
Distance Based Generalisation

V. Estruch C. Ferri J. Hernández-Orallo M.J. Ramı́rez-Quintana

DSIC, Univ. Politècnica de València , Camı́ de Vera s/n, 46020 València, Spain.
{vestruch,cferri,jorallo,mramirez}@dsic.upv.es

Abstract. Many distance-based methods in machine learning are able
to identify similar cases or prototypes from which decisions can be made.
The explanation given is usually based on expressions such as ”because
case a is similar to case b”. However, a more general or meaningful pat-
tern, such as ”because case a has properties x and y (as b has)” is usually
more difficult to find. Even in this case, the connection of this pattern
with the original distance-based method is generally unclear, or even in-
consistent. In this paper, we study the connection between the concept of
distance (or similarity) and the concept of generalisation. More precisely,
we define several conditions a sensible distance-based generalisation must
have. From here, we are able to tell whether a generalisation operator
for a pattern representation language is consistent with the metric space
defined by the underlying distance. We show sensible pattern languages
and generalisation operators for typical data types: nominal, numerical,
sets and lists. We also explore a possible relationship between the well-
known concepts of lgg and distances between terms, and the definition
of generalisation presented in this paper.

keywords: distance-based methods, generalisation operators, lgg, metric space.

1 Introduction

The concept of distance is key in many areas such as case-based reasoning [1],
machine learning [6], diagnosis, information retrieval [2], etc. Distance, as the
mathematical concept of dissimilarity, allows many learning techniques to be
applied to quite different kinds of data and situations, provided we are able to
define a distance for the instances or cases at hand. Distance-based methods,
then, are easily adaptable to any kind of applications. However, the problem of
converting the similarity traits into a numerical value (the distance) is that the
information on the matches or coincidences is lost. Consequently, many distance-
based methods cannot give an explanation of their answers. For instance, a
distance-based method [5] such as k-nearest neighbours can output that the film
X is likely to be appropriate for a customer because the k-nearest neighbours of
X were appropriate for the customer, but are not able to give a general pattern of
why it is the case, such as the film X is likely to be appropriate for the customer
because X is an action movie where the good guys win, and the customer liked
all the films with these traits s/he hired before.

The connection of distance and pattern, or more precisely, the connection of
distance and generalisation is not new. Many learning techniques (e.g. clustering
or classification) generate a prototype (or centroid) and the generalisation area
is based on a certain distance ball from the prototype. However, a good distance-
based generalisation can have no meaningful pattern which is able to express the
generalisation or, in other words, a generalisation can have no good representa-
tion. For instance, the generalisation “all the films with more than 4 traits in
common with film X” is a well-defined general region according to a distance
based on the number of common traits, but it lacks a meaningful pattern. Vice
versa, a meaningful pattern can lead to very bad or unintuitive generalisations.
For instance, the pattern “all the documents that contain the string declarative
programming” is a meaningful pattern but is not a good generalisation if edit
distances are taken into account, since two very similar documents can just differ
on this string or two very different documents can just match on this sequence.

Consequently, if we are using a distance-based method to determine similar
objects or to establish centroids or prototypes, we need a representation pattern
that is consistent with the metric space defined by the underlying distance.
In order to do this, we have to identify a series of conditions that a pattern
representation language and a generalisation operator must fulfil.

Let us illustrate this idea with a more detailed example. Consider an intruder-
detection problem where we want to detect whether a user might be an intruder.
For each user, we record the machines (1, 2, 3) where they have made a ‘ping’
(p), have connected (c) or have failed to connect (f). For each user we record
a ‘sequence’ of actions. For instance, “p1f2c2” means a user that first pinged to
machine 1, then failed to connect to machine 2 and finally connected to machine
2. With this data we apply case-based reasoning to determine for a new user
whether s/he is an intruder or not. More specifically, we compute edit distances
between the sequences of actions and then use a k-nearest neighbour (k-nn) to
determine the class of each new case. The following picture shows the case of
determining whether “p1f1f2f3” is an intruder when we use 7-nn and the seven
nearest examples (with distances 2, 4, 4, 3, 3 for the positives and 3, 5 for the
negatives), as shown in Figure 1. Since among the 7-nearest neighbours there are
five positive cases and two negative cases, the sequence “p1f1f2f3” is labelled as
a possible ‘intruder’.

A different thing is when we want to extract a pattern to explain the 7-nn
classification. The pattern can be determined taking into account the five positive
examples and trying to ascertain what they have in common. A possible pattern
for the 5 positive cases could be {∗f1f1∗, ∗f3f3∗}, meaning that any instance
containing two consecutive f1 or two consecutive f3 is an intruder. Apparently,
this is a good pattern, since it covers all the five positive examples, and none of
the two negative examples. Additionally, it is not too specific and it is not too
general, and it is meaningful. Despite this idealistic picture, the pattern conceals
a surprise: it does not cover the centre point “p1f1f2f3”! Even worse, the point
“p1f1f2f3” has a distance 2 to “p1f1f1f3” and has distance 3 to “p3f1f2f3f3”,
where these two latter examples have distance 5. That is, two examples are

Fig. 1. 7-nn with 5 positive (solid line) and 2 negative (dotted line) cases for classifying
the case “p1f1f2f3”.

in the pattern, but a middle point is not in it. These two observations show
that any meaningful pattern in a general situation may be inconsistent w.r.t.
the underlying distance. The pattern is then useless to explain or represent the
behaviour of the distance-based technique.

