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Abstract. Typically, case-based recommender systems recommend single items 
to the on-line customer. In this paper we introduce the idea of recommending a 
user-defined collection of items where the user has implicitly encoded the 
relationships between the items. Automated collaborative filtering (ACF), a so-
called ‘contentless’ technique, has been widely used as a recommendation 
strategy for music items. However, its reliance on a global model of the user’s 
interests makes it unsuited to catering for the user’s local interests. We consider 
the context-sensitive task of building a compilation, a user-defined collection of 
music tracks. In our analysis, a collection is a case that captures a specific short-
term information/music need. In an offline evaluation, we demonstrate how a 
case-completion strategy that uses short-term representations is significantly 
more effective than the ACF technique. We then consider the problem of 
recommending a compilation according to the user’s most recent listening 
preferences. Using a novel on-line evaluation where two algorithms compete 
for the user’s attention, we demonstrate how a knowledge-light case-based 
reasoning strategy successfully addresses this problem. 

1  Introduction 

There have been many research and application based initiatives promoting case-
based reasoning (CBR) as a suitable recommender methodology for on-line services 
[32,7]. Increasingly CBR has been employed to provide solutions to customers 
purchasing configurable products such as personal computers, holidays and electronic 
equipment. Meeting the customer’s requirements for a configurable entity requires 
some additional knowledge encoding the constraints and dependencies between 
components. This type of expert knowledge can be deployed during the adaptation 
[29] or retrieval process [25]. 

In this paper we introduce the concept of recommending a collection of items using 
case-based techniques. A collection is a set of items that have been assembled by a 
user according to a particular idea or motivation. In this sense it has much in common 
with a configurable entity. However, it differs in that the relationships between 
component parts cannot be described a priori in a formal way. Rather, they are 
implicitly encoded by the user during his/her construction of the collection. The goal 



of this work is to make use of these implicitly encoded rules of thumb when providing 
advice to other users. 

Our research is based upon experiments conducted on data from the Smart Radio 
system, an online streaming music system which allowed users to build collections of 
music (compilations) which could be recommended to users with similar tastes [17, 
16, 15]. Although the techniques described in this paper can be applied more widely, 
the music domain is a classic example in which an acute knowledge elicitation bottle 
neck applies [9,11], making it very difficult to extract the expert rules that encode the 
relationships between music items. However, with the arrival of new on-line music 
services, consumers are faced with the familiar problem of information overload often 
described for textual material [12,27]. As such, automated collaborative filtering 
(ACF), a so-called ‘contentless’ approach to recommendation and personalisation, has 
dominated in applications in the music domain [16,30,20]. One serious drawback with 
ACF is that it is not able to make recommendations that are sensitive to the local 
interests or activities of the user [21]. This is because an ACF user profile is simply a 
vector of item Ids containing no type, ordering or session information that could be 
used to make recommendations on a particular subject area or for a particular task. 
Generally, the sparsity of the available data requires us to use the accumulated ratings 
of a user to make sound correlations with other users. However, the resulting 
recommendation set will reflect the user’s accrued interests rather than the 
requirements of a localised task. 

In this paper we consider two context-sensitive tasks in this domain that cannot be 
satisfactorily performed using the ACF algorithm. 

1. Providing advice to the user when he/she is building a compilation. 
2. Recommending a new compilation based on the user’s current listening 

preference. 
We will demonstrate how simple CBR-based enhancements allow us to provide 
accurate recommendations while still obeying the domain constraint of a knowledge-
light approach. A key idea here is that we do not use long-term user profiles to make 
recommendations. Instead we consider each compilation to represent a short-term, 
context-specific need. We consider the compilation-building task as an incremental 
case completion exercise. As each track is added to a target compilation, similar 
compilations are retrieved and the tracks extracted from these compilations are 
offered to the user to complete the partial compilation. In order to counter the problem 
of calculating similarity between non-overlapping compilations, we use the agave 
algorithm to represent our compilations in terms of their probabilistic ‘relatedness’ to 
other tracks [1,2]. In our offline evaluation of the compilation completion technique, 
we demonstrate that using short-term profiles significantly outperformed the standard 
ACF algorithm. This would suggest that the implicit knowledge in short-term 
representations can be leveraged to provide advice in task-specific contexts.  

