Skip to main content

Automatic Induction of Abduction and Abstraction Theories from Observations

  • Conference paper
  • 551 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3625))

Abstract

Traditional Machine Learning approaches are based on single inference mechanisms. A step forward concerned the integration of multiple inference strategies within a first-order logic learning framework, taking advantage of the benefits that each approach can bring. Specifically, abduction is exploited to complete the incoming information in order to handle cases of missing knowledge, and abstraction is exploited to eliminate superfluous details that can affect the performance of a learning system. However, these methods require some background information to exploit the specific inference strategy, that must be provided by a domain expert.

This work proposes algorithms to automatically discover such an information in order to make the learning task completely autonomous. The proposed methods have been tested on the system INTHELEX, and their effectiveness has been proven by experiments in a real-world domain.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cohen, P.R., Feigenbaum, E.A.: The Handbook of Artificial Intelligence, vol. 3. Morgan Kaufmann, San Francisco (1981)

    Google Scholar 

  2. De Raedt, L.: Interactive Theory Revision - An Inductive Logic Programming Approach. Academic Press, London (1992)

    Google Scholar 

  3. Dimopoulos, Y., Džeroski, S., Kakas, A.: Integrating explanatory and descriptive learning in ILP. In: Proceedings of IJCAI 1997, pp. 900–906 (1997)

    Google Scholar 

  4. Dimopoulos, Y., Kakas, A.: Abduction and learning. In: De Raedt, L. (ed.) Advances in Inductive Logic Programming, pp. 144–171. IOS Press, Amsterdam (1996)

    Google Scholar 

  5. Esposito, F., Ferilli, S., Fanizzi, N., Basile, T.M.A., Di Mauro, N.: Incremental multistrategy learning for document processing. Applied Artificial Intelligence: An Internationa Journal 17(8/9), 859–883 (2003)

    Article  Google Scholar 

  6. Esposito, F., Lamma, E., Malerba, D., Mello, P., Milano, M., Riguzzi, F., Semeraro, G.: Learning abductive logic programs. In: Proceedings of the ECAI 1996 Workshop on Abductive and Inductive Reasoning (1996)

    Google Scholar 

  7. Ferilli, S., Esposito, F., Basile, T.M.A., Di Mauro, N.: Automatic induction of first-order logic descriptors type domains from observations. In: Camacho, R., King, R., Srinivasan, A. (eds.) ILP 2004. LNCS (LNAI), vol. 3194, pp. 116–131. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  8. Flach, P.A., Lachiche, N.: Confirmation-guided discovery of first-order rules with Tertius. Machine Learning 42(1/2), 61–95 (2001)

    Article  MATH  Google Scholar 

  9. Giordana, A., Roverso, D., Saitta, L.: Abstracting concepts with inverse resolution. In: Proceedings of the 8th International Workshop on Machine Learning, Evanston, IL, pp. 142–146. Morgan Kaufmann, San Francisco (1991)

    Google Scholar 

  10. Kakas, A.C., Kowalski, R., Toni, F.: Abductive logic programming. Journal of Logic and Computation 2(6), 718–770 (1993)

    MathSciNet  Google Scholar 

  11. Kakas, A.C., Mancarella, P.: Generalized stable models: a semantics for abduction. In: Proceedings of ECAI 1990, pp. 385–391. Pitman Publishing (1990)

    Google Scholar 

  12. Kakas, A.C., Mancarella, P.: On the relation of truth maintenance and abduction. In: Proceedings of the 1st Pacific Rim International Conference on Artificial Intelligence, Nagoya, Japan (1990)

    Google Scholar 

  13. Kietz, J.-U., Wrobel, S.: Controlling the complexity of learning in logic through syntactic and task-oriented models. In: Muggleton, S. (ed.) ILP 1991, pp. 107–126 (1991)

    Google Scholar 

  14. Lamma, E., Mello, P., Milano, M., Riguzzi, F., Esposito, F., Ferilli, S., Semeraro, G.: Cooperation of abduction and induction in logic programming. In: Kakas, A., Flach, P. (eds.) Abductive and Inductive Reasoning: Essays on their Relation and Integration. Kluwer, Dordrecht (2000)

    Google Scholar 

  15. Lloyd, J.W.: Foundations of Logic Programming, 2nd edn. Springer, Berlin (1987)

    MATH  Google Scholar 

  16. Michalski, R.S.: Inferential theory of learning. developing foundations for multistrategy learning. In: Michalski, R.S., Tecuci, G. (eds.) Machine Learning. A Multistrategy Approach, vol. IV, pp. 3–61. Morgan Kaufmann, San Francisco (1994)

    Google Scholar 

  17. Muggleton, S.H., De Raedt, L.: Inductive logic programming. Journal of Logic Programming: Theory and Methods 19, 629–679 (1994)

    Article  Google Scholar 

  18. De Raedt, L., Dehaspe, L.: Clausal discovery. Machine Learning 26(2), 99–146 (1997)

    Article  MATH  Google Scholar 

  19. Rouveirol, C., Puget, J.: Beyond inversion of resolution. In: Proceedings of ICML 1997, Austin, TX, pp. 122–130. Morgan Kaufmann, San Francisco (1990)

    Google Scholar 

  20. Salton, G., Buckley, C.: Term-weighting approaches in automatic text retrieval. Information Processing and Management 24(5), 513–523 (1988)

    Article  Google Scholar 

  21. Srinivasan, A.: The aleph manual version 4 (2003), http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/

  22. Utgoff, P.E.: Shift of bias for inductive concept learning. In: Michalski, R.S., Carbonell, J.G., Mitchell, T.M. (eds.) Machine Learning: an artificial intelligence approach, vol. II, pp. 107–148. Morgan Kaufmann, Los Altos (1986)

    Google Scholar 

  23. Zucker, J.-D.: Semantic abstraction for concept representation and learning. In: Michalski, R.S., Saitta, L. (eds.) Proceedings of the 4th International Workshop on Multistrategy Learning, pp. 157–164 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ferilli, S., Basile, T.M.A., Di Mauro, N., Esposito, F. (2005). Automatic Induction of Abduction and Abstraction Theories from Observations. In: Kramer, S., Pfahringer, B. (eds) Inductive Logic Programming. ILP 2005. Lecture Notes in Computer Science(), vol 3625. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11536314_7

Download citation

  • DOI: https://doi.org/10.1007/11536314_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28177-1

  • Online ISBN: 978-3-540-31851-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics