
Re-using Implicit Knowledge in Short-term
Information Profiles for Context-sensitive Tasks

Conor Hayes, Paolo Avesani, Emiliano Baldo1 & Pádraig Cunningham2

1 ITC-IRST, Via Sommarive 18, 38050 Povo, Trento, Italy
{hayes, avesani, baldo}@itc.it

2 Department of Computer Science, Trinity College Dublin
Padraig.Cunningham@cs.tcd.ie

Abstract. Typically, case-based recommender systems recommend single items
to the on-line customer. In this paper we introduce the idea of recommending a
user-defined collection of items where the user has implicitly encoded the
relationships between the items. Automated collaborative filtering (ACF), a so-
called ‘contentless’ technique, has been widely used as a recommendation
strategy for music items. However, its reliance on a global model of the user’s
interests makes it unsuited to catering for the user’s local interests. We consider
the context-sensitive task of building a compilation, a user-defined collection of
music tracks. In our analysis, a collection is a case that captures a specific short-
term information/music need. In an offline evaluation, we demonstrate how a
case-completion strategy that uses short-term representations is significantly
more effective than the ACF technique. We then consider the problem of
recommending a compilation according to the user’s most recent listening
preferences. Using a novel on-line evaluation where two algorithms compete
for the user’s attention, we demonstrate how a knowledge-light case-based
reasoning strategy successfully addresses this problem.

1 Introduction

There have been many research and application based initiatives promoting case-
based reasoning (CBR) as a suitable recommender methodology for on-line services
[32,7]. Increasingly CBR has been employed to provide solutions to customers
purchasing configurable products such as personal computers, holidays and electronic
equipment. Meeting the customer’s requirements for a configurable entity requires
some additional knowledge encoding the constraints and dependencies between
components. This type of expert knowledge can be deployed during the adaptation
[29] or retrieval process [25].

In this paper we introduce the concept of recommending a collection of items using
case-based techniques. A collection is a set of items that have been assembled by a
user according to a particular idea or motivation. In this sense it has much in common
with a configurable entity. However, it differs in that the relationships between
component parts cannot be described a priori in a formal way. Rather, they are
implicitly encoded by the user during his/her construction of the collection. The goal

of this work is to make use of these implicitly encoded rules of thumb when providing
advice to other users.

Our research is based upon experiments conducted on data from the Smart Radio
system, an online streaming music system which allowed users to build collections of
music (compilations) which could be recommended to users with similar tastes [17,
16, 15]. Although the techniques described in this paper can be applied more widely,
the music domain is a classic example in which an acute knowledge elicitation bottle
neck applies [9,11], making it very difficult to extract the expert rules that encode the
relationships between music items. However, with the arrival of new on-line music
services, consumers are faced with the familiar problem of information overload often
described for textual material [12,27]. As such, automated collaborative filtering
(ACF), a so-called ‘contentless’ approach to recommendation and personalisation, has
dominated in applications in the music domain [16,30,20]. One serious drawback with
ACF is that it is not able to make recommendations that are sensitive to the local
interests or activities of the user [21]. This is because an ACF user profile is simply a
vector of item Ids containing no type, ordering or session information that could be
used to make recommendations on a particular subject area or for a particular task.
Generally, the sparsity of the available data requires us to use the accumulated ratings
of a user to make sound correlations with other users. However, the resulting
recommendation set will reflect the user’s accrued interests rather than the
requirements of a localised task.

In this paper we consider two context-sensitive tasks in this domain that cannot be
satisfactorily performed using the ACF algorithm.

1. Providing advice to the user when he/she is building a compilation.
2. Recommending a new compilation based on the user’s current listening

preference.
We will demonstrate how simple CBR-based enhancements allow us to provide
accurate recommendations while still obeying the domain constraint of a knowledge-
light approach. A key idea here is that we do not use long-term user profiles to make
recommendations. Instead we consider each compilation to represent a short-term,
context-specific need. We consider the compilation-building task as an incremental
case completion exercise. As each track is added to a target compilation, similar
compilations are retrieved and the tracks extracted from these compilations are
offered to the user to complete the partial compilation. In order to counter the problem
of calculating similarity between non-overlapping compilations, we use the agave
algorithm to represent our compilations in terms of their probabilistic ‘relatedness’ to
other tracks [1,2]. In our offline evaluation of the compilation completion technique,
we demonstrate that using short-term profiles significantly outperformed the standard
ACF algorithm. This would suggest that the implicit knowledge in short-term
representations can be leveraged to provide advice in task-specific contexts.