We then address the problem of automatically providing a suitable follow-up 
compilation based on the user’s current listening preferences. Using a MAC/FAC [14] 
approach, compilations retrieved by the ACF algorithm are re-ranked using a 
knowledge-light, case-based process. In contrast to the evaluation of compilation 
completion, we demonstrate how an on-line evaluation can give a true indication of 
user satisfaction with one algorithm over another. In this contest between algorithms, 



we find that users are significantly more response to context-boosted ACF over 
standard ACF. 

Section 2 briefly describes the Smart Radio system operation, and introduces the 
idea of a compilation, a user-defined collection of music tracks. We also introduce 
some of the principles of ACF. In section 3 we describe our solution to the 
compilation-building task using a case completion strategy, and in section 4 we 
introduce the idea of a context and the strategy we use to further refine 
recommendations made by the ACF engine. Section 5 presents an offline evaluation 
of the compilation completion technique. By contrast, section 6 introduces an online 
evaluation of the context-boosted ACF technique. Finally, we discuss our conclusions 
and future work in section 7. 

2 Music Recommendation 

Although a late starter, the online retail of music has grown rapidly over the past two 
years. With record companies increasingly making their back catalogues of music 
available on line, consumers are presented with an information overload problem.  
This problem is exacerbated by the fact that, unlike documents, which can be rapidly 
downloaded and scanned for relevance, a music file has a longer download time and 
must be listened to in real time to determine its relevance.   

Smart Radio is a web-based client-server application that allows users to build 
compilations of music that can be streamed to the desktop [17,16,15]. The idea behind 
Smart Radio is to encourage the sharing of music programmes using automated 
recommendation techniques. The unit of recommendation in Smart Radio is the 
compilation, a collection of music tracks assembled on the fly by one listener and 
recommended to other like-minded listeners. 
 

 
Fig. 1. A screen shot of the Smart Radio recommendation screen 

In contrast to text-based information retrieval where a page of text can be 
automatically parsed into a vector of words and indexed for retrieval, there are no 
fundamental units of meaning equivalent to words which can be applied to music 
retrieval [13,9,11]. Furthermore, experts in the area of music come from disparate 
disciplines such as musicology, music cognition, signal processing and music 



librarianship, and there is great difficulty in integrating the knowledge produced in 
these fields [11]. While music information retrieval systems may appear to be decades 
behind text retrieval [9], it is clear that,  with the increasing amount of digital music 
online, there is a pressing need for music personalisation/recommendation techniques. 

  Thus, music recommender systems such as Smart Radio generally rely upon 
techniques such as ACF where explicit content mark-up is not required. The key idea 
in ACF is that users can be clustered together based on their usage patterns. 
Recommendations can be made to a target user based on the accumulated data in 
neighbouring user profiles. As similarity between user profiles is calculated based on 
the intersection of the item ids between profiles and not on content description, ACF 
allows recommendations to be made in domains like music where there is a 
knowledge-elicitation bottleneck. A second strength of ACF is that it can make 
recommendations that would otherwise escape content-based recommender strategies. 
This is because it relies upon implicit knowledge expressed in user preferences that 
may capture the subtle relationship between items that would otherwise escape a 
content-based system [10]. It is this type of implicit knowledge that we wish to 
explore in this paper. 

Recent work in the CBR community has drawn a parallel between ACF and CBR 
as case completion [18,2,24]. The observation in this work is that the typical ACF 
mechanism of incrementally offering recommendations based on user feedback is like 
the case completion process in CBR. In this analogy, the ACF user profile is the 
incomplete case and recommended items are proposed solutions for case completion.  
Despite this, ACF suffers from some weaknesses not apparent in CBR systems. Its 
key strength in recommending surreptitious items is also a prominent weakness. 
Whereas the CBR case has typically been viewed as capturing a single 
problem/solution episode, a single ACF user case may capture several heterogeneous 
episodes reflecting the various interests of the user over time. The ACF recommender 
does not take into account the nature of the content it recommends, and thus, while 
the items it recommends may be suitable in relation to the overall interests of the user, 
they may be entirely unsuitable for the current search task to hand. In the next section, 
we describe a solution to this problem by using short-term, task-oriented profiles.  