Consequently, if we use a pattern representation language for explaining some
distance-based generalisation we have to check first whether the language and
the generalisation operator meet some properties.

In this paper, we study the connection between the concept of distance (or
similarity) and the concept of generalisation, and the pattern representation
languages that are able to express sensible generalisations. This is the first step
in order to make the idea of obtaining meaningful explanations of the answers
given by a distance-based learning method applicable to the broadest kind of
distance-based techniques as possible. In the following section, we analyse which
generalisations are considered unintuitive in a metric space, and we define two
properties a generalisation operator must satisfy. In Section 3 we show sensible
pattern languages and binary generalisation operators for the typical data types:
nominal, numerical, sets and lists. Next, we analyse the relationship between our
generalisation concept and the lgg operator defined by Plotkin. We show that,
using the metric defined in [9] which is based on the lgg concept, this operator
satisfies the conditions to use it as a pattern constructor for the first-order logic
language.

Finally, in the conclusions, we discuss on the application of this integrated
view to distance-based methods such as k-nearest neighbours, clustering, distance-
based decision trees and other case-based reasoning techniques. We also propose
some ideas for the future work.

2 Generalisation in Metric Spaces

In this section, we propose a sensible notion of generalisation for metric spaces.
From now, we will work with metric spaces1.

Definition 1. Given ∆ : X × X → 2X , ∆ is a k-generalisation (k ≥ 1) if
∀a, b ∈ X these two conditions hold:

1 (No Isolation)

∀x ∈ ∆(a, b) and ∀ǫ > 0, if {x} (B(x, ǫ) then B(x, ǫ) ∩∆(a, b) 6= {x}

where B(x, ǫ) = {x′ ∈ X : d(x, x′) < ǫ}.
2 (Scope)

∀x ∈ X, if d(a, x) + d(x, b) ≤ k · d(a, b) then x ∈ ∆(a, b)

Note that Condition 2 implies that a, b ∈ ∆(a, b). We employ the term k-
generalisation instead of generalisation, because in this way we have a more
flexible definition. The value of k establishes the level of generality, i.e. for greater
values of k more instances are allowed inside the generalisation.

Both conditions are important when considering generalisations. The first one
(No isolation) restricts the definition in the following way; if there is an example
that belongs to the generalisation, for any ball centered in this example if there
are other examples in this ball, at least one must belong to the generalisation.
This condition rejects the generalisations that have isolated points. The following
example shows how this condition is useful to reject unintuitive generalisations.

Example 1. Let us consider a metric space formed by three elements a, b and c
where d(a, b) = 1, d(b, c) = 2, d(a, c) = 2. If we define a generalisation ∆(a, c) =
{a, c}, we can see that it trivially verifies Condition 2 (d(a, b)+d(b, c) > d(a, c)).
However this generalisation does not satisfy condition 1 (consider a ball of radius
2 centered in a, then B(a, 2) = {a, b} but b 6∈ ∆(a, c)).

The second condition (Scope) rejects the generalisations that are much too spe-
cific in the sense that do not consider all the points between two generalised
points. The following example illustrates this:

Example 2. Let us consider the metric space ℜ where the metric is defined as
the absolute difference. If we define ∆(4, 5) formed by [3.8, 4.2]∪ [4.8, 5.2] we can
see that this is not a valid generalisation since it is much too restricted. ∆(4, 5)
satisfies Condition 1, but not Condition 2 because d(4.5, 5) + d(4.5, 4) = d(4, 5),
and 4.5 is not inside the generalisation.

1 A metric space (X, d) is a set of points with an associated distance function (also
called a metric) d : X × X → ℜ which satisfies the following conditions: ∀x, y ∈
ℜ, d(x, y) ≥ 0, d(x, y) = 0 if and only if x = y (identity of indiscernibles), d(x, y) =
d(y, x) (symmetry), d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality).

3 Suitable Generalisation for Several Data Types

In this section we study some generalisation operators for several well-known
data types: nominal, numerical, sets and lists. First, we define a distance function
d over each data type T such that the pair (T, d) is a metric space. Then, we
define a binary operator which generalises a pair of elements of T and we show
that this function verifies the conditions defined in Section 2. Obviously, the
scope condition establishes the dependency between a generalisation and the
underlying distance function. In fact, in some cases, it is possible to define a
function over a data type which is a generalisation operator if we use a certain
metric, but it does not verify the definition using a different metric. We illustrate
this point by means of an example over lists.

3.1 Nominal Data Types

A nominal or discrete data type T is a finite collection of values {a1, . . . , an}
such that ai 6= aj for all i 6= j. For instance, {red, yellow, blue} is a nominal data
type. Let d be the discrete metric defined as d(a, b) = 0 if a = b and d(a, b) = 1
if a 6= b, where a, b ∈ T . Then, (T, d) is a metric space. The next proposition
shows that the set of two discrete values is an admissible generalisation for this
data type.

Proposition 1. Given T = {a1, . . . , an} a discrete data type and d the dis-
crete distance, then the operator ∆ defined as ∆(ai, aj) = {ai, aj} is a 1-
generalisation.

Proof. We first prove the no isolation condition. Any ball centered in ai (equiv-
alently in aj) which verifies the premise of this condition contains, at least, aj
(equivalently ai), by the definition of d. But aj (equivalently ai) also belongs to
∆(ai, aj) (by definition of ∆(ai, aj)). Therefore, aj ∈ B(ai, ǫ) ∩∆(ai, aj), which
verifies condition 1.

Also, ∆(ai, aj) trivially satisfies condition 2 since there does not exist any
x ∈ T (different from ai and aj) which verifies d(ai, x) + d(x, aj) = d(ai, aj)
because the definition of the distance.

The generalisation derived from this operator resembles the “explanation” com-
puted by decision tree learning algorithms such as ID3 or C4.5 [8] for nominal
splits.

3.2 Numerical Data Types

The next data type we consider is the real number set ℜ. The usual distance
function over ℜ is defined as d(a, b) =| a− b |. In this case, the pair (ℜ, d) is also
a metric space.

There are many ways of generalising a pair of real numbers, but not all
of them are sensible generalisations in the sense of Definition 1. The following
proposition shows that given a pair of real numbers a and b, a ≤ b, the interval
[a, b] is a good generalisation.

Proposition 2. Let ℜ be the real number set with the usual metric and let
a, b ∈ ℜ such that a ≤ b. Then ∆(a, b) = [a, b] is a 1-generalisation.

Proof. Any ball centered in any of the interval limits contains real numbers
which belong to the interval. Hence, ∆(a, b) verifies condition 1. On the other
hand, any x ∈ ℜ that verifies d(a, x) + d(x, b) = d(a, b) (premise of condition 2)
also belongs to the interval [a, b], which proves that condition 2 is satisfied.

Other possible generalisations also based on the interval concept are, for
instance, ∆′(a, b) = [a− | a − b |, b] or ∆′′(a, b) = [a − δ, b + δ], δ ≥ 0 . In this
last case, if δ = (k− 1) | a− b | /2, then it is a k-generalisation. Note that if c is
the upper bound of this interval, then d(a, c) + d(c, b) ≤ k · d(a, b).

3.3 The Set Data Type

Let Σ = {a1, a2, . . .} be a set of items (not necessarily finite). Let us consider the
set of all finite sets over Σ, denoted by SΣ , and define the function d : SΣ×SΣ →
ℜ as the cardinality of the symmetric set difference between two sets belonging
to SΣ . Then, the pair (SΣ , d) is a metric space. Now, given A,B ∈ SΣ we define
∆(A,B) as,

∆(A,B) = {C ∈ SΣ : A ∩B ⊆ C}

Note that, as follows from the definition of ∆(A,B), if A and B are two disjoint
sets, then ∆(A,B) = SΣ .

Proposition 3. The above operator ∆ defined over sets is a 1-generalisation.

Proof. According to the introduced metric, the minimum permitted distance
between two different sets is equal to 1. Hence, it is sufficient to prove that
condition 1 holds for balls that contain sets which are at the minimum distance.
In this case, for any V in ∆(A,B), it is possible to build a set W which keeps at
distance 1 and belongs to ∆(A,B), by only inserting a new item into V . Then,
the first condition of the generalisation definition holds.

Let us glance at the second one. We prove it by contradiction. Suppose that
there exists a set C which verifies d(A,C)+d(C,B) = d(A,B), but C 6⊆ ∆(A,B).
Then, the following relations hold:

d(A,C) + d(C,B) = d(A,B)
⇓ (by the definition of d)

(| A | + | C | −2 | A ∩ C |) + (| B | + | C | −2 | B ∩ C |) =
| A | + | B | −2 | A ∩B |
m (by simplification)

| C |=| A ∩ C | + | B ∩ C | − | A ∩B | (1)

On the other hand, if C verifies d(A,C) + d(C,B) = d(A,B) it is possible to
transform A into B going through C. Then, C contains at least some elements
that also belong to A and some elements that also belong to B. Hence,

| C |≥| A ∩ C | + | B ∩ C | − | A ∩B ∩ C |

where | A∩B ∩C | is the number of elements in C belonging to both A and B.
By replacing this expression in (1), we obtain

| A ∩ C | + | B ∩ C | − | A ∩B |≥| A ∩ C | + | B ∩ C | − | A ∩B ∩ C |
m (by simplification)

| A ∩B |≤| A ∩B ∩ C | (2)

By hypothesis, C 6⊆ ∆(A,B). ThenA∩B is not included in C and | A∩B∩C |= 0.
But then, | A ∩ B |= 0 by (2) which implies that ∆(A,B) = SΣ . Therefore,
C ⊆ ∆(A,B), which contradicts the hypothesis.