We then address the problem of automatically providing a suitable follow-up
compilation based on the user’s current listening preferences. Using a MAC/FAC [14]
approach, compilations retrieved by the ACF algorithm are re-ranked using a
knowledge-light, case-based process. In contrast to the evaluation of compilation
completion, we demonstrate how an on-line evaluation can give a true indication of
user satisfaction with one algorithm over another. In this contest between algorithms,

we find that users are significantly more response to context-boosted ACF over
standard ACF.

Section 2 briefly describes the Smart Radio system operation, and introduces the
idea of a compilation, a user-defined collection of music tracks. We also introduce
some of the principles of ACF. In section 3 we describe our solution to the
compilation-building task using a case completion strategy, and in section 4 we
introduce the idea of a context and the strategy we use to further refine
recommendations made by the ACF engine. Section 5 presents an offline evaluation
of the compilation completion technique. By contrast, section 6 introduces an online
evaluation of the context-boosted ACF technique. Finally, we discuss our conclusions
and future work in section 7.

2 Music Recommendation

Although a late starter, the online retail of music has grown rapidly over the past two
years. With record companies increasingly making their back catalogues of music
available on line, consumers are presented with an information overload problem.
This problem is exacerbated by the fact that, unlike documents, which can be rapidly
downloaded and scanned for relevance, a music file has a longer download time and
must be listened to in real time to determine its relevance.

Smart Radio is a web-based client-server application that allows users to build
compilations of music that can be streamed to the desktop [17,16,15]. The idea behind
Smart Radio is to encourage the sharing of music programmes using automated
recommendation techniques. The unit of recommendation in Smart Radio is the
compilation, a collection of music tracks assembled on the fly by one listener and
recommended to other like-minded listeners.

Fig. 1. A screen shot of the Smart Radio recommendation screen

In contrast to text-based information retrieval where a page of text can be
automatically parsed into a vector of words and indexed for retrieval, there are no
fundamental units of meaning equivalent to words which can be applied to music
retrieval [13,9,11]. Furthermore, experts in the area of music come from disparate
disciplines such as musicology, music cognition, signal processing and music

librarianship, and there is great difficulty in integrating the knowledge produced in
these fields [11]. While music information retrieval systems may appear to be decades
behind text retrieval [9], it is clear that, with the increasing amount of digital music
online, there is a pressing need for music personalisation/recommendation techniques.

 Thus, music recommender systems such as Smart Radio generally rely upon
techniques such as ACF where explicit content mark-up is not required. The key idea
in ACF is that users can be clustered together based on their usage patterns.
Recommendations can be made to a target user based on the accumulated data in
neighbouring user profiles. As similarity between user profiles is calculated based on
the intersection of the item ids between profiles and not on content description, ACF
allows recommendations to be made in domains like music where there is a
knowledge-elicitation bottleneck. A second strength of ACF is that it can make
recommendations that would otherwise escape content-based recommender strategies.
This is because it relies upon implicit knowledge expressed in user preferences that
may capture the subtle relationship between items that would otherwise escape a
content-based system [10]. It is this type of implicit knowledge that we wish to
explore in this paper.

Recent work in the CBR community has drawn a parallel between ACF and CBR
as case completion [18,2,24]. The observation in this work is that the typical ACF
mechanism of incrementally offering recommendations based on user feedback is like
the case completion process in CBR. In this analogy, the ACF user profile is the
incomplete case and recommended items are proposed solutions for case completion.
Despite this, ACF suffers from some weaknesses not apparent in CBR systems. Its
key strength in recommending surreptitious items is also a prominent weakness.
Whereas the CBR case has typically been viewed as capturing a single
problem/solution episode, a single ACF user case may capture several heterogeneous
episodes reflecting the various interests of the user over time. The ACF recommender
does not take into account the nature of the content it recommends, and thus, while
the items it recommends may be suitable in relation to the overall interests of the user,
they may be entirely unsuitable for the current search task to hand. In the next section,
we describe a solution to this problem by using short-term, task-oriented profiles.

3 Compilation Building as Case Completion

A compilation is a user-defined collection of music, very often made up of a mixture
of tracks by different artists, but not necessarily so. We view a compilation as a case
that captures a particular short-term music/information requirement. Apart from its
component tracks, it also implicitly contains the knowledge and work required to
assemble the collection. Our hypothesis is that each compilation is built according to
an implicitly articulated guiding principle. Thus, each compilation case inherently
contains information about the relatedness between component tracks. Indeed, it has
been demonstrated that a similar type of ‘relatedness’ information, useful for accurate
recommendation, can be mined from lists of favourite artists posted by music fans on
the internet [10].

