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Abstract: Cross-sectioning is a popular method for visualizing the complicated 
inner structures of three-dimensional volume datasets. However, the process is 
usually manual, meaning that a user must manually specify the cross-section’s 
location using a repeated trial-and-error process. To find the best cross-sections, 
this method requires that a user is knowledgeable and experienced. This paper 
proposes a method for automatically generating characteristic cross-sections 
from a given volume dataset. The application of a volume skeleton tree (VST), 
which is a graph that delineates the topological structure of a three-dimensional 
volume, facilitates the automated generation of cross-sections giving good rep-
resentations of the topological characteristics of a dataset. The feasibility of the 
proposed method is demonstrated using several examples. 

1.   Introduction 

The visualization of volume datasets is important in many scientific fields, from geo-
physics to biomedical sciences. Researchers have proposed a number of visualization 
techniques, including volume rendering and isosurface extraction, but it is still diffi-
cult to comprehend the complicated inner structures of volume datasets. 

Volume rendering is one of the most commonly used visualization techniques, in 
which a transfer function (TF) determines how the volume dataset is rendered. The 
design of the TF, which assigns opacity and color values to each voxel in the data, is 
crucial and has become a significant research topic. Researchers have proposed many 
different semi-automatic transfer function design methods, which can be divided into 
two major categories: image-centric [1, 2] and data-centric [3-6]. An image-centric 
method presents a broad selection of TFs and generates corresponding visualization 



images so that the user can choose the best one [1, 2]. However, these methods do not 
consider the meaning (i.e., significant features) of target volume datasets. In contrast 
to image-centric methods, a data-centric method tries to find the best transfer function 
by rigorously analyzing these features of the input volume datasets [3-6]. 

Isosurface extraction is another commonly used visualization technique that ren-
ders a three-dimensional surface corresponding to points with a single scalar value. 
Lyness and Blake presented real time isosurface browsing [7], and Itoh and Koya-
mada presented a method for automatic isosurface propagation [8]. However, both 
volume rendering and isosurface extraction techniques are still limited in their ability 
to help researchers visualize detailed structures, because two-dimensional projection 
of three-dimensional volumetric information always involves some occlusions.  

Therefore, users frequently use cross-sections to inspect the inner structures of a 
volume dataset. Detailed illustrations in biology textbooks and scientific magazines 
demonstrate the effectiveness of using cross-sections of a volumetric object to explain 
internal structures. Many researchers have explored ways to enhance cross-sectioning 
of volume datasets. Owada et al. presented an interactive system for designing and 
browsing volumetric illustrations [9], with which a user can cut a three-dimensional 
model and see detailed textures of its internal structure in the cross-section. Hinckley 
et al. discussed a two-handed user interface for three-dimensional neurosurgical visu-
alization [10]; their technique involves generating a cutting plane by operating two 
devices: one corresponding to the target volume; the other corresponding to the cut-
ting plane. Viega et al. proposed three-dimensional magic lenses [11]; the lens vol-
ume is set interactively, changing the visual appearance of the geometry intersecting 
the lens volume. Diepstraten et al. presented ways to map cutaway renderings directly 
to modern graphics hardware in order to achieve interactive frame rates [12]. All of 
these existing systems require users to manually search for an ideal cross-section by 
fine-tuning many parameters; this is tedious and time-consuming. In addition, users 
may fail to find a cross-section that appropriately illustrates the volume dataset’s 
inner structures. 

To address these problems, we present a method for the automatic generation of 
cross-sections that reveal characteristic structures of a volume dataset. To extract the 
characteristic structures of a volume dataset, we use an abstract graph called a volume 
skeleton tree [13], which represents splitting and merging of isosurfaces with a vary-
ing scalar field value. Each node of the graph represents a critical point where merg-
ing and splitting happens, and each link represents a region between the isosurfaces 
represented by its end nodes. Volume skeleton trees have been used to perform im-
portant operations in analyzing volume datasets, such as extraction of a critical iso-
surface or representative isosurface [13] and interval volume decomposition (IVD) 
[14].  Several authors have proposed methods for extracting similar skeletons from 
volume datasets [15-17]. While these algorithms are computationally elegant, they do 
not address changes in isosurface topology (i.e., genera) with respect to the scalar 
field value, and hence cannot maintain topological consistency of extracted features. 