3.4 The List Data Type

The last data type we deal with is the list or sequence data type, i.e. words
constructed from symbols of a finite alphabet Σ = {a1, . . . , an}. Before defin-
ing a generalisation operator for this data type, we introduce some preliminar
concepts.

Definition 2. The alignment of two words s, t ∈ Σ∗ is the process of juxtaposing
them such that there exists matched symbols.

For instance, if s = abc and t = bca, there are two alignments of s and t.

(i) a b c (ii) a b c
b c a b c a

Definition 3. Given two words s and t, the edit distance d between s and t is
defined as the minimum number of deletions or insertions required to transform
s into t.

For instance, in the above example, d(s, t) = 2. The edit distance is obtained
when the number of symbols matched in an alignment is maximal. If it is the
case, we say that the alignment is maximal. Note that, in general, it is possible
to have more than one maximal alignment. For instance, if s = cbc and t = abcbd
then we have two maximal alignments giving d(s, t) = 4:

(i) c b c (ii) c b c
a b c b d a b c b d

By Ms,t we denote the number of matched symbols in the maximal alignments
of s and t.

If there is an alignment of s and t, then it is possible to find a more general
expression which includes s and t as special cases. We call this expression pattern
of s and t. More formally,

Definition 4. Given s, t ∈ Σ∗, a pattern p of s and t is an expression con-
structed from an alignment of s and t by keeping the matched symbols and re-
placing the un-matched symbols by ∗.

For instance, following with the above example, there are two patterns, ∗bc∗ and
∗cb∗.

Definition 5. A pattern p covers a word w, if w can be obtained from p by
replacing any ocurrence of ∗ by a (possibly empty) sequence of alphabet symbols.
In this case, we say that w is an instance of p.

Note that, it follows from this definition that a pattern represents the set of its
instances.

Definition 6. Given the metric space (Σ∗, d), where d is the edit distance, and
x, y ∈ Σ∗, we define the operator ∆(x, y) as the set of words covered by the
patterns obtained when the edit distance between x and y is calculated.

For instance, in our example, ∆(cbc, abcbd) = {bc, abc, cbca, . . . , cb, cba, acb, . . .}
and can be represented by the set of patterns {∗bc∗, ∗cb∗}. In order to show
that this operator is a k-generalisation, the first question to rise is whether it
is necessary that ∆(x, y) contains instances of the patterns of x and y obtained
from all maximal alignments or if it is sufficient only to consider one of them.
We clarify this point with our example (see the left hand side of Figure 2). Given
s and t, the word w = cbd verifies d(s, p) + d(p, t) = d(s, t) and, however, it is
not an instance of the pattern ∗bc∗. But ∗cb∗ is also a pattern for s and t and
w is an instance of it. Hence, we need to take the patterns obtained from all the
maximal alignments into account.

Fig. 2. (Left picture) All the maximal patterns must be considered in the generali-
sation.(Right picture) Edit distance with substitution does not work.

As we have said at the begining of this section, it is possible to define an operator
which is not a generalisation w.r.t. a distance function, but indeed verifies the
definition w.r.t. another distance metric. We show this fact with an example
using the edit distance with substitution (right hand side of Figure 2). Let w1 =
cbc and w2 = aaaab be two words. In this case, there is only one maximal
alignment giving the pattern ∗b∗, but w3 = aaa verifies d(w1, w3) + d(w3, w2) =
d(w1, w2) and, however, it is not an instance of this pattern.

Proposition 4. Let (Σ∗, d) be a metric space, and let x, y ∈ Σ∗. Then, the
operator ∆(x, y) in Definition 6 is a 1-generalisation.

Proof. The proof is quite similar to that of proposition 3. The minimum distance
between two words is 1. Then, if we extract any word, namely u, from ∆(x, y),
we can find a different expression, namely v, which is at a distance 1 from u and
belongs to ∆(x, y). For this purpose, it is enough to change one symbol from u
which does not match with the explicit symbols in v. This proves that condition
1 holds.

Now, we prove condition 2 by contradiction. Suppose that there exists a word
z such that d(x, z) + d(z, y) = d(x, y) and z 6∈ ∆(x, y). By the definition of the
edit distance, given two words s and t, d(s, t) =| s | + | t | −2 ·Ms,t, where | s |
is the length of s. Hence

d(x, z) + d(z, y) = d(x, y) ⇔

| x | + | z | −2 ·Mx,z+ | z | + | y | −2 ·Mz,y =| x | + | y | −2 ·Mx,y ⇔

| z |= Mx,z +Mz,y −Mx,y (3)

On the other hand, we know that

| z |≥ Mx,z +Mz,y −Agree<x,z>,<y,z>

where Agree<x,z>,<y,z> is the number of coincidental symbols in the alignment
of x with z, and y with z. By replacing this expression in (3), we obtain

Mx,y < Agree<x,z>,<y,z>

But if z 6∈ ∆(x, y) then Agree<x,z>,<y,z> < Mx,y which is a contradiction. Thus,
we conclude that condition 2 holds.