3 Compilation Building as Case Completion 

A compilation is a user-defined collection of music, very often made up of a mixture 
of tracks by different artists, but not necessarily so. We view a compilation as a case 
that captures a particular short-term music/information requirement. Apart from its 
component tracks, it also implicitly contains the knowledge and work required to 
assemble the collection. Our hypothesis is that each compilation is built according to 
an implicitly articulated guiding principle.  Thus, each compilation case inherently 
contains information about the relatedness between component tracks. Indeed, it has 
been demonstrated that a similar type of ‘relatedness’ information, useful for accurate 
recommendation, can be mined from lists of favourite artists posted by music fans on 
the internet [10].  



In Smart Radio, a compilation consists of a collection of 10 tracks which is 
assembled for immediate delivery using streaming protocols. Thus, the user must 
choose the composition of the compilation with care because once the compilation 
has started to play, its composition cannot be modified. For this reason, we consider 
that the compilations in Smart Radio should contain implicit knowledge as to what 
tracks ‘fit’ together.  In the next subsection, we describe how we allow users to reap 
the benefit of the compilation-building expertise of previous users. 
 

 
Fig. 2. A screen shot of a compilation advisor system 

3.1 Providing Compilation Completion Advice 

Building a compilation is a context-sensitive task where tracks are selected according 
to a particular theme or idea of the user. The key to this approach is to realise that a 
short-term profile can capture a single problem-solving episode that is better able to 
provide context-sensitive recommendations. Thus, instead of using user profiles to 
make recommendations we choose to tap the specific knowledge in other 
compilations. We draw our methodology in part from the interactive case completion 
framework of the NaCoDae system [3]. As the user adds tracks to a compilation, the 
compilation adviser retrieves similar compilations and offers the user a choice of 
tracks or full compilations to complete his/her compilation. Figure 2 illustrates a 
screen shot for a compilation adviser we have implemented in the music domain [2]. 
The user, Conchuir, has added two tracks to his compilation. In response, the adviser 
immediately presents a list of tracks that would suitably complete this compilation. 
The user can choose these tracks or may select full compilation solutions from the 
compilations tab. 

3.2 Data Sparsity 

Using a compilation as a short-term profile is problematic in that similarity can only 
be measured on items shared in common between compilation profiles. A compilation 
is made up of 10 out of a possible 2148 tracks.  Clearly, many compilations cannot be 
compared because they do not have any tracks in common. In contrast, a typical user 
profile would contain tracks from many sessions and thus have a better chance of 



intersecting with other profiles. We address this problem using the agave algorithm to 
reduce the sparsity of the compilation data set [1,2]. Using agave, each compilation is 
transformed to a less sparse representation that reflects the degree of relatedness of 
each compilation to each of the other 2148 tracks available. This value is called the 
mu value of the track with respect to a particular compilation. For each compilation, t, 
the mu feature value for track u is the summation of the conditional probability that 
track u co-occurs with compilation track, ti. The mu is normalised by n the number of 
non-zero values for P(ti/u). n is thus  the number of values for which there is not a 
zero probability of ti and u co-occurring. 

( / )iP t u
mu

n
=
∑  

(1) 

Thus, for each compilation, we can produce a mu value for each track available, 
transforming the sparse compilation representation into a vector of mu values. 
Intuitively, no calculation of mu is possible for track u if it is not co-frequent at least 
once with ti in any compilation in the compilation data set. Avesani & Aguzzoli have 
demonstrated that agave performs better than singular value decomposition (SVD), 
another technique for reducing sparsity in ACF data sets [2]. Whereas SVD operates 
by collapsing the dimensions of the data set, agave has the advantage of preserving 
the original dimensions. In our evaluation we also use the PSim approach, which also 
addresses the similarity coverage problem in sparse data sets [24]. However, an 
analysis of this technique would suggest that it relies on exactly the same principles as 
agave: the conditional probabilities of co-frequent pairs in the data set.  

4 Recommending Compilations in Context 

Whereas in section 3 we described how we used the implicit compilation-building 
knowledge to help the user build a compilation, we now turn our attention to 
recommending a full compilation. Many of the same issues still apply. Using a typical 
ACF strategy, recommended compilations may not suit the user’s current compilation 
preferences.  Our goal is to make recommendations that are appropriate within the 
user’s listening context. 

In the field of user modelling, the objective in isolating context information is that 
tasks being undertaken by the user may be anticipated and a portion of the work 
carried out automatically in advance. Applications such as Watson [6] and Letizia 
[22,23] which monitor the user’s behaviour and attempt to retrieve or predict relevant 
information have been termed ‘reconnaissance aides’. In both Watson and Letizia the 
context is represented by a content-based analysis of the topics currently of interest to 
the user. If the user digresses or switches subject while researching a topic, both 
reconnaissance aides will require time to respond. However, the advantage of an 
implicitly generated profile is that it is a “zero input” strategy, i.e. the user does not 
need to explicitly describe his/her goals, prior to working [23] 

Our goal is to enhance the ACF technique so that compilations based on the user’s 
current context are promoted but requiring zero input from the user. Our approach is 
to use a MAC/FAC influenced methodology in which an ACF module selects a subset 



of the case base. A second stage retrieval process then ranks these primed cases 
according to their similarity to the user’s listening context. This is indicated by the 
darker shaded cases on the right in Figure 3. 

 
Fig. 3. The two-stage strategy for providing context-sensitive recommendations 

Unlike the examples of the reconnaissance aides described above, which used 
information retrieval analyses to build a short-term user profile, the Smart Radio 
domain suffers from a deficit of content descriptions. Therefore, the solution is to use 
a lightweight case-based representation of each compilation using some freely 
available meta-data.  The content descriptors we use are the genre and artist tags 
found in a few bytes of information at the end of the mp3 file.  Although the 
information this inexpensive process yielded was not particularly rich, the alternatives in 
the music domain are expensive. We transform the compilation representation into a 
case-based representation where the case features indicate the genre/artist mixture 
within the compilation. As the goal is to capture the type of music mix, using the 
available features that would best indicate this property.  We have two feature types 
associated with each track, genre_ and artist_. The case representation we used 
in Smart Radio is illustrated in Table 2.  

Table 1. A case captures the composition of the compilation in terms of the quantity of genres 
and artists present. For reasons of space only one artist feature is shown. 

Feat. type Feature Value 
genre_ Jazz 1 
genre_ Blues 2 
genre_ Folk 3 
genre_ Country 4 
artist_ John Coltrane 1 

 
By playing a compilation the user triggers a context event. The contents of the 

compilation are assumed to indicate the user’s current listening preference. We term 
this contextualising by instance. The transformed compilation has two types of 
feature, genre_ features and artist_ features.  The currently playing compilation 
is used as the target for which we try and find the most similar cases available in the 
ACF recommendation set. Compilation similarity is determined by matching the 
proportions of genre and artist contained in a compilation. In section 6, we present an 
online evaluation of this technique where we test user response to recommendations 
presented from the context-boosted ACF strategy and an ACF strategy.  



4.1 Integrating Context Ranking and ACF  

The content-based strategy in Smart Radio evolved through our identification of the 
problem of insensitivity to user context in version 1.0 of the system. For this reason, 
the content-based strategy was always designed as an augmentation of the primary 
ACF strategy. Within the taxonomy of hybrid strategies suggested by Burke, the 
Smart Radio hybrid is best described as a Cascading system [8]. Unlike the EntreeC 
system, another type of Cascading hybrid, the Smart Radio system uses ACF as its 
primary recommendation strategy and the content-based ranking as a supplemental 
process. A complete description of the integrated ACF−CBR approach we adopt is 
beyond the scope of this paper. Readers are directed to Ref. 15 for a more in-depth 
discussion of the similarity techniques and the architecture we use. 

5 Off-line Evaluation of Case Completion 

As we described in section 3, Cocoa compilations are built according to the ‘expert 
knowledge’ of users. In this section we describe an offline evaluation in which we had 
the following objectives: 

1. To demonstrate that short-term information profiles are more successful than 
typical long-term profiles for a context-sensitive task such as compilation 
completion 

2. To evaluate whether completion information should be based on individually 
retrieved compilations or an aggregation of tracks from the k-nearest 
neighbours. 

5.1 Compilation Completion 

Our evaluation strategy involved simulating a case completion process whereby we 
measured recall at different stages of case completion. The recall measure represents 
the probability that a relevant item will be retrieved. Each compilation in the case 
base is a unique, user-defined collection of music. A leave-one-out approach was used 
whereby we removed a percentage of tracks for each compilation. By retrieving a set 
of k nearest compilations we then attempted to predict the missing tracks. In order to 
simulate performance at difference levels of completion, the missing tracks were 
removed in increments of 10%.  In calculating recall at each percentage of the 
partially completed compilation, the relevant set refers to the set of items removed. 
The algorithms we used are described below. 
TopN: This technique was used as a baseline approach. We recommend the N most 
frequent tracks in the data set   
Overlap_Userbased_knn_topN:  This is the standard user-based ACF algorithm. 
We represent the data in the training set as a set of long-term user profiles containing 
tracks from the compilations that the user has downloaded in the past. Using the 
overlap method, recommendations are made by firstly retrieving the best matching 
user profiles (knn) for the target compilation and then choosing the most frequently 
occurring items in the retrieved profiles (topN) [28]. However, as each user profile 



has a binary representation in terms of tracks, similarity between the target and 
candidate profiles is based on the amount of overlapping tracks.  
Overlap_Comp-based_knn_topN: We then retrieve compilations rather than user 
profiles using the overlap method as before. Again, track recommendations are made 
by choosing the most frequently occurring items in the retrieved profiles. 

The next three approaches use agave sparsity reduction. We make 
recommendations based on the first k compilations retrieved.  
Agave_P_knn: We use the agave sparsity reduction technique. The similarity metric 
is the Pearson coefficient. Recommended items are presented in the order they occur 
in the k ranked compilations.  
Agave_P_knn_rmv_dupl: This is the same as Agave_P_Knn except that items 
already in the target compilations and any lower ranking duplicate items are removed. 
Agave_LS_knn_topN: We use the agave sparsity reduction technique. The similarity 
metric is based on the Least Squares metric used by Shardanand and Maes [30]. 
Recommended items are ranked according to their frequency in the k compilations. 
PSim approach:  This is an implementation of the approach described in Ref. 24. 
The PSim approach and agave techniques are based respectively on Isim and mu 
measures. It can easily be shown that mu and ISim are equivalent. 

5.2 Evaluation methodology 

The Smart Radio data set contains 803 compilations built by listeners to the Smart 
Radio system from a corpus of 2148 tracks. Each compilation has 10 tracks. 

Each compilation in the data set is evaluated using the leave-one-out methodology. 
When we use the agave or PSim approach we recalculate the mu or ISim scores using 
the data set minus the compilation being tested. For each compilation test, recall is 
measured at incremental stages of completion. For example, in the first test we 
remove 90% of the compilation. The remaining 10% is used as the target and the 90% 
we removed acts as the relevant set with which we can calculate the recall score for 
the retrieved tracks. We continue to test in increments of 10% until we finally 
evaluate recall when 90% of the compilation is present and 10% acts as the relevant 
set.  In each test, the retrieval size is set at 10 compilations. In measuring recall, we 
consider the ranked list of tracks produced by each algorithm. Tracks already found in 
the target compilation or duplicates of tracks already ranked higher in the retrieval list 
are considered non-relevant items for the purpose of calculating recall. Thus, 
algorithms which produce duplicates or include tracks already found in the target 
compilation are penalised.  For every retrieval algorithm we set k = 10. However, the 
Agave_P_knn variants only used the track data in the first or second compilation. 

5.3 Results 

Figure 4 illustrates the Recall graph for case completion where the x axis represents 
the percentage of the compilation used as the target compilation. Clearly, the topN 
and user-based approach perform very poorly when faced with a context-specific 
task. The comp-based approach, which utilises short-term profiles in the form of other 



compilations, performs significantly better even though the similarity is based only on 
compilation overlap.  

However, the algorithms which use the short-term profiles and the agave (or PSim) 
sparsity reduction techniques perform best overall. There is no significant winner 
amongst the various permutations we tried. Some performed a little better at early 
stages of the case completion process and others at late stages.  
The significant difference between the performance of the user-based approach and 
the approaches based on compilation retrieval would seem to be due to the loss of 
context information in the user profiles. 

One of our objectives was to test whether presenting compilations in the order they 
are ranked by the similarity metric is an adequate recommendation strategy. Our 
hypothesis is that the first 1 or 2 ranked compilations are likely to contain sufficient 
track information to complete the test compilation. In fact, agave_P_knn and 
agave_P_knn_rmv_dupl perform very well indeed. These algorithms represent the 
view the user would have when choosing the ‘compilations’ tab in Figure 2. All the 
other algorithms aggregate the track data from the k nearest compilations, ranking 
them by frequency, for example. This is equivalent to the view in the ‘tracks’ tab of 
Figure 2. Our evaluation would suggest that the knowledge contained in the first two 
top-ranking compilations is strong enough to compete with the aggregated data from k 
compilations. 
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Fig. 4. Recall graph for compilation completion 

6 An Online Evaluation of Context-boosted ACF vs. ACF 

The evaluation in section 5 is an example of an off-line evaluation of a recommender 
strategy which is typically based on techniques in machine learning and information 



retrieval [5]. However, it has been regularly observed that off-line evaluations of 
recommender systems have a number of shortcomings [31,19,21].  For example, it is 
not at all clear whether users are sensitive to slight improvements in prediction error of 
one algorithm over another. Secondly, an algorithm can only be evaluated on 
predictions it makes on items that have been observed by the user, which may be only a 
fraction of the overall items in the domain. Thus, in an offline evaluation, there is no 
way of measuring ‘true recall’ because we are unable to measure the potential relevance 
of items that have not been rated by the user.   
This problem is particularly apparent when evaluating the success of a recommender 
strategy like the content-boosted ACF where we need to analyse the correctness of the 
ranking produced in response to a context event. It was not clear how we might 
perform this in an off-line setting. Therefore, to test our hypothesis we performed a 
comparative analysis of how the algorithm performs in an online setting. The key idea 
of online evaluation is that we measure whether real people are willing to act based on 
the advice of the system. Unlike the off-line analysis, this methodology plays one 
recommendation strategy against the other in a live system and measures the relative 
degree of success of each strategy according to whether the user utilises the 
recommendations of either system.  A more detailed discussion of our on-line 
evaluation framework for recommender systems is presented in Ref. 19.  

6.1 Evaluation Environment 

The evaluation environment was the Smart Radio system − a live, on-line application 
used by a community of users, with a well defined recommendation task using a 
specific user interface. The application was serviced by two competing recommendation 
strategies: ACF and context-boosted ACF.  In order to be able to gauge a relative 
measure of user satisfaction with the two strategies, we logged the user interactions with 
respect to the recommendations made by either strategy. Other aspects of the 
recommendation process that might have influenced user satisfaction were kept the 
same (interface, interaction model).  The proposed methodology can be seen as a 
competition between two different approaches to solving the same problem (in this case, 
winning user satisfaction).  In this regard, we define three evaluation policies. 

Presentation policy: The recommended compilations in Smart Radio were presented 
as a ranked list. For evaluative purposes, we interleaved recommendations from each 
strategy. As a user is most likely to inspect the top-ranked compilation in the 
recommendation set, this position is alternated between each recommender strategy 
after each compilation ‘play’ event. 

Evaluation policy: defines how user actions can be interpreted to express a 
preference for one algorithm over the other. In this evaluation, a preference was 
registered for one strategy when a user inspected and then played a compilation from 
his/her recommendation set. 