Our method is related to other systems that find characteristic views of target ob-
jects. Chakravarty and Freeman [18] presented a method to classify all possible views 
of an object into a set of characteristic views, within which all views are topologically 



identical. Agrawala et al.’s system searches for a view that increase the visibility of 
the parts to create effective assembly instructions [19]. 

This paper begins with a description of the algorithm for extracting a volume 
skeleton tree from a volume dataset. Then, Section 3 describes the algorithm for gen-
erating cross-sections of a volume dataset based on the extracted VST and cross-
section indication techniques. Section 4 is an application of the methodology. Finally, 
Section 5 discusses the methodology’s extensibility and limitations and addresses 
related issues for future research. 

2.   The Volume Skeleton Tree 

In general, volume data is represented as a three-dimensional single-valued function: 

w = f (x, y, z) (1) 

where x, y, and z represent ordinary three-dimensional coordinates and w represents 
the corresponding scalar field value. A volume is continuous when it is defined as an 
analytic function, but it usually consists of discrete grid samples. In this case, we 
apply linear interpolation to construct a continuous volume. Given a continuous vol-
ume, isosurfaces can be extracted by collecting points with a constant scalar value. 
By gradually changing the scalar value, a sequence of isosurfaces with varying topo-
logical structure can be determined. A volume skeleton tree (VST) [13] represents 
such global topological changes in the form of a tree. 

A VST node represents a critical point where either the number of connected com-
ponents or the genus of the isosurfaces changes when reducing the scalar value. They 
are classified into four groups: maxima (C3), saddles (C2), saddles (C1), and minima 
(C0), which represent isosurface appearance, merging, splitting, and disappearance, 
respectively (Figure 1). A VST link represents an isosurface component that is termed 
solid if it expands and hollow if it shrinks; solid links are represented as single lines, 
and hollow links as double lines. The isosurface merging at C2 and splitting at C1 has 
four topological transition paths with different isosurface spatial configurations. For 
convenience, there is an assumption that all boundary voxels are connected to the 
virtual minimum with a scalar field value of −∞ [13]. Note that when the node is the 
virtual minimum, the link incident to a C0 node is solid, as shown in Figure 1. In this 
model, the node has coordinates and a scalar field value, while the link has the genus 
and index of adjacent nodes. 

Figure 2(a) shows an isosurface structure of a volume dataset, calculated from the 
following analytic volume function: 

 f (x, y, z ) = 4c2 (( x- R)2 + (z – R)2 ) 
  – (( x- R)2 + y2 + (z – R)2 + c2 – d2)2

  + 4c2 ((x + R )2 + (z + R)2) 
  – (( x + R)2 + y2 + (z + R)2 + c2 – d2)2

   Where 0 < d < c, c2 + d2≥ 6R2.  

(2) 

Function (2) has six critical points: P1, P2 (appearance), P3, P4 (merging), P5 (split-
ting), and P6 (disappearance). 
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Figure 1. The connectivity of a critical point of each type in a volume skeleton tree: Single and 
double lines represent links corresponding to solid and hollow isosurfaces, respectively. 
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Figure 2. Topological analysis of the analytic volume function (2): (a) A change in isosurface 
and critical points; (b) The corresponding volume skeleton tree. 

 
As described previously, this algorithm accounts for the virtual minimum; this is 

artificially added to the volume function (1) so that we can think of an input dataset 
as a topological three-dimensional sphere S3. This enables us to check the mathemati-
cal consistency of extracted critical points by consulting the Euler formula [11]: 

#{C3} – #{C2} + #{C1} – #{C0} = 0 (3) 

where #{Ci} represents the number of critical points of index i. 
Although the volume skeleton tree effectively captures the topological skeleton of 

a volume dataset, it is often affected by high-frequency noise that produces a signifi-
cant number of minor critical points. Therefore, it is necessary to remove minor criti-
cal points and simplify the VST in order to exract an important global skeleton from 
an unknown volume. This process is currently semi-automatic; the system gradually 
simplifies the tree until the user satisfies the result and stops the process. 