4 The lgg operator in metric spaces of atoms

One of the most popular generalisation operator in ILP is the least general
generalisation, lgg, introduced by Plotkin in [7]. In this section we study the
relationship between this operator and the Definition 1 in the framework of a
first-order logic language. We will show that using a metric defined over this
language and based on the lgg, the ∆ function and the lgg are connected so that
we could use the lgg as a pattern constructor over the first-order language. In
order to do this, we first establish a distance over the set of atoms and then we
provide a ∆ definition which is also based on the lgg operator.

In that follows L denotes a first order language defined over the signature
〈F , Π,X〉 where F (respectively Π) is a family indexed on N (non negative
integers) being F\ (Πn) a set of n−adic function (predicate) symbols and X is
a (infinite) denumerable set of variable symbols. In case of no ambiguity predi-
cate and function symbols will be referred as symbols, and variable symbols as
variables. Also HX and BX denote the non-ground Herbrand Universe and the
non-ground Herbrand base respectively such as is introduced in [3].

4.1 A distance based on lgg

In [9] is presented a distance between non-ground atoms such that the set of
atoms in L along with this distance is a metric space. Basically, the mentioned
distance between two atoms is expressed as a pair of integer values (F, V) re-
flecting the differences of them w.r.t. their lgg. The distance defintion is based
on an auxiliar function size(a) = (F, V) which reflects the structure of the atom
a. Roughly speaking, F is a function which counts the number of predicate and
function symbols occurring in a, and the function V returns the sum of the
squared frequency of appearance of each variable in a. More formally,

Definition 7. Given a1 and a2 two atoms, then

d(a1, a2) = [size(a1)− size(lgg(a1, a2))] + [size(a2)− size(lgg(a1, a2))]

Example 3. Consider the atoms a1 = p(a, b) and a2 = p(b, b). The distance
d(a1, a2) is calculated as follows. First, we compute the lgg of both atoms, that
is, lgg(a1, a2) = p(X, b) and then, we measure each atom structure by means of
the function size: size(a1) = size(a2) = (3, 0) and size(lgg(a1, a2)) = (2, 12).
Finally, the distance between a1 and a2 is

d(a1, a2) = [(3, 0)− (2, 1)] + [(3, 0)− (2, 1)] = (1,−1) + (1,−1) = (2,−2)

Note that with this definition of distance the proximity relation (how far two
atoms are) is not as intuitive as in a conventional metric space where its associ-
ated distance returns only a positive real number (and not a pair of values). For
this reason, the authors introduce a total order relation over the pair of values
which allows to specify a proximity notion. Given two ordered pairs A = (F1, V1)
and B = (F2, V2), A < B iff F1 < F2 or F1 = F2 and V1 < V2. Let us illustrate
how this order relation can be used to determine the proximity among atoms.

Example 4. Let a1 = p(a, b), a2 = p(a, a) and a3 = p(b, b) be three atoms. Since
d(a1, a3) = (2,−2) and d(a2, a3) = (4,−8) we can conclude according to the
order relation that a3 is closer to a1 than to a2.

4.2 Defining ∆

Now we are ready to define a generalisation ∆ over the metric space of atoms.

Definition 8. Given a1 and a2 two atoms from BX , the ∆ function is defined
as follows:

∆(a1, a2) = {a ∈ BV : a = lgg(a1, a2)σ}

where σ is a substitution and eσ denotes the instance of an expression e by σ.

Note that with this defintion lgg(a1, a2) is an atom that also belongs to∆(a1, a2).
Additionally, it is the most general atom in ∆(a1, a2). For these reasons we use
the lgg as the canonical representant of the set ∆, or in other words, lgg(a1, a2)
would be used as the pattern representing ∆(a1, a2).

Next, we will prove as this ∆ function verifies the conditions of the Definition
1.

In order to prove the Scope condition a formal problem arises. Note that this
one is formulated thinking of standard metric functions, which return a positive
real value. In principle, the concept of ball, B(x, ǫ), would not make sense in
the current metric space. But we can address this proof thanks to the following
observation. This condition restricted to discrete spaces is equivalent to say that
given any a3 belonging to ∆(a1, a2) then, at least, one of the nearest atoms to
a3 must belong to ∆(a1, a2). This alternative definition can already be managed
for the current metric space using the established order relation over the set of
pairs (F, V).

Before tackling the proof, some preliminary definitions and propositions are
introduced. We consider the usual representation of a term as a labelled tree.
Then, a position p in a term t is represented by a sequence of natural numbers.
p · q denotes the concatenation of positions p and q.

Definition 9. Let a be an atom, and let t1 and t2 be two (sub)-terms in a at
positions p = p1 · p2 · . . . · pn and q = q1 · q2 · . . . · qm, respectively. We will say
that p is deeper than q if n > m. Additionally, by saying that a (sub)-term t is
placed at p · ∗ in a, we mean that the exact position of t has the sequence p as a
prefix.