In Smart Radio, a compilation consists of a collection of 10 tracks which is
assembled for immediate delivery using streaming protocols. Thus, the user must
choose the composition of the compilation with care because once the compilation
has started to play, its composition cannot be modified. For this reason, we consider
that the compilations in Smart Radio should contain implicit knowledge as to what
tracks ‘fit’ together. In the next subsection, we describe how we allow users to reap
the benefit of the compilation-building expertise of previous users.

Fig. 2. A screen shot of a compilation advisor system

3.1 Providing Compilation Completion Advice

Building a compilation is a context-sensitive task where tracks are selected according
to a particular theme or idea of the user. The key to this approach is to realise that a
short-term profile can capture a single problem-solving episode that is better able to
provide context-sensitive recommendations. Thus, instead of using user profiles to
make recommendations we choose to tap the specific knowledge in other
compilations. We draw our methodology in part from the interactive case completion
framework of the NaCoDae system [3]. As the user adds tracks to a compilation, the
compilation adviser retrieves similar compilations and offers the user a choice of
tracks or full compilations to complete his/her compilation. Figure 2 illustrates a
screen shot for a compilation adviser we have implemented in the music domain [2].
The user, Conchuir, has added two tracks to his compilation. In response, the adviser
immediately presents a list of tracks that would suitably complete this compilation.
The user can choose these tracks or may select full compilation solutions from the
compilations tab.

3.2 Data Sparsity

Using a compilation as a short-term profile is problematic in that similarity can only
be measured on items shared in common between compilation profiles. A compilation
is made up of 10 out of a possible 2148 tracks. Clearly, many compilations cannot be
compared because they do not have any tracks in common. In contrast, a typical user
profile would contain tracks from many sessions and thus have a better chance of

intersecting with other profiles. We address this problem using the agave algorithm to
reduce the sparsity of the compilation data set [1,2]. Using agave, each compilation is
transformed to a less sparse representation that reflects the degree of relatedness of
each compilation to each of the other 2148 tracks available. This value is called the
mu value of the track with respect to a particular compilation. For each compilation, t,
the mu feature value for track u is the summation of the conditional probability that
track u co-occurs with compilation track, ti. The mu is normalised by n the number of
non-zero values for P(ti/u). n is thus the number of values for which there is not a
zero probability of ti and u co-occurring.

(/)iP t u
mu

n
=
∑

(1)

Thus, for each compilation, we can produce a mu value for each track available,
transforming the sparse compilation representation into a vector of mu values.
Intuitively, no calculation of mu is possible for track u if it is not co-frequent at least
once with ti in any compilation in the compilation data set. Avesani & Aguzzoli have
demonstrated that agave performs better than singular value decomposition (SVD),
another technique for reducing sparsity in ACF data sets [2]. Whereas SVD operates
by collapsing the dimensions of the data set, agave has the advantage of preserving
the original dimensions. In our evaluation we also use the PSim approach, which also
addresses the similarity coverage problem in sparse data sets [24]. However, an
analysis of this technique would suggest that it relies on exactly the same principles as
agave: the conditional probabilities of co-frequent pairs in the data set.

4 Recommending Compilations in Context

Whereas in section 3 we described how we used the implicit compilation-building
knowledge to help the user build a compilation, we now turn our attention to
recommending a full compilation. Many of the same issues still apply. Using a typical
ACF strategy, recommended compilations may not suit the user’s current compilation
preferences. Our goal is to make recommendations that are appropriate within the
user’s listening context.

In the field of user modelling, the objective in isolating context information is that
tasks being undertaken by the user may be anticipated and a portion of the work
carried out automatically in advance. Applications such as Watson [6] and Letizia
[22,23] which monitor the user’s behaviour and attempt to retrieve or predict relevant
information have been termed ‘reconnaissance aides’. In both Watson and Letizia the
context is represented by a content-based analysis of the topics currently of interest to
the user. If the user digresses or switches subject while researching a topic, both
reconnaissance aides will require time to respond. However, the advantage of an
implicitly generated profile is that it is a “zero input” strategy, i.e. the user does not
need to explicitly describe his/her goals, prior to working [23]

Our goal is to enhance the ACF technique so that compilations based on the user’s
current context are promoted but requiring zero input from the user. Our approach is
to use a MAC/FAC influenced methodology in which an ACF module selects a subset

of the case base. A second stage retrieval process then ranks these primed cases
according to their similarity to the user’s listening context. This is indicated by the
darker shaded cases on the right in Figure 3.

