover, spatial-referencing poses a further degree
of complexity due to the fact that the geometrical representation (point, line or
polygon) and the relative positioning of primary units or areal units implic-
itly define spatial features (properties and relations) of different nature, that is,
geometrical (e.g. area, distance), directional (e.g. north, south) and topological
(e.g. crosses, on top) features. This relational information may be responsible for
the spatial variation among areal units and it is extremely useful in descriptive
modeling of different distributions holding for spatial subsets of data. An extra
consequence is that observations across space cannot be considered independent
due to the spatial continuity of events occurring in the space. Continuity of
events over neighbor areas is a consequence of social patterns and environmental
constraints that deal with space in terms of regions and allow to identify a mosaic
of nearly homogeneous areas in which each patch of the mosaic is demarcated
from its neighbors in terms of attributes levels. For instance, the spatial conti-
nuity of an environmental phenomenon such as air pollution may depend on the
geographical arrangements of pollution sources. As a model for this spatial con-
tinuity, the regional concept encourages the analyst to exploit spatial correlation
following from the first Law of Geography [22], according to which everything is
related to everything else, but near things are more related than distant things.
This means that primary units forming areal units of analysis will tend to be
essentially identical members of same populations in nearby locations. In this
spatial framework, relations among areal units of analysis are expressed in form
of relational constraints that represent a discrete spatial structure arising in spa-
tial data, while relations among primary units within an area model the spatial
structure of each single areal unit of analysis.

Grouping connected areas to form clusters of homogeneous regions, i.e., spa-
tial clustering, is a fundamental task of Spatial Data Mining. In this paper,
we propose to represent the discrete spatial structure as a graph, where nodes
are associated with relational descriptions of areal units to be clustered, while
links express relational constraints which typically reflect spatial relations such
as adjacency. In this way, discontinuity in the graph represents some obstacles
in the space. Exploiting this graph-based representation, we present a cluster-
ing method, named CORSO (Clustering Of Related Structured Objects), that
resorts to a multi-relational approach [2] to model homogeneity over relational
structure embedded in spatial data and exploits the concept of graph neigh-
borhood to capture relational constraints embedded in the graph edges. Units
associated with (transitively) graph connected nodes are clustered together ac-
cording to the similarity of their relational descriptions.

The paper is organized as follows. In the next section we discuss some related
works. The method is presented in Section 3. Two applications of spatial cluster-
ing for topographic map interpretation and geo-referenced census data analysis
are reported in Section 4, while conclusions are drawn in Section 5.
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2 Background and Motivation

The problem of clustering spatial data has been investigated by some researchers,
but while a lot of research has been conducted on detecting spatial clusters from
point data, only few works deal with areal data. For instance, Ng and Han
[18] have proposed to extend the k-medoid partitioning algorithm [12] to group
point data in a set of k clusters. However, the k-medoid partitioning appears
well suited only when spatial clusters are of convex shape and similar size, and
the number k is reasonably a-priori estimated. Moreover, the method suffers
from severe limitations when clustering large spatial dataset [5] due to the com-
plexity of computing distance between medoid points representing each pair of
clusters. These efficiency drawbacks are partially alleviated when adopting both
proximity and density information to achieve high quality spatial clusters in a
sub-quadratic time without requiring the user to a-priori specify the number of
clusters [7]. Similarly, DBSCAN [6] exploits density information to efficiently de-
tect clusters of arbitrary shape from point spatial data with noise. The key idea
of density-based clustering is that for each point of a cluster, a neighborhood of
a given radius has to contain a minimum number (cardinality) of data points.
Neighborhood is determined according to the Euclidean distance. However, when
observations concern areal units, Euclidean distance may not be appropriate to
neighborhood determination. To this purpose, Sander et al. [21] have proposed
GDBSCAN that generalizes DBSCAN in order to cluster not only point data but
also spatially extended objects (lines or areas) taking into account both spatial
and non spatial attributes when defining cardinality. Indeed, GDBSCAN ex-
tends the notion of neighborhood to any binary predicate that is symmetric and
reflexive (e.g. distance, meet) and imposes a discrete spatial structure on data
that guides the clustering detection. This discrete spatial structure can be equiv-
alently modeled as links of a graph, namely neighborhood or proximity graph
[23], whose nodes represent the units to be clustered. The graph-based represen-
tation of data, that is extensively used in pattern recognition [9], perfectly fits
the spatial need of representing the relational constraints among spatial units
to be clustered. In this perspective, it is clear that hybrid methods [I7] which
combine data clustering with graph-partitioning technique have some interesting
applications properly in spatial clustering [8].

However even when clustering takes into account relational constraints form-
ing discrete spatial structure, all methods reported above suffer from severe
limitations due to the single-table representation [2]. Data to be clustered is rep-
resented in a single table (or relation) of a relational database, such that each row
(or tuple) corresponds to a single unit of the sample population and the columns
correspond to both spatial and a-spatial properties of these units. This repre-
sentation is clearly inadequate when describing observations concerning several
(spatial) primary units, eventually of different types, which are naturally mod-
eled as many data tables as the number of object types and interactions. Some
methods for mining clusters on (multi-)relational data have been investigated by
resorting to the field of relational data mining. For instance, RDBC [13] forms
clusters bottom-up in an agglomerative fashion that uses the distance metric
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introduced in [I1] and handles relational representations with lists and other
functional terms as well. In contrast, C0.5 [I] adopts logical decision trees for
clustering purposes by choosing split literals that maximize the distance between
two resulting subsets (clusters) of examples. However, differently from RDBC,
distance in literal choice is in this case estimated according to a user-provided
propositional distance.