Example 5. Given the atom a = p(b, f(g(c))), the position of b in a is 1 and the
position of g(c) in a is 2 · 1. Thus, g(c) is placed at a deeper position in a than
b is. We can also say that c is placed at 2 · ∗ since its position is 2 · 1 · 1.

Definition 10. Let a be an atom, the skeleton of a (denoted by sk(a)) is just
the term obtained from a by replacing any variable by a dot.

Example 6. Given the atom a = p(a, f(X), g(h(X))) then, sk(a) = p(a, f(·), g(h(·))).

Note that the dot symbol simply informs about an unknown subterm at that po-
sition, just like an anonymous variable. Thus, the skeleton would be interpreted
as an atom with all its variables different each others.

Definition 11. Let sk1 and sk2 two skeletons, we will say that sk1 and sk2
overlap (denoted by sk1 ∩ sk2), if there exists a subset of symbols in sk1 such
that each symbol of this set occurs at same position in sk2.

Example 7. Given sk1 = p(a, ·, g(b)) and sk2 = p(·, ·, g(b)) then, sk1 and sk2
overlap.

Definition 12. Let a1 and a2 two atoms. Then, we will say that the sk(a2)
is a sub-skeleton of sk(a1) (denoted by sk(a2) ⊂ sk(a1)), if for each symbol in
sk(a2), the same symbol occurs at the same position in sk(a1).

Example 8. Given the atoms a1 = p(a, f(X), g(h(X))) and a2 = p(a,X, g(Y))
then, sk(a2) = p(a, ·, g(·)) is a sub-skeleton of sk(a1) = p(a, f(·), g(h(·))).

Definition 13. Let sk1 and sk2 be two skeletons, we will say that both ones are
equal (sk1 = sk2) if sk1 ⊂ sk2 and sk2 ⊂ sk1.

Given a1, a2 and a3 three atoms such that d(a1, a2) = d(a1, a3) + d(a3, a2),
the following proposition establishes that a3 overlaps a1 and a2 at the same
positions as a1 and a2 overlap, and a3 overlaps at the rest of positions either a1
or a2.

Proposition 5. Let a1, a2 and a3 be three atoms. If the identity d(a1, a2) =
d(a1, a3)+d(a3, a2) is verified then, the sk(lgg(a1, a2)) ⊂ sk(a3) and those (sub)-
terms in a3 which are not covered by the sk(lgg(a1, a2)) will be the same that
those (sub)-terms placed at the same position in a1 or in a2.

Proof. Let d(a1, a2) = (F1, V1), d(a2, a3) = (F2, V2) and d(a1, a3) = (F3, V3) be
the distances among a1, a2 and a3 (for convenience the function F (·) will be
applied over skeletons as well). Then, using the distance definition, F1 can be
written as F1 = F (a1)+F (a2)−2F (lgg(a1, a2)), and the same thing for the rest
of Fi values.

Now, by the well-known equality between tuples, we have that F1 = F2 +F3

and operating in both sides of the equation we obtain,

F (a3)− F (lgg(a1, a3))− F (lgg(a2, a3)) = −F (lgg(a1, a2))

Note that the atom lgg(ai, aj) contain less or equal number of symbols than ai
and aj . So, if the skeletons of lgg(a1, a3) (for simplicity, denoted by sk1,3) and
lgg(a2, a3) (denoted by sk2,3) did not have some parts in common then, the left
hand side of the identity above cannot be negative. Thus, both skeletons must
overlap. This overlapping will be expressed by sk1,3∩ sk2,3. Clearly, the symbols
in a3 belonging to sk1,3∩sk2,3 are counted twice. Note that sk1,3∩sk2,3 is equal
to sk(lgg(lgg(a1, a3), lgg(a2, a3))) and that it is a sub-skeleton of lgg(a1, a2),
then F (sk1,3 ∩ sk2,3) ≤ F (lgg(a1, a2)). Hence, we can write the equation above
as,

F (a3)− F (sk∗(a1, a3))− F (sk∗(a2, a3))− 2F (sk1,3 ∩ sk2,3) =

= −F (lgg(a1, a2))

where sk∗(a1, a3) (equivalently sk∗(a2, a3)) stands for that part of the skeleton
of lgg(a1, a3) (equivalently lgg(a2, a3)) which does not take part of sk1,3 ∩ sk2,3.
If we represent the operations F (a3)−F (sk∗(a1, a3))−F (sk∗(a2, a3)) by A then,
A is strictly positive since sk∗(a1, a3) and sk∗(a2, a3) does not overlap.

The only way of forcing A−2F (sk1,3∩sk2,3) to be negative, is that the sk(a3)
can be perfectly ensambled from the skeletons of sk∗(a1, a3), sk

∗(a2, a3) and
sk1,3∩sk2,3 (this fact implies that A = F (sk1,3∩sk2,3)) and finally, that F (sk1,3∩
sk2,3) = F (lgg(a1, a2)). Precisely, this last equality means that sk1,3 ∩ sk2,3 =
sk(lgg(a1, a2)) and that those subterms in a3 not covered by the sk(lgg(a1, a2))
coincide with those subterms placed a the same position in a1 or a2. Summing
up, a3 is built from the (sub)-terms in a1 or in a2.

Before presenting next proposition, a preliminary concept must be intro-
duced.

Definition 14. Let a1, a2 and a3 be three atoms such that d(a1, a2) = d(a1, a3)+
d(a3, a2). Then, we will say that a variable occurring in lgg(a1, a2) at position
p is reflected in lgg(a1, a3) or in lgg(a2, a3), if there exists a variable (modulo
renaming) at position p · ∗ in lgg(a1, a3) or in lgg(a2, a3).

Example 9. In Figure 3, the variable X in lgg(a1, a2) is reflected in lgg(a2, a3),
whereas the variable Y in lgg(a1, a2) is reflected in lgg(a1, a3). Note that the re-
flexion is not a one-to-one association. A variable in lgg(a1, a2) could be reflected
in lgg(a1, a3) or lgg(a2, a3) several times. For example imagine that a variable
X occurs in lgg(a1, a2) at position 2 ·1, and two variables Y and Z are placed at
position 2 · 1 · 1 and 2 · 1 · 2 respectively in lgg(a1, a3), then X is reflected twice
in lgg(a1, a3).

a2=P(f(a),b)

lgg(a1,a2)=P(f(X),Y)

a1=P(f(b),a) a1=P(f(b),a) a3=P(f(b),b)

lgg(a1,a3)=P(f(b),X)

a2=P(f(a),b) a3=P(f(b),b)

lgg(a2,a3)=P(f(X),b)

d(a1,a2)=(4,−4) d(a1,a3)=(2,−2) d(a2,a3)=(2,−2)

Fig. 3. An illustrative example.

The next proposition shows the relationship between the variables in the
lgg’s of three terms a1, a2 and a3 which satisfy d(a1, a2) = d(a1, a3) + d(a3, a2).

Proposition 6. Let a1, a2 and a3 be three atoms such that d(a1, a2) = d(a1, a3)+
d(a3, a2). Then, each variable appearing in lgg(a1, a2) will be reflected either in
lgg(a1, a3) or in lgg(a2, a3) only once. If a variable in lgg(a1, a2) has multiple
occurrences and one of these occurrences is reflected in lgg(a1, a3) (equivalently
lgg(a2, a3)) then, the rest of occurrences of the same variable will be also re-
flected in lgg(a1, a3) (equivalently lgg(a2, a3)). Hence, lgg(a1, a3) (equivalently
lgg(a2, a3)) is a more specific atom than lgg(a1, a2).

Proof. The first part of the proposition is a derived consequence from Proposi-
tion 5. Recall that if sk(lgg(a1, a2) ⊂ sk(a3) then, for each variable in position
p · ∗ in lgg(a1, a3) or in lgg(a2, a3) there exists a variable (modulo renaming)
which occur in lgg(a1, a2) at position p · ∗. Additionally, those terms in a3 which
are not covered by the sk(lgg(a1, a2)) coincide with those terms placed at the
same position either in a1 or in a2. Thus, all the variables in lgg(a1, a2) will be
reflected either in lgg(a1, a3) or in lgg(a2, a3) only once. An immediate effect
of this part of the proposition is that the number of variables in lgg(a1, a2) is

equal to the number of variables in lgg(a1, a3) plus the number of variables in
lgg(a1, a2).

Now let us prove the second part of the proposition (we use the function
V (a,X) employed in [9] which values the occurrences of variable X in the atom
a.). Imagine that a variableX occurs n times in lgg(a1, a2) then, V (lgg(a1, a2), X) =
n2. Now, let us suppose that n1 occurrences of X are reflected in lgg(a1, a3) and
the rest of them, n2, in lgg(a2, a3) then, we would have V (lgg(a1, a3), X) +
V (lgg(a2, a3), X) = n2

1
+ n2

2
. As n = n1 + n2 trivially we have n2 < n2

1
+ n2

2
. So

the only possibility for V (lgg(a1, a2), X) = V (lgg(a1, a3), X)+V (lgg(a2, a3), X)
to be hold is that the occurrences of any variable, namely Y , in lgg(a1, a3) or in
lgg(a2, a3) increase. But it cannot happen because a3 is built from (sub)-terms
in a1 and in a2. Therefore, all the occurrences of one variable X in lgg(a1, a2)
are reflected either in lgg(a1, a3) or in lgg(a2, a3). This fact implies that the
lgg(a1, a3) and the lgg(a2, a3) are more specific atoms than lgg(a1, a2).

Now, we are ready to proof the feasibility of ∆ for the current metric space.

Proposition 7. The ∆ function defined in Definition 8 is a 1-generalisation.