Fig. 3. The two-stage strategy for providing context-sensitive recommendations

Unlike the examples of the reconnaissance aides described above, which used
information retrieval analyses to build a short-term user profile, the Smart Radio
domain suffers from a deficit of content descriptions. Therefore, the solution is to use
a lightweight case-based representation of each compilation using some freely
available meta-data. The content descriptors we use are the genre and artist tags
found in a few bytes of information at the end of the mp3 file. Although the
information this inexpensive process yielded was not particularly rich, the alternatives in
the music domain are expensive. We transform the compilation representation into a
case-based representation where the case features indicate the genre/artist mixture
within the compilation. As the goal is to capture the type of music mix, using the
available features that would best indicate this property. We have two feature types
associated with each track, genre_ and artist_. The case representation we used
in Smart Radio is illustrated in Table 2.

Table 1. A case captures the composition of the compilation in terms of the quantity of genres
and artists present. For reasons of space only one artist feature is shown.

Feat. type Feature Value
genre_ Jazz 1
genre_ Blues 2
genre_ Folk 3
genre_ Country 4
artist_ John Coltrane 1

By playing a compilation the user triggers a context event. The contents of the

compilation are assumed to indicate the user’s current listening preference. We term
this contextualising by instance. The transformed compilation has two types of
feature, genre_ features and artist_ features. The currently playing compilation
is used as the target for which we try and find the most similar cases available in the
ACF recommendation set. Compilation similarity is determined by matching the
proportions of genre and artist contained in a compilation. In section 6, we present an
online evaluation of this technique where we test user response to recommendations
presented from the context-boosted ACF strategy and an ACF strategy.

4.1 Integrating Context Ranking and ACF

The content-based strategy in Smart Radio evolved through our identification of the
problem of insensitivity to user context in version 1.0 of the system. For this reason,
the content-based strategy was always designed as an augmentation of the primary
ACF strategy. Within the taxonomy of hybrid strategies suggested by Burke, the
Smart Radio hybrid is best described as a Cascading system [8]. Unlike the EntreeC
system, another type of Cascading hybrid, the Smart Radio system uses ACF as its
primary recommendation strategy and the content-based ranking as a supplemental
process. A complete description of the integrated ACF−CBR approach we adopt is
beyond the scope of this paper. Readers are directed to Ref. 15 for a more in-depth
discussion of the similarity techniques and the architecture we use.

5 Off-line Evaluation of Case Completion

As we described in section 3, Cocoa compilations are built according to the ‘expert
knowledge’ of users. In this section we describe an offline evaluation in which we had
the following objectives:

1. To demonstrate that short-term information profiles are more successful than
typical long-term profiles for a context-sensitive task such as compilation
completion

2. To evaluate whether completion information should be based on individually
retrieved compilations or an aggregation of tracks from the k-nearest
neighbours.

5.1 Compilation Completion

Our evaluation strategy involved simulating a case completion process whereby we
measured recall at different stages of case completion. The recall measure represents
the probability that a relevant item will be retrieved. Each compilation in the case
base is a unique, user-defined collection of music. A leave-one-out approach was used
whereby we removed a percentage of tracks for each compilation. By retrieving a set
of k nearest compilations we then attempted to predict the missing tracks. In order to
simulate performance at difference levels of completion, the missing tracks were
removed in increments of 10%. In calculating recall at each percentage of the
partially completed compilation, the relevant set refers to the set of items removed.
The algorithms we used are described below.
TopN: This technique was used as a baseline approach. We recommend the N most
frequent tracks in the data set
Overlap_Userbased_knn_topN: This is the standard user-based ACF algorithm.
We represent the data in the training set as a set of long-term user profiles containing
tracks from the compilations that the user has downloaded in the past. Using the
overlap method, recommendations are made by firstly retrieving the best matching
user profiles (knn) for the target compilation and then choosing the most frequently
occurring items in the retrieved profiles (topN) [28]. However, as each user profile

has a binary representation in terms of tracks, similarity between the target and
candidate profiles is based on the amount of overlapping tracks.
Overlap_Comp-based_knn_topN: We then retrieve compilations rather than user
profiles using the overlap method as before. Again, track recommendations are made
by choosing the most frequently occurring items in the retrieved profiles.