Although these relational clustering methods present several interesting as-
pects, detecting spatial clusters is a more complex task. Indeed, relational clus-
tering methods generally work in the learning from interpretation setting [20]
that allows to mine examples and background knowledge stored as Prolog pro-
grams exploiting expressiveness of first-order representation during clustering
detection. The interpretation corresponding to each example e given the back-
ground knowledge BK is here intended as the minimal Herbrand model of e ABK
and the implicit assumption is that separate interpretations are independent.
This leads to ignore relational constraints eventually relating separate interpre-
tations (e.g. geographic contiguity of areal units). This problem also occurs in
graph-based relational learning methods [I0] where graphs appear as a flexible
representation for relational domains. However, these methods generally con-
tinue to work in learning from interpretation settings and thus ignore relations
among graphs representing separate examples. In contrast, we propose to com-
bine a graph-based partitioning algorithm with a relational clustering method
to mine both relational constraints imposing the discrete spatial structure and
relational data representing structured objects (spatial unit) to be clustered.

3 The Method

In a quite general formulation, the problem of clustering structured objects (e.g.,
complex areal units), which are related by links representing persistent relations
between objects (e.g., spatial correlation), can be defined as follows: Given: (i) a
set of structured objects O, (ii) a background knowledge BK and (iii) a binary
relation R expressing links among objects in O; Find a set of homogeneous
clusters C C p(O) that is feasible with R.

Each structured object 0; € O can be described by means of a conjunctive
ground formula (conjunction of ground selectors) in a first-order formalism, while
background knowledge BK is expressed with first-order clauses that support
some qualitative reasoning on O. In both cases, each basic component (i.e.,
selector) is a relational statement in the form f(t1,...,t,) = v, where f is a
function symbol or descriptor, t; are terms (constant or variables) and v is a
value taken from the categorical or numerical range of f.

Structured objects are then related by R that is a binary relation R C O x O
imposing a discrete structure on O. In spatial domains, this relation may be
either purely spatial, such as topological relations (e.g. adjacency of regions),
distance relations (e.g. two regions are within a given distance), and directional
relations (e.g. a region is on south of an other region), or hybrid, which mixes
both spatial and non spatial properties (e.g. two regions are connected by a
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road). The relation R can be described by the graph G = (No, Ar) where No
is the set of nodes n; representing each structured object o; and Ag is the set
of arcs a;; describing links between each pair of nodes (n;,n;) according to
the discrete structure imposed by R. This means that there is an arc from n;
to n; only if 0;Ro;. Let Ng(n;) be the R-neighborhood of a node n; such that
Ng(n;) = {n;| there is an arc linking n; to n; in G}, a node n; is R-reachable
from n; if nj € Ng(n;), or In, € Ng(n;) such that n; is R-reachable from ny,.

According to this graph-based formalization, a clustering C C p(O) is fea-
sible with the discrete structure imposed by R when each cluster C € C is a
subgraph G¢ of the graph G(No, Ar) such that for each pair of nodes (n;,n;)
of G¢, n; is R-reachable from n;, or vice-versa. Moreover, the cluster C' is ho-
mogeneous when it groups structured objects of O sharing a similar relational
description according to some similarity criterion.

CORSO integrates a neighborhood-based graph partitioning to obtain clus-
ters which are feasible with R discrete structure and resorts to a multi-relational
approach to evaluate similarity among structured objects and form homogeneous
clusters. This faces with the spatial issue of modeling spatial continuity of a phe-
nomenon over the space. The top-level description of the method is presented in
Algorithm [[] CORSO embeds a saturation step (function saturate) to make ex-
plicit information that is implicit in data according to the given BK. The key idea

Algorithm 1. Top-level description of CORSO algorithm
1: function CORSO(O, BK, R, h — threshold) — C List;

2: CList — @; Opk «saturate(O,BK); C < newCluster( );
3: for each seed € Opx do

4:  if seed is UNCLASSIFIED then
5: Nseea < neighborhood(seed,Opk,R);
6: for each 0 € Nseeq do
7 if o is assigned to a cluster different from C' then
8: Nseed = Nseed/o;
9: end if
10: end for
11: Tseea — neighborhoodModel(Ngeea);
12: if homogeneity(Ngeed, Tscea) > h — threshold then
13: C.add(seed); seedList — @;
14: for each 0 € Ngeeq do
15: C.add(o0); seedList.add(o);
16: end for
17: (C,Tc) «—expandCluster(C,seedList,Opxi ,R,Tsced,h — threshold);
18: C Label=clusterLabel(T¢); CList.add({C, CLabel)); C « newCluster( );
19: else
20: seed — NOISE;
21: end if
22: end if
23: end for