Proof. – (No Isolation). Given an atom a, its nearest atoms are obtained by
changing one of its constant (sub)-term by a variable. Calling a′ to this new
atom, it is trivial to see that the lgg(a, a′) = a′ and, as we know, the number
of symbols in a′ is one less than the number of symbols in a whereas the
number of variable occurrences in a′ is one more than in a. Thus, the distance
between a and a′ is

d(a, a′) = [size(a)− size(a′)] + [size(a′)− size(a′)
= (1,−1) + (0, 0) = (1,−1)

Therefore, given an atom a all its nearest atoms are (1,−1) away. Such as
the symbols are counted, the distance is not affected by the relative position
of those different sub-terms between two atoms. Hence, it does not matter
if the substituted (sub)-term constant symbol in a is placed at a higher or
at a deeper position, the distance between a and a′ will be the same. Thus,
given two atoms a1 and a2, their generalisation ∆(a1, a2) and a new atom
a3 belonging to ∆(a1, a2), from the Definition 8 we know that there exists a
substitution σ such that a3 = lgg(a1, a2)σ. If we change any of the constant
symbols appearing in σ by a variable (denoting this new substitution by σ′),
we will obtain a new atom a′

3
= lgg(a1, a2)σ

′ such that d(a3, a
′
3
) = (1,−1).

Obviously, a′
3
belongs to∆(a1, a2) and a′

3
is one of the nearest possible atoms

to a3.
– (Scope) The aim of this proof will consist of showing that if this identity

d(a1, a2) = d(a1, a3) + d(a3, a2) is preserved, where ai are atoms, then a3
is an instance of the lgg(a1, a2) and consequently, a3 belongs to ∆(a1, a2).
By Proposition 6 it is followed that there exists a substitution σ1 such that
lgg(a1, a3) = lgg(a1, a2)σ1. Then, by lgg definition, we know that there
also exists a substitution σ2 such that a3 = lgg(a1, a3)σ2. Hence, a3 =
lgg(a1, a2)σ1σ2 and a3 belongs to ∆(a1, a2).

5 Conclusions

In this paper we have analysed the connection of three different, but highly
connected, notions: distance, pattern and generalisation. Although these notions
are extremely related, there have not been many theoretical works that have
studied the relationships among these topics. This work intends to be a fist
step for this purpose. We have introduced a generalisation definition to identify
the representation patterns which can behave as proper generalisations in the
context of an underlying metric space. We have shown that given a metric not
every general pattern is a good generalisation. On the other hand, we have shown
that we can have suitable generalisation patterns for the most usual metrics
defined for well-known data types.

As an immediate future work, we are studying the extension of the notion to
generalisation operators applied to pairs of a set and an element, thus allowing
the generalisation to be applied incrementally, and the extension of the definition
to the Cartesian product of different types. All this could constitute an integrated
framework that can be applied to many distance-based methods. For instance,
in k-nearest neighbours, we could use an incremental generalisation operator to
generate patterns which would be consistent with the clustering or classification
performed by the k-nearest neighbour based on the underlying distance, starting
from the closest elements to the farthest. Other case-based reasoning techniques
based on distances can benefit from this as well. In a similar way, we could be able
to give explanations to other methods that use distances. For instance, we have
defined a distance-based decision tree, where the splits are determined by metric
conditions, as the centre-splitting technique does. The generalisation operators
introduced in section 3 can be used to give a comprehensible representation to the
partitions, and hence to the overall decision tree, even if the problem contains
non-standard data types such as lists or sets. In some way, this is a general
approach to obtaining comprehensible patterns when distances are computed
from structured data types. For instance, in [4], they compute kernels, and hence
distances, for structured data types.

Finally, we would also like to study the “nested composability” of the gen-
eralisation operator, i.e., lists of lists, or sets of lists of trees, that could deal
with deeply complex structures. Other topics of research would be to analyse
the associativity of the incremental generalisation operator (which we consider
a minor issue for the applications considered), or the definition of a restricted
generalisation if we use negative cases into account.

References

1. D. W. Aha, D. Kibler, and M. K. Albert. Instance-based learning algorithms.
Machine Learning, 6(1):37–66, January 1991.

2. Ricardo A. Baeza-Yates and Berthier A. Ribeiro-Neto. Modern Information Re-

trieval. ACM Press / Addison-Wesley, 1999.
3. M. Falaschi, G. Levi, M. Martelli, and C. Palamidessi. Declarative Modeling of the

Operational Behavior of Logic Languages. Theoretical Computer Science, 69(3):289–
318, 1989.

4. T. Gartner, J. W. Lloyd, and P. A. Flach. Kernels and distances for structured
data. Machine Learning, 57, 2004.

5. A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: a review. ACM Comp.

Surveys, 31(3):264–323, 1999.
6. T. M. Mitchell. Machine Learning. McGraw-Hill, 1997.
7. G. Plotkin. A note on inductive generalization. Machine Intelligence, 5:153–163,

1970.
8. J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, San

Mateo, CA, 1993.
9. J. Ramon, M. Bruynooghe, and W. Van Laer. Distance measures between atoms.

In CompulogNet Area Meeting on Computational Logic and Machine Learing, pages
35–41. University of Manchester, UK, 1998.