The next three approaches use agave sparsity reduction. We make
recommendations based on the first k compilations retrieved.
Agave_P_knn: We use the agave sparsity reduction technique. The similarity metric
is the Pearson coefficient. Recommended items are presented in the order they occur
in the k ranked compilations.
Agave_P_knn_rmv_dupl: This is the same as Agave_P_Knn except that items
already in the target compilations and any lower ranking duplicate items are removed.
Agave_LS_knn_topN: We use the agave sparsity reduction technique. The similarity
metric is based on the Least Squares metric used by Shardanand and Maes [30].
Recommended items are ranked according to their frequency in the k compilations.
PSim approach: This is an implementation of the approach described in Ref. 24.
The PSim approach and agave techniques are based respectively on Isim and mu
measures. It can easily be shown that mu and ISim are equivalent.

5.2 Evaluation methodology

The Smart Radio data set contains 803 compilations built by listeners to the Smart
Radio system from a corpus of 2148 tracks. Each compilation has 10 tracks.

Each compilation in the data set is evaluated using the leave-one-out methodology.
When we use the agave or PSim approach we recalculate the mu or ISim scores using
the data set minus the compilation being tested. For each compilation test, recall is
measured at incremental stages of completion. For example, in the first test we
remove 90% of the compilation. The remaining 10% is used as the target and the 90%
we removed acts as the relevant set with which we can calculate the recall score for
the retrieved tracks. We continue to test in increments of 10% until we finally
evaluate recall when 90% of the compilation is present and 10% acts as the relevant
set. In each test, the retrieval size is set at 10 compilations. In measuring recall, we
consider the ranked list of tracks produced by each algorithm. Tracks already found in
the target compilation or duplicates of tracks already ranked higher in the retrieval list
are considered non-relevant items for the purpose of calculating recall. Thus,
algorithms which produce duplicates or include tracks already found in the target
compilation are penalised. For every retrieval algorithm we set k = 10. However, the
Agave_P_knn variants only used the track data in the first or second compilation.

5.3 Results

Figure 4 illustrates the Recall graph for case completion where the x axis represents
the percentage of the compilation used as the target compilation. Clearly, the topN
and user-based approach perform very poorly when faced with a context-specific
task. The comp-based approach, which utilises short-term profiles in the form of other

compilations, performs significantly better even though the similarity is based only on
compilation overlap.

However, the algorithms which use the short-term profiles and the agave (or PSim)
sparsity reduction techniques perform best overall. There is no significant winner
amongst the various permutations we tried. Some performed a little better at early
stages of the case completion process and others at late stages.
The significant difference between the performance of the user-based approach and
the approaches based on compilation retrieval would seem to be due to the loss of
context information in the user profiles.

One of our objectives was to test whether presenting compilations in the order they
are ranked by the similarity metric is an adequate recommendation strategy. Our
hypothesis is that the first 1 or 2 ranked compilations are likely to contain sufficient
track information to complete the test compilation. In fact, agave_P_knn and
agave_P_knn_rmv_dupl perform very well indeed. These algorithms represent the
view the user would have when choosing the ‘compilations’ tab in Figure 2. All the
other algorithms aggregate the track data from the k nearest compilations, ranking
them by frequency, for example. This is equivalent to the view in the ‘tracks’ tab of
Figure 2. Our evaluation would suggest that the knowledge contained in the first two
top-ranking compilations is strong enough to compete with the aggregated data from k
compilations.

Recall at % of compilation completion

.0

.050

.10

.150

.20

.250

.30

.350

.40

0 20 40 60 80 100
Percent of compilation completed

R
ec

al
l

TopN
overlap_User_based_knn_topN
overlap_Comp_based_knn_topN
Agave_P_knn
Agave_P_knn_rmvDupl
Agave_LS_knn_topN
PSim_Approach

Fig. 4. Recall graph for compilation completion

6 An Online Evaluation of Context-boosted ACF vs. ACF

The evaluation in section 5 is an example of an off-line evaluation of a recommender
strategy which is typically based on techniques in machine learning and information

retrieval [5]. However, it has been regularly observed that off-line evaluations of
recommender systems have a number of shortcomings [31,19,21]. For example, it is
not at all clear whether users are sensitive to slight improvements in prediction error of
one algorithm over another. Secondly, an algorithm can only be evaluated on
predictions it makes on items that have been observed by the user, which may be only a
fraction of the overall items in the domain. Thus, in an offline evaluation, there is no
way of measuring ‘true recall’ because we are unable to measure the potential relevance
of items that have not been rated by the user.
This problem is particularly apparent when evaluating the success of a recommender
strategy like the content-boosted ACF where we need to analyse the correctness of the
ranking produced in response to a context event. It was not clear how we might
perform this in an off-line setting. Therefore, to test our hypothesis we performed a
comparative analysis of how the algorithm performs in an online setting. The key idea
of online evaluation is that we measure whether real people are willing to act based on
the advice of the system. Unlike the off-line analysis, this methodology plays one
recommendation strategy against the other in a live system and measures the relative
degree of success of each strategy according to whether the user utilises the
recommendations of either system. A more detailed discussion of our on-line
evaluation framework for recommender systems is presented in Ref. 19.

6.1 Evaluation Environment

The evaluation environment was the Smart Radio system − a live, on-line application
used by a community of users, with a well defined recommendation task using a
specific user interface. The application was serviced by two competing recommendation
strategies: ACF and context-boosted ACF. In order to be able to gauge a relative
measure of user satisfaction with the two strategies, we logged the user interactions with
respect to the recommendations made by either strategy. Other aspects of the
recommendation process that might have influenced user satisfaction were kept the
same (interface, interaction model). The proposed methodology can be seen as a
competition between two different approaches to solving the same problem (in this case,
winning user satisfaction). In this regard, we define three evaluation policies.

Presentation policy: The recommended compilations in Smart Radio were presented
as a ranked list. For evaluative purposes, we interleaved recommendations from each
strategy. As a user is most likely to inspect the top-ranked compilation in the
recommendation set, this position is alternated between each recommender strategy
after each compilation ‘play’ event.

Evaluation policy: defines how user actions can be interpreted to express a
preference for one algorithm over the other. In this evaluation, a preference was
registered for one strategy when a user inspected and then played a compilation from
his/her recommendation set.

Comparison policy: defines how to analyse the evaluation data in order to
determine a winner. Obviously, the simplest way is to count the number of rounds
won by the competing systems. However, certain algorithms, such as ACF, may only
start to perform well after sufficient data has been collected. Therefore, we analyse
the performance of each system over time. As individual users may have different

degrees of interaction with the system, we also make a comparative analysis of
different types of users.

6.2 Results

The results refer to the listening data of 58 users who played a total of 1012
compilations during the 101-day period from 08/04/2003 until 17/07/2003. Table 2
gives the breakdown of the sources for compilations played in the system for this
period. The recommendation category was by far the most popular means of finding
compilations. We should also note that building compilations from scratch or
explicitly searching for compilations should not be considered ‘rival’ categories to the
recommendation category given that an ACF-based system requires users to find a
proportion of new items from outside the recommendation system itself.

Cumulative Score: Table 3 gives the cumulative breakdown between ACF and
context-boosted ACF recommendations for the period. From a total of 504
recommended compilations played, 311 were sourced from content-boosted
recommendations, while 177 came from normal ACF recommendations. 16 came
from bootstrap recommendations which we haven’t discussed here.

Interval-Based Evaluation: In order to check that these results were consistent
throughout the evaluation period, we divided the period into 15 intervals of one week.
Figure 8 shows the proportions of ACF to context-boosted recommendations analysed
on a weekly basis for the period. We can see that the context-boosted ACF
continually outperformed the pure ACF recommendation strategy. We have tested
these results using a paired t-test and found them to be statistically significant within a
confidence level of 99%.

User-based Evaluation: An analysis of our users’ behaviour demonstrated
considerable variance. During the evaluation period we had users who used the
system several times a week, sometimes for hours every day, as well as other users
who used the system much less frequently. In order to check that the performance of
our recommender holds for different degrees of usage, we split the dataset according
to the number of compilations each user listened to. There are 10 categories in which
users may fall, representing different degrees of usage of the system. Figure 9
illustrates the comparative success of the two strategies in each usage range.
Whilst ACF is marginally greater in two intervals, if we use a paired t-test on the
individual user recommendation data we find that the hypothesis, ACF ≤ context-
boosted ACF once again holds with a confidence level of 95%. However, Figure 3
would suggest that the preference for context-boosted ACF is more pronounced
among regular users of the system. Light users simply might not have used the
system enough to have formed a preference for either recommendation strategy.
Heavier users, on the other hand, have a much greater chance to explore the facilities
of the system and implicitly express preferences for one strategy over another through
regular use.

Table 2. Source of compilations played from 24:00 08/04/2003 until 24:00 17/07/2003

Source Number Percentage
Top Compilations 87 8
Past Compilations 194 19
Trusted Neighbour 23 2
Recommendations 504 50
Explicit Search 94 9
Compiled from Scratch 110 11

Table 3. The cumulative scores for the ACF vs. context-boosted ACF analysis

Algorithm name Number of ‘play’ impressions Percentage
Standard ACF 177 35

Context-boosted ACF 311 62

Source of playlist recommendations played: ACF vs.
Context Boosted ACF

0
5

10
15
20
25
30
35
40

Wee
k 1

Wee
k 3

Wee
k 5

Wee
k 7

Wee
k 9

Wee
k 1

1

Wee
k 1

3

Wee
k 1

5

nu
m

be
r o

f p
la

yl
is

t i
m

pr
es

si
on

s

ACF recommendation

Context Boosted ACF
Recommendation

Fig. 5. ACF vs. context-boosted ACF over 15 weekly intervals

ACF vs. Context Boosted ACF per usage range

0
10
20
30
40
50
60
70
80
90

100

ran
ge

 1-
5

ran
ge

 6-
10

ran
ge

 11
-15

ran
ge

 16
-20

ran
ge

 21
 -3

0

ran
ge

 31
-40

ran
ge

 41
 -5

0

ran
ge

 51
-60

ran
ge

 61
-80

ran
ge

 81
 +

Usage Range

N
um

be
r o

f P
la

yl
is

ts

ACF

Context Boosted ACF

Fig. 6. A user-based analysis of the evaluation

7 Conclusions

In this paper we demonstrate the importance of considering the context of the online
user’s interests or tasks. In the domain of music, however, there is great difficulty in
extracting content or knowledge with which to model user profiles. Conventionally,
the ACF technique is used. However, ACF makes recommendations based on a global
model of the user’s interests. We show how short-term profiles in the form of
collections of music are much more successful in providing advice in the compilation-
building exercise. The key observation we make is that such short-term collections
contain implicit knowledge as to the relatedness of their component tracks. However,
we note that typical off-line approaches are limited to evaluating algorithmic
performance on items the user has rated in the past. In our second evaluation we
demonstrate how an online test gives evidence of user satisfaction with one strategy
over another. In particular, we show user preference for a context-enhanced ACF
algorithm over a standard ACF algorithm.

8 References

1. Aguzzoli, S., Avesani, P., Massa, P. Compositional CBR via collaborative filtering. In
ICCBR '01 Workshop on CBR in Electronic Commerce, Vancouver, Canada, 2001.

2. Aguzzoli, S., Avesani, P., Massa, P. Collaborative case-based recommender systems. In
ECCBR 2002, Aberdeen, Scotland, Springer Verlag, 2002.

3. Aha, D. W., Maney, T., Breslow, L. Supporting dialogue inferencing in conversational case-
based reasoning. EWCBR 1998, Dublin, Ireland, pp. 262−273, 1998.

4. Bauer, T., Leake, D.B. WordSieve: a method for real-time context extraction. In
Proceedings of the Third International and Interdisciplinary Conference, Context 2001,
Springer, Berlin, 2001.

5. Breese, J.S., Heckerman, D., Kadie, C. Empirical analysis of predictive algorithms for
collaborative filtering. In Proceedings of the 14th Annual Conference on Uncertainty in
Artificial Intelligence, pp. 43–52, July 1998.

6. Budzik, J., Hammond, K. J. User interactions with everyday applications as context for just-
in-time information access. In Proc. of the 2000 International Conference on Intelligent User
Interfaces, (New Orleans, Louisiana, USA), ACM Press, 2000.

7. Burke, R., (ed). Proceedings of the workshop on Case-based Reasoning in Electronic
Commerce. ICCBR, Vancouver, BC. 2001

8. Burke, R., Hybrid Recommender Systems: Surveys and Experiments in User Modelling and
User-Adapted Interaction 12(4): 331-370; Kluwer press, Nov 2002..

9. Byrd, D., Crawford, T. Problems of music information retrieval in the real world,
Information Processing and Management: an International Journal, v.38 n.2, 2002

10. Cohen, W., Fan, W. Web-collaborative filtering: Recommending music by crawling the
web. In Proceedings of the Ninth International World Wide Web Conference, 2000.