Comparison policy: defines how to analyse the evaluation data in order to 
determine a winner. Obviously, the simplest way is to count the number of rounds 
won by the competing systems.  However, certain algorithms, such as ACF, may only 
start to perform well after sufficient data has been collected.  Therefore, we analyse 
the performance of each system over time. As individual users may have different 



degrees of interaction with the system, we also make a comparative analysis of 
different types of users. 

6.2 Results 

The results refer to the listening data of 58 users who played a total of 1012 
compilations during the 101-day period from 08/04/2003 until 17/07/2003. Table 2 
gives the breakdown of the sources for compilations played in the system for this 
period. The recommendation category was by far the most popular means of finding 
compilations. We should also note that building compilations from scratch or 
explicitly searching for compilations should not be considered ‘rival’ categories to the 
recommendation category given that an ACF-based system requires users to find a 
proportion of new items from outside the recommendation system itself. 

Cumulative Score: Table 3 gives the cumulative breakdown between ACF and 
context-boosted ACF recommendations for the period. From a total of 504 
recommended compilations played, 311 were sourced from content-boosted 
recommendations, while 177 came from normal ACF recommendations. 16 came 
from bootstrap recommendations which we haven’t discussed here. 

Interval-Based Evaluation: In order to check that these results were consistent 
throughout the evaluation period, we divided the period into 15 intervals of one week. 
Figure 8 shows the proportions of ACF to context-boosted recommendations analysed 
on a weekly basis for the period. We can see that the context-boosted ACF 
continually outperformed the pure ACF recommendation strategy. We have tested 
these results using a paired t-test and found them to be statistically significant within a 
confidence level of 99%. 

User-based Evaluation: An analysis of our users’ behaviour demonstrated 
considerable variance. During the evaluation period we had users who used the 
system several times a week, sometimes for hours every day, as well as other users 
who used the system much less frequently. In order to check that the performance of 
our recommender holds for different degrees of usage, we split the dataset according 
to the number of compilations each user listened to. There are 10 categories in which 
users may fall, representing different degrees of usage of the system. Figure 9 
illustrates the comparative success of the two strategies in each usage range. 
Whilst ACF is marginally greater in two intervals, if we use a paired t-test on the 
individual user recommendation data we find that the hypothesis, ACF ≤ context-
boosted ACF once again holds with a confidence level of 95%. However, Figure 3 
would suggest that the preference for context-boosted ACF is more pronounced 
among regular users of the system.  Light users simply might not have used the 
system enough to have formed a preference for either recommendation strategy. 
Heavier users, on the other hand, have a much greater chance to explore the facilities 
of the system and implicitly express preferences for one strategy over another through 
regular use.  



Table 2. Source of compilations played from 24:00 08/04/2003 until 24:00 17/07/2003 

Source Number Percentage 
Top Compilations 87 8 
Past Compilations 194 19 
Trusted Neighbour 23 2 
Recommendations 504 50 
Explicit Search 94 9 
Compiled from Scratch 110 11 

Table 3. The cumulative scores for the ACF vs. context-boosted ACF analysis 

Algorithm name Number of ‘play’ impressions Percentage 
Standard ACF 177 35 

Context-boosted ACF 311 62 
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Fig. 5. ACF vs. context-boosted ACF over 15 weekly intervals 
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Fig. 6. A user-based analysis of the evaluation 



7 Conclusions 

In this paper we demonstrate the importance of considering the context of the online 
user’s interests or tasks. In the domain of music, however, there is great difficulty in 
extracting content or knowledge with which to model user profiles. Conventionally, 
the ACF technique is used. However, ACF makes recommendations based on a global 
model of the user’s interests. We show how short-term profiles in the form of 
collections of music are much more successful in providing advice in the compilation-
building exercise. The key observation we make is that such short-term collections 
contain implicit knowledge as to the relatedness of their component tracks.  However, 
we note that typical off-line approaches are limited to evaluating algorithmic 
performance on items the user has rated in the past. In our second evaluation we 
demonstrate how an online test gives evidence of user satisfaction with one strategy 
over another. In particular, we show user preference for a context-enhanced ACF 
algorithm over a standard ACF algorithm. 
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