24: return CList;
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is to exploit the R-neighborhood construction and build clusters feasible with R-
discrete structure by merging partially overlapping homogeneous neighborhood
units. Cluster construction starts with an empty cluster (C «— newCluster())
and chooses an arbitrary node seed from G. The R-neighborhood Ngeeq of the
node seed is then built according to G discrete structure (function neighborhood)
and the first-order theory Tgeeq is associated to it. Teeq is built as a general-
ization of the objects falling in Ngeeq (function neighborhoodModel). When the
neighborhood is estimated to be an homogeneous set (function homogeneity),
cluster C' is grown with the structured objects enclosed in Ng..q whcih are not
yet assigned to any cluster. The cluster C' is then iteratively expanded by merg-
ing the R-neighborhoods of each node of C' (neighborhood expansion) when
these neighborhoods result in homogeneous sets with respect to current cluster
model To (see Algorithm [Z). T is obtained as the set of first-order theories
generalizing the neighborhoods merged in C. It is noteworthy that when a new
R-neighborhood is built to be merged in C, all the objects which are already
classified into a cluster different from C are removed from the neighborhood.
When the current cluster cannot be further expanded it is labeled with C'Label
and an unclassified seed node for a new cluster is chosen from G until all objects
are classified. CLabel is obtained by T¢ (function labelCluster) to compactly
describe C.

Algorithm 2. Expand current cluster by merging homogeneous neighborhood
function expandCluster(C, seedList,Opx, R,Tc,h — threshold) — (C,Tc);
2: while (seedList is not empty) do
seed «— seedList.first(); Nseea < neighborhood(seed,Opx ,R);
4: for each 0 € Nyeeq do
if o is assigned to a cluster different from C' then

6: Nseed - Nseed/O;
end if
8: end for

Tseea — neighborhoodModel(Ngeeq);
10:  if homogeneity (Nsced, {Tc, Tsceda})> h — threshold then
for each 0 € Ngeeq do

12: C.add(o); seedList.add(o);
end for
14: seedList.remove(seed); Tc «— Tc U Tseed;
end if

16: end while
return (C,Tc);

This is different from spatial clustering performed by GDBSCAN, although
both methods share the neighborhood-based cluster construction. Indeed, GDB-
SCAN retrieves all objects density-reachable from an arbitrary core object by
building successive neighborhoods and checks density within a neighborhood
by ignoring the cluster. This yields a density-connected set, where density is



Spatial Clustering of Structured Objects 233

efficiently estimated independently from the neighborhoods already merged in
forming the current cluster. However, this approach may lead to merge con-
nected neighborhoods sharing some objects but modeling different phenomena.
Moreover, GDBSCAN computes density within each neighborhood according to
a weighted cardinality function (e.g. aggregation of non spatial values) that as-
sumes single table data representation. CORSO overcomes these limitations by
computing density within a neighborhood in terms of degree of similarity among
all relationally structured objects falling in the neighborhood with respect to
the model of the entire cluster currently built. In particular, following the sug-
gestion given in [16], we evaluate homogeneity within a neighborhood Nseeq to
be added to the cluster C' as the average degree of matching between objects of
Nieeq and the cluster model {T¢, Tseea }- Details on cluster model determination,
neighborhood homogeneity estimation and cluster labeling are reported below.

3.1 Cluster Model Generation

Let C be the cluster currently built by merging w neighborhood sets Ny, ..., Ny,
we assume that the cluster model T¢ is a set of first-order theories {11, ..., Ty}
for the concept C where T; is a model for the neighborhood set N;. More precisely,
T; is a set of first-order clauses: T; : {cluster(X) = ¢ <« H,...,cluster(X) =
¢ < H;.}, where each H;; is a conjunctive formula describing a sub-structure
shared by one or more objects in NV; and Vo, € N;, BKUT; = 0;. Such model can
be learned by resorting to the ILP system ATRE [14] that adopts a separate-and-
conquer search strategy to learn a model of structured objects from a set of train-
ing examples and eventually counter-examples. In this context, ATRE learns a
model for each neighborhood set without considering any counter-examples. The
search of a model starts with the most general clause, that is,cluster(X) = ¢ «,
and proceeds top-down by adding selectors (literals) to the body according to
some preference criteria (e.g. number of objects covered or number of literals).

Selectors involving both numerical and categorical descriptors are handled in
the same way, that is, they have to comply with the property of linkedness and
are sorted according to preference criteria. The only difference is that selectors
involving numerical descriptors are generalized by computing the closed interval
that best covers positive examples and eventually discriminates from contour-
examples, while selectors involving categorical descriptors with same function
value are generalized by simply turning all ground arguments into corresponding
variables without changing the corresponding function value.

3.2 Neighborhood Homogeneity Estimation

The homogeneity of a neighborhood set N to be added to the cluster C is
computed as follows:

1 1 1
N, Teuw) = o5 > h(oi, Toun) = N > P > h(osTy), (1)
7 7 7
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where #N is the cardinality of the neighborhood set N and Ty is the cluster
model of C U N formed by both {T1,...,T,}, i.e., the model of C' and T 1,
i.e., the model of N built as explained above. Since T; = Hyj,..., H;; (2 > 1)
with each H;; a conjunctive formula in first-order formalism, we assume that:

h(0i, Tj) = %me(oi,Hij), (2)

where fm is a function returning the degree of matching of an object o; € N
against the conjunctive formula H;;. In this way, the definition of homogeneity of
a neighborhood set N = {01, ..., 0,} with respect to some logical theory Ty is
closely related to the problem of comparing (matching) the conjunctive formula
fi representing an object o; € M with a conjunctive formula H;; forming the
model T; in order to discover likenesses or differences [19]. This is a directional
similarity judgment involving a referent R, that is the description or prototype of
a class (cluster model) and a subject S that is the description of an instance of a
class (object to be clustered). In the classical matching paradigm, the matching of
S against R corresponds to compare them just for equality. In particular, when
both S and R are conjunctive formulas in first-order formalism, matching S
against R corresponds to check the existence of a substitution 6 for the variables
in R such that S = 0(R). This last condition is generally weakened by requiring
that S = 6(R), where = is the logical implication. However, the requirement of
equality, even in terms of logical implication, is restrictive in presence of noise or
variability of the phenomenon described by the referent of matching. This makes
necessary to rely on a flexible definition of matching that aims at comparing two
descriptions and identifying their similarities rather than equalities. The result
of such a flexible matching is a number in the interval [0, 1] that is the probability
of precisely matching S against R, provided that some change described by 6 is
possibly made in the description R.

The problem of computing flexible matching to compare structures is not
novel. Esposito et al. [4] have formalized a computation schema for flexible
matching on formulas in first-order formalism whose basic components (selec-
tors) are the relational statements, that is, f;(t1, ..., t,) = v, which are combined
by applying different operators such as conjunction (A) or disjunction (V) oper-
ator. In this work, we focus on the computation of flexible matching fm(S, R)
when both S and R are described by conjunctive formulas and fm(S, R) looks
for the substitution # returning the best matching of S against R, as:

fm(S,R) =max [T fmo(S,7:). 3)

i=1,...k

The optimal 6 that maximizes the above conditional probability is here searched
by adopting the branch and bound algorithm that expands the least cost partial
path by performing quickly on average [4]. According to this formulation, fmg

! The conjunctive formula f; is here intended as the description of 0; € N saturated
according to the BK.
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denotes the flexible matching with the tie of the substitution fixed by # computed
on each single selector r; = f,, (ty,, ..., tr,) = v, of the referent R where f,, is
a function descriptor with either numerical (e.g. area or distance) or categorical
(e.g. intersect) range. In the former case the function value v,, is an interval
value (v,, = [a,b]), while in the latter case v,, is a subset of values (v,, =
{v1,...,vp}) from the range of f,,. This faces with a referent R that is obtained
by generalizing a neighborhood of objects in O. Conversely for the subject S,
that is, the description of a single object o € O, the function value w;, assigned
to each selector s; = fsj (tsyye-oyts,) = ws; is an exactly known single value from
the range of f,,. In this context, the flexible matching fmg(S,r;) evaluates the
degree of similarity fm(s;,6(r;)) between 0(r;) and the corresponding selector
s; in the subject S such that both r; and s; have the same function descriptor
fr = fs and for each pair of terms (t,,,ts,), 0(t-,) = ts,. More precisely,

fm(sj, 0(ri)) = fm(U}Sj S Upy) = HelaX P(equal(wsj JU))- (4)

The probability of the event equal(ws;,v) is then defined as the probability that
an observed ws, is a distortion of v, that is:

Plequal(w,,,v)) = P(3(X,v) > 8(w,,,v)) (5)

where X is a random variable assuming value in the domain D represent-
ing the range of f,. while delta is a distance measure. The computation of
P(equal(ws;,v)) clearly depends on the probability density function of X. For
categorical descriptors, that is, D is a discrete set with cardinality #D, it has
be proved [4] that:

1if Ws; =V
P(equal(w,v)) = {#D — 1/#D otherwise (©)

when X is assumed to have a uniform probability distribution on D and é(x,y) =
0 if z = y, 1 otherwise. Although similar results have been reported for both lin-
ear non numerical and tree-structured domains, no result appears for numerical
domains. Therefore, we have extended definitions reported in [4] to make flexible
matching able to deal with numerical descriptors and we have proved that:

1 ifa<e<b
1-2(a—¢)/(f—a) fc<aNn2a—c<p
fm(c,[a,b]) =X (c—a)/(6 — ) ifc<an2a—c>p (7

B-0)/(B—a) ife>bA2—c<
1-2(c—=b)/(f—a) fc>bA2b—c>a

by assuming that X has uniform distribution on D and §(z,y) = | —y|. A proof
of formula [T is reported in the Appendix [A] of this paper.