11. Downie, J. Stephen. Music information retrieval (Chapter 7), In: Cronin, Blaise (Hg.)
Annual Review of Information Science and Technology 37: Information Today Books,
pp.295-340, 2003

12. Foltz, P.W., Dumais, S.T. Personalized information delivery: An analysis of information
filtering methods. Communications of the ACM 35(12), 51–60, 1992

13. Foote, J., an overview of Audio information retrieval. Multimedia Systems 7: 2–10 Springer
Verlag, 1999.

14. Gentner, D., Forbus, K. D., MAC/FAC: A model of similarity based access and mapping.
In Proc. of the 13th Annual Conference of the Cognitive Science Society. Erlbaum

15. Hayes, C., Cunningham, P. Context Boosting Collaborative Recommendations. In the
Journal of Knowledge Based Systems, Volume 17, Issue 5-6, July 2004, Elsevier, 2004

16. Hayes, C., Cunningham, P., Clerkin, P., Grimaldi, M. Programme-Driven Music Radio. In
the proc. of ECAI 2002, Lyons France ed.: Frank van Harmelen, IOS Press, 2002

17. Hayes, C., Cunningham, P., SmartRadio–community based music radio; Knowledge Based
Systems, special issue ES2000, Volume 14, Issue3-4, , Elsevier, 2001

18. Hayes, C., Cunningham, P., Smyth, B. A case-based reasoning view of automated
collaborative filtering, in: Aha, D.W., Watson, I. (Eds.), Proc. of 4th International
Conference on Case-Based Reasoning, LNAI 2080. Springer Verlag, pp. 234–248, 2001

19. Hayes, C., Massa, P., Avesani, P., Cunningham, P., An on-line evaluation framework for
recommender systems in the proceedings of the IWorkshop on Recommendation and
Personalization Systems, AH 2002, Malaga, Spain, 2002. Springer Verlag.

20. Hayes, C., Smart Radio: Building Community Based Radio. PhD thesis. Department of
Computer Science. Trinity College Dublin, 2004

21. Herlocker, J. L., Konstan, J. A., Terveen, L. G., and Riedl, J. T. Evaluating Collaborative
Filtering Recommender Systems. In Proceedings of the ACM Transactions on Information
Systems, vol. 22, no. 1, pp. 5-53, 2004

22. Lieberman H, Letiza: An Agent That Assists Web Browsing” in Proceedings of the
International Joint Conference on Artificial Intelligence IJCAI-95.(Montreal 1995).

23. Lieberman, H., Fry, C., and Weitzman, L., Exploring the Web with Reconnaissance
Agents," Communications of the ACM, Vol. 44, No. 8, August 2001.

24. O'Sullivan, D, Wilson, D.C., Smyth, B. Improving Case-Based Recommendation: A
Collaborative Filtering Approach." In Proceedings of the Sixth European Conference on
Case Based Reasoning. LNAI 2416 pp. 278-291, 2002

25. Prasad, M.V. N., Plaza, E., Corporate Memories as Distributed Case Libraries. In
Proceedings of the Corporate Memory and Enterprise Modelling Track in the 10th
Knowledge Acquisition Workshop. Banff, Canada, 1996.

26. Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., Riedl, J. An Open Architecture for
Collaborative Filtering of Netnews. pp. 175-186. ACM Conference on Computer Supported
Co-operative Work, 1994.

27. Resnick, P., Varian, H. R. Recommender Systems. Communications of the ACM 40(3), 56–
58, 1997

28. Sarwar, B., Karypis, G., Konstan, J., Riedl, J. Analysis of recommendation algorithms for e-
commerce, in: Proceedings of ACM E-Commerce, 2000

29. Schmitt,S., Bergmann, R. Applying Case-Based Reasoning Technology for Product
Selection and Customization in Electronic Commerce Environments. In Proc. of 12th
International Bled Electronic Commerce Conference, Bled, Slovenia, June 7 - 9, 1999

30. Shardanand, U., and Mayes, P., Social Information Filtering: Algorithms for Automating
'Word of Mouth', in Proceedings of CHI95, 210-217, 1995.

31. Swearingen, K., Sinha, R., Beyond Algorithms: An HCI Perspective on Recommender
Systems, ACM SIGIR Workshop on Recommender Systems, 2001.

32. Wilke, W., Lenz, M., Wess, S. Case-Based Reasoning for Electronic Commerce. In: Lenz
et al. (Eds.): Case-Based Reasoning Technology from Foundations to Applications,
Springer, 1998.