3.3 Cluster Labeling

A cluster C' can be naturally labeled with T that is the set of first-order clauses
obtained from the generalization of neighborhoods merged in C'. Each first-order
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clause is in the form C' < s1,...,s,, where C represents the cluster label and
each s; denotes a selector in the form f;(t;,,...,t;,) = v;. In this formaliza-
tion, two selectors s1 : fi(ti,,...,t1,) = v1 and s3 : fa(te,,...,t2,) = vo

are comparable according to some substitution # when they involve the same
descriptor (fi = f2 = f) and each pair of terms (t1,,t2,) is unifiable ac-
cording to 0, i.e., t1,0 = 3,0 = t; (Vi = 1...1). In this case, the selector
s f(t1,...,t1) = {v1} U{va2} is intended as a generalization for both s; and
so. In particular, the selectors s; and ss are equal when they are compara-
ble and v; = ws = v such that the generalization of s; and so is built as
s f(t1,...,t;)) = v. Similarly, the selector s1 (s2) is contained in the selector
s2 (s1) when they are comparable and v; C ve (v C vyp), while the general-
ization s is f(t1,...,t;) = va (f(t1,...,t;)) = v1). Note that equality of selec-
tors implies containment, but not vice-versa. Similarly, the first-order clauses
H :C « s1,,...,51,, and Hy : C « sg,,...,52, are comparable according to
some substitution # when each pair of selectors (s1,, s2,) is comparable accord-
ing to 6. Hence, H; is equal (contained) to Hy when s;, is equal (contained)
to sg, for each i = 1,...,n. In both these cases (equality and containment con-
dition), the pair of first-order clauses Hi, Ho can be replaced without lost of
information with the first-order clause H that is the generalization of Hy, Ho
built by substituting each pair of comparable selectors (s1,, s2,) € (H1, H2) with
the generalization obtained as stated above. This suggests the idea of merging
a pair of comparable first-order clauses Hy, Hs in a single clause H by preserv-
ing the equivalence of coverage, that is: (i) for each structured object o with
Hy,Hy, BK = o then H, BK | o0 and vice-versa, (ii) for each structured object
o with Hy, Hy, BK [~ o then H,BK £~ o and vice-versa, where BK is a set
of first-order clauses. The equivalence of coverage between {H;, Ho} and H is
obviously guaranteed when H; is either equal or contained in Hy or vice-versa,
but this equivalence cannot be guaranteed when H; and H, are comparable
first-order clauses but neither equality condition nor containment condition are
satisfied.

Example 1: Let us consider the pair of comparable first-order clauses:

Hi : cluster(Xy) = ¢ < distance(X1, X2) = [5..10], type(X2) = street

Hj : cluster(X1) = ¢ < distance(X1, X2) = [3..7), type(X2) = river
where neither Hj is equal to Hy nor Hq(Hs) is contained in Hy(H;). The first-
order clause obtained by generalizing pairs of comparable selectors in both H;
and Hs, is H : cluster(Xy) = ¢ <« distance(X1,X2) = [3..10], type(Xa) =
{street,river}, where H |= o with o : distance(X1, X5) = 3Atype(Xs) = street,
but neither H; = 0 nor Hy = o.
The requirement of equality between H; and Hs can be relaxed while preserving
equivalence of coverage with respect to the generalization H. Indeed, when

Hy:C—s1(0)=v1,...86() = Uk, ..o, 8n(2) = vp

Hy:C—s1(0) =v1,...86(0) = Wiy o, Sn(2) = vp
are comparable first-order clauses differing only in the function value of a single
selector (i.e. si), the first-order clause:
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H:C«—s1()=wv1,...86() ={vp} U{w},...,s.(0) = v,
continues to preserve the equivalence of coverage with {H, Ha}.

Example 2: Let us consider the pair of comparable first-order clauses:
Hy : cluster(X;) = ¢ «— distance(X1, X2) = [3..7], type(X2) = street,
length(X2) = [3, 5]
Hj : cluster(Xy) = ¢ « distance(X1, X2) = [3..7], type(X2) = street,
length(Xs2) = [7,10]
which differ only in the value of a single selector (length), the first-order clause
obtained by generalizing the pairs of comparable selectors in both H; and Hj is:

H : cluster(Xy) = ¢ « distance(X1, X2) = [3..7], type(X2) = street,

length(Xs2) = [3,5] U [7, 10]
that is equivalent in coverage to the pair {H1, Ho}.

Following this idea, it is possible to compactly describe the cluster theory
Te finally associated to a cluster C' by iteratively replacing pairs of comparable
first-order clauses Hy, Hy with the generalization H, when H results equivalent
in coverage to {Hi, Ha} (see Algorithm [BI).

Algorithm 3. Build a compact theory to describe a cluster C'

function clusterLabel(T¢) — T¢:;
T, — @
merge — false;
while T¢ is not empty do
H is a first-order clause in T¢;
Te =Tc/H;
for each H' € Tc do
if H and H' are generalizable without lost of information then
H = generalize(H,H'); Tc = Tc/H'; merge = true;
end if
end for
T, =T, U H;
end while

=
By o®

if merge is true then
T¢ «—clusterLabel(T¢);

end if

return T,;

—_ ==

Example 3: Let us consider T that is the set of first-order clauses including:
Hy : cluster(X;) = ¢ «— distance(X1, X2) = [5..10], color(X3) = red
Hj : cluster(Xy) = ¢ « distance(X1, X2) = [5..6], color(X3) = blue
Hs : cluster(X;) = ¢ < distance(X1, X2) = [5..10], color(X3) = blue
Hy : cluster(Xy) = ¢ < distance(X1, X2) = [6..10], area(X2)in[30..40]

Tc can be transformed in the set of first-order clauses:
Hj : cluster(X;) = ¢ «— distance(X1, X2) = [5..10], color(X3) = {red, blue}
H) : cluster(Xy) = ¢ < distance(X1, X2) = [6..10], area(X2)in[30..40]
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where Hj results by firstly merging H; and Hs, which are comparable and differ
only in the function value of a selector (color(Xs) = red vs color(Xs) = blue),
and obtaining His : cluster(Xy) = ¢ « distance(X1, X2) = [5..10], color(X3) =
{red,blue} and then merging Hy3 and Hs since Hy is contained in His.

4 The Application: Two Case Studies

In this section, we describe the application of CORSO to two distinct real-world
problems, namely topographic map interpretation and geo-referenced census
data analysis. In the former problem, a topographic map is treated as a grid
of square cells of same size, according to a hybrid tessellation-topological model
such that adjacency among cells allows map-reading from a cell to one of its
neighbors in the map. For each cell, geographical data is represented as hu-
mans perceive it in reality, that is, geometric (or physical) representation and
thematic (or logical) representation. Geometric representation describes the ge-
ographical objects by means of the most appropriate physical entity (point, line
or region), while thematic representation expresses the semantics of geographical
objects (e.g., hydrography, vegetation, transportation network and so on), inde-
pendently of their physical representation. Spatial clustering aims at identifying
a mosaic of nearly homogeneous clusters (areas) including adjacent cells in the
map such that geographical data inside each cluster properly models the spatial
continuity of some morphological environment within the cluster region, while
separate clusters model spatial variation over the entire space. In the second
problem, the goal is to perform a joint analysis of both socio-economic factors
represented in census data and geographical factors represented in topographic
maps to support a good public policy. In this case, spatial objects are territorial
units for which census data are collected as well as entities of geographical layers
such as urban and wood areas. Spatial partitioning of CORSO is compared with
the first-order clustering performed with logical decision trees [I], which are able
to manage relational structure of spatial objects but ignore relations imposed
with discrete spatial structure. The empirical comparison with GDBSCAN was
not possible since the system is not publicly available. However, CORSO clearly
improves GDBSAN clustering that is not able to manage complex structure of
spatial data. In both applications, running time of CORSO refers to execution
performed on a 2 Ghz IBM notebook with 256 Mb of RAM.

4.1 Topographic Map Interpretation

In this study we discuss two real-world applications of spatial clustering to char-
acterize spatial continuity of some morphological elements over the topographic
map of the Apulia region in Italy. The territory considered in this application
covers 45 km? from the zone of Canosa in Apulia. The examined area is seg-
mented into square areal units of 1 Km? each. Thus, the problem of recognizing
spatial continuity of some morphological elements in the map is reformulated
as the problem of grouping adjacent cells resulting in a morphologically homo-
geneous area, that is, a problem of clustering spatial objects according to the
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contain(c, 2) = true, ...,

contain(f, f70) = true,

type of(c) =cell, ...,

type_of(f4) = vegetation,...,
subtype_of(f2) = grapewine,...,
subtype of(f7) = cart_track road,...,
part_of(f4, x4),

part_of(f7, x5), part_of(f7_x6),...,
extension(x7) = 111.018,...,
extension(x33) = 1104.74,
line_to_line(x7, x68) = almost_parallel, ...,
point_to_region(x4, x21) = inside,
point_to_region(x4, x18) = outside,...,
line_to_region(x8, x27) = adjacent, ...

Fig. 1. First-order description of a cell extracted from topographic chart of Apulia

discrete spatial structure imposed by the relation of “adjacency” among cells.
Since several geographical objects, eventually belonging to different layers (e.g.,
almond tree, olive tree, font, street, etc) are collected within each cell, we ap-
ply algorithms derived from geometrical and topological reasoning [15] to obtain
cell descriptions in first-order formalism (see Figure [I]). For this task, we con-
sider descriptions including spatial descriptors encompassing geometrical proper-
ties (area, extension) and topological relations (regionToRegion, lineToLine,
pointToRegion) as well as non spatial descriptors (typeOf, subtypeOf). The
descriptor partO f is used to define the physical structure of a logical object. An
example is: typeO f(f1) = font ApartOf(f1,21) = true, where f; denotes a font
which is physically represented by a point referred with the constant x;. Each
cell is here described by a conjunction of 946,866 ground selectors in average.
To support some qualitative reasoning, a spatial background knowledge (BK) is
expressed in form of clauses. An example of BK we use in this task is:
fontToParcel(Font, Culture) = Relation — typeO f(Font) = font,

partO f(Font, Point) = true, typeO f (Parcel) = parcel,

partO f(Parcel, Region) = true, pointToRegion(Point, Region) = Relation
that allows to move from a physical to a logical level in describing the topological
relation between the point that physically represents the font and the region that
physically represents the culture and that are, respectively, referred to as the
variables Font and Culture. The specific goal of this study is to model the spatial
continuity of some morphological environment (e.g. cultivation setting) within
adjacent cells over the map. This means that each cluster covers a contiguous
area over the map where it is possible to observe some specific environment that
does not occur in adjacent cells not yet assigned to any cluster. It is noteworthy
that granularity of partitioning changes by varying homogeneity threshold (see
Figure 2)). In particular, when h — threshold = 0.95, CORSO clusters adjacent
cells in five regions in 1821 secs. Each cluster is compactly labeled as follows:
Cy : cluster(X;) = ¢1 < containAlmondTree(Xy, Xs) = {true},

cultivationToCulture(Xa, X3) = {outside},
areaCulture(Xs) = [328..420112], fontToCulture(Xy4, X3) = {outside}.
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Fig. 2. Spatial clusters detected on map data from the zone of Canosa by varying
h — threshold value in {0.8,0.85,0.9,0.95}

Cy : cluster(X1) = cg «— containAlmondTree(Xy, X2) = {true},
cultivationToCulture(Xq, X3) = {inside}, areaCulture(Xs) = [13550..
187525], areaCulture(Xs) = [13550..187525],
cultivationToCulture(Xa, X4) € {outside}.

Cs : cluster(X;) = c3 — containGrapevine(X1, Xo) = {true},
cultivationToCulture(Xa, X3) = {inside}, areaCulture(Xs) = [13550..
212675], cultivationT oCulture(Xq, X4) = {outside}.

cluster(Xy) = c3 < containGrapevine(X1, X2) = {true},
cultivationToCulture(Xa, X3) = {outside}, areaCulture(Xs) = [150..
212675], cultivationT oCulture(Xo, X4) = {outside, inside}.

Cy : cluster(Xy) = ¢y «— containStreet(X1, Xa) = {true}
streetToCulture(Xq, X3) = {adjacent}, areaCulture(Xs) = [620..
230326], cultureT oCulture(Xs, X4) = {outside, inside}.

Cs : cluster(X;) = ¢5 «— containOliveTree(X1, X2) = true,
cultivationToCulture(Xa, X3) € {outside}, areaCulture(Xs) € [620..
144787], oliviT oParcel(Xa, X4) = {outside}.

Notice that each detected cluster effectively includes adjacent cells sharing a

similar morphological environment, while separate clusters describe quite differ-

ent environments. Conversely, the logical decision tree mined on the same data
divides the territory under analysis in twenty different partitions where it is
difficult to recognize the continuity of any morphology phenomenon.

4.2 Geo-referenced Census Data Analysis

In this application, we consider both census and digital map data concerning
North West England (NWE) area that is decomposed into censual sections or
wards for a total of 1011 wards. Census data is available at ward level and pro-
vides some measures of deprivation level in the ward according to index scores
that combine information provided by 1998 Census. We consider Jarman Un-
derprivileged Area Score that is designed to measure the need for primary care,
the indices developed by Townsend and Carstairs that is used in health-related
analysis, and the Department of the Environment’s Index (DoE) that is used
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in targeting urban regeneration funds. The higher the index value the more
deprived a ward is. Spatial analysis of deprivation distribution is enabled by
the availability of vectorized boundaries of the 1010 census wards as well as
by other Ordnance Survey digital maps of NWE, where several interesting lay-
ers are found, namely urban zones (including 384 large urban areas and 2232
small urban areas) and wood zones (including 859 woods). In particular, we fo-
cus attention on investigating continuity of socio-economic deprivation joined to
geographical factors represented in linked topographic maps.

Both ward-referenced census data and map data are stored in an Object-
Relational spatial database, i.e., Oracle Spatial 91 database, as a set of spatial
tables, one for each layer. Each spatial table includes a geometry attribute that
allows storing the geometrical representation (i.e. urban and wood zones are de-
scribed by lines while wards are described by polygons) and the positioning of
a spatial object with respect to some reference system. We adopt a topological
algorithm based on the 9-intersection model [3] to detect both adjacency relation
between NWE wards (i.e. wards which share some boundary) and overlapping
relation between wards and urban areas (or woods). The former imposes a dis-
crete spatial structure over NWE wards such that only adjacent wards may be
grouped in the same cluster while the latter contributes to define the spatial
structure embedded in each ward not only in terms of observed values of depri-
vation scores but also extension of urban areas and/or woods overlapping each
ward. No BK is defined for this problem.

Granularity of partitioning changes when varying the value of h — threshold,
that is, CORSO detects 79 clusters with h — threshold = 0.80, 89 clusters with
h — threshold = 0.85, 122 clusters with h — threshold = 0.90 and 163 clusters
with h — threshold = 0.95. In particular, when h — threshold = 0.95, CORSO
clusters NWE area in 2160 secs and identifies adjacent regions modeling dif-
ferently relational patterns involving deprivation and geographical environment.
For instance, by analyzing these spatial clusters, we discover three adjacent ar-
eas, namely C7, Cy and C5 compactly labeled as follows:

Cy : cluster(X1) = ¢ < townsend(X;) = [-4.7.. — 0.6],
doe(X1) = [—12.4..2.7], carstairs(X;) = [-4.5.. — 0.9],
jarman(Xy) = [—32.7..7.5], overlapped_by_wood(X 1, X2) = true.
cluster(Xy) = ¢1 « townsend(X1) = [-5.4.. — 2.3],
doe(X1) = [—10.9.. — 0.5], carstairs(Xy) = [-4.2.. — 1.6],
jarman(Xy) = [—22.8..0.6], overlapped_by_wood(X 1, X2) = true.
cluster(Xi) = ¢1 « townsend(X1) = [-5.4.. — 3.2],
doe(X1) = [—8.8.. — 2.1], carstairs(X;) = [—4.4.. — 2.5],
jarman(Xy) = [—22.8.. — 2.4], overlapped_by wood(X1, X2) = true.
Cy : cluster(X;) = ¢; < townsend(X;) = [—2.0..0.6],
doe(X1) = [—4.2..1.6], carstairs(Xy) = [-2.6..2.1],
jarman(X,)=[—9.7..8.8], overlapped by largeUrbArea(X 1, X 2) =true.
cluster(Xy) = ¢1 < townsend(Xy) = [—2.7..2.8],
doe(X1) = [—4.2..4.0], carstairs(Xy) = [-2.2..2.7],
jarman(Xy)=[—8.8..21.3], overlapped by largeUrbArea(X1, X2) =true
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Fig. 3. Spatial clusters detected on NWE with h — threshold = 0.95

Cs : cluster(X;) = ¢; < townsend(X;) = [-3.4..0.4],

doe(X1) = [—8.2.. — 0.2], carstairs(X;) = [-3.7..0.6],

jarman(Xy) = [-27.7.. — 1.5],

overlapped_by_smallUrbArea(X 1, X2) = true.
C1, Cs and Cj5 cover adjacent areas with quite similar range value for deprivation
indexes but C; models the presence of woods while Cs and C5 model the pres-
ence of small urban areas and large urban areas, respectively. Discontinuity of
geographical environments modeled by these clusters is confirmed by visualizing
map data about the area (see Figure B)).

The logical decision tree mined on the same data discovers 58 different clus-
ters. Clusters are built by minimizing the distance among relational descriptions
of wards. However, the discrete structure imposed by the adjacency relation is
ignored. Hence, wards which are not connected in the graph imposed by the
adjacency relation are clustered together.

5 Conclusions

This paper presents a novel approach to discover clusters from structured spatial
data taking into account relational constraints (e.g. spatial correlation) forming
the discrete spatial structure. We represent this discrete spatial structure as
a graph such that the concept of graph neighborhood is exploited to capture
relational constraints embedded in the graph edges. Moreover, we resort to a
relational approach to mine data scattered in multiple relations describing the
structure that is naturally embedded in spatial data. As a consequence, only spa-
tial units associated with (transitively) graph connected nodes can be clustered
together according to judgment of similarity on relational descriptions repre-
senting their internal (spatial) structure. As future work, we intend to integrate
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CORSO in a spatial data mining system that is able to extract both the spatial
structure and the structure of spatial objects from a spatial database, cluster
these spatial objects coherently with the extracted spatial structure and visualize
discovered clusters. We also plan to employ CORSO for air pollution analysis.
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A Appendix

Let us recall definitions (@) and (@) and apply them to numerical case. We have:

fmie,la,b]) = max. Plequal(c,v)) = max P(3(X,v) > d(c,v)
veE|a, ve|a,

By assuming that X has a uniform distribution on domain D = [a, 8] with
density function fp(x) = 1/(8 — «),Vz € D and fixing §(z,y) = |z — yl,
P(§(X,v) > é(c,v)) can be rewritten as P(|X —v| > |¢ — v]) that is maximized
when minimizing |c — v|.

If a <¢<bthen max P(|X —v| > |c—v|])=P(|X —v|>|c—¢|]) =1.

v€(a,b]
If ¢ < a then max P(|X —v| > |c—v|) is written as max P(|X —v| > v —¢).
€la,b] v€(a,b]

Since the maximum of P(|X — v| > v — ¢) is obtained for v = a, we have that

m[a%]P(|Xf’u| >v—c¢)=P(X—-a|>a-c)=PX-a>a—c)+P(X —a <
v€Ela,

c¢c—a)=P(X >2a—c)+ P(X < c¢) where:

1. P(X >2a—c¢) = f;a_cl/(ﬁ—a)dx =B —-2a+c)/(f-a)if2a—c<(,0
otherwise;
2. PX<eo)=(c—a)/(B—a).
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Hence, we obtain that:

max P(|X—u|Zv_c):{l_Q(a_C)/(ﬁ—Q) ife<an2a—c<p

vela,b] (c—a)/(B—a) ifc<an2a—c>p
If ¢ > b then max_ P(|X —wv| > |c—v]|) can be equivalently written as max P(|X
vE(a,b] vE[a,b]
—v| > ¢ — v) that is obtained for v = b. Therefore, m[a>2] P(|X —v|>c—v) =
ve|a,

P(UX-b>c—b)=P(X-b>c—b)+P(X-b<b—c)=P(X >c)+P(X <
2b — ¢). We have that:

_ N _J(B=9/(B-a) ife>bAN20—c< a
Jnax P(X —v[ 2 e U)_{12(cb)/(ﬁa) ife>bA2b—c>a
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