3.   Generating Cross-sections 

Our basic idea is to use a VST to extract characteristic points from a dataset and then 
cut the dataset with a plane that best fits these target points. For example, we can 
consider the volume function (2) introduced in the previous section. Our goal is to 
extract characteristic cross-sections, such as those shown in Figure 3; The dataset has 
three axes of symmetry. Figure 3 shows three different cross-sections each of which 
passes through the dataset's center of gravity and two of these axes. This section de-
scribes an algorithm to generate such cross-sections using a VST. 
 

P3

P5

P4

P1

P2
P3

P5

P4

P1

P2

P1

P2

P5

P1

P2

P5

P3

P4

P5

P3

P4

P5

 
                    (a)                                          (b)                                          (c) 

Figure 3. Examples of cross-sections of the analytic function volume (2): (a) A cross-section 
passing through many critical points; (b), (c) Cross-sections passing through axes of symmetry. 

3.1.   Computing Cutting Planes using Volume Skeleton Trees 

A simple method to generate a cutting plane is ‘least-squares’ fitting to a group of 
critical points of N. We can construct a covariance matrix (4) of the points: 
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(4) 

where x , y  and z  are averages of x, y and z, respectively. Then, we calculate the 
eigenvalues and eigenvectors. We can then construct three planes, each of which 
passes through the center of gravity of the point group and includes any two of the 
three eigenvectors. By default, the system uses the plane that includes two eigenvec-
tors paired with the two major eigenvalues, but the user can also select two other 
cross-sections. This selectivity is important because the default cross-section is not 
always the desired one. We are testing two techniques to obtain target points; one 
focuses on VST nodes (critical points) and the other focuses on VST links (interval 
volumes). 

The first technique uses critical points as a fitting target; this provides cross-
sections to reveal points where the isosurface topology is going to change. 



The second technique computes the center of gravity of each interval volume and 
uses them as a fitting target; weight is assigned to points based on the volume size, 
and used when fitting the plane. 
 

3.2.   Displaying Cross-sections 

A cross-section is displayed to the user using one of the following three methods: 
The first method converts each of the field values in a cross-section into a suitable 

color value and displays them on screen. This provides a user with detailed informa-
tion because the user can see the exact value of each point in the cross-section. 

The second method polygonizes isosurfaces associated with critical points and cuts 
them at the given cutting plane; the system then makes the near side of the plane 
transparent, making internal structures visible. This method is useful for allowing a 
user to know the cutting plane’s location and to operate on isosurfaces (e.g., hiding an 
isosurface by clicking on it). 

The third method volume-renders the dataset on the far side of the cutting plane. 
This display method does not show the exact values of the cross-section, however can 
be expected to provide a significant visual effect to be able to embed 2.5 dimensional 
information in 2D images. 

Figure 3 shows that our method can find appropriate cross-sections of function (2). 
In this example, we used the third method; Figure 3(a) is rendered with the best-
fitting plane. Figure3 (b) and (c) are rendered with the two next-best candidates. 

4.   Application to Real Datasets 

We applied our method to three datasets taken from quantum science and medical 
science in order to demonstrate its applicability to real datasets. In each dataset, scalar 
field values were normalized to an 8-bit range [0, 255]. The system runs in an ordi-
nary PC environment (CPU: Pentium IV, 1.6 GHz, RAM: 1 GB).  

As we described in the algorithm section, we implemented and tested two tech-
niques for computing a cutting plane: one using critical points and the other using 
interval volumes. However, the resulting cutting planes were almost identical, so we 
only provide results obtained using the first technique. In future work, we will inves-
tigate the differences in more details. 

4.1.   Tooth 

The first target was a medical CT-scanned dataset, hereafter called ‘tooth’, which 
consists of 128×128×80 voxel data with 8-bit scalar values. The original dataset 
(256×256×161, 16-bit) was used as one of three target datasets in an interesting panel 
in Visualization 2000 [20, 21]. The dataset suffers from high-frequency noise, and 
was downsized into 16×16×10 voxels to generate the volume skeleton tree. 



An automatic analysis with default settings oversimplified the VST, so we inter-
rupted the simplification process along the way, producing six critical points. This 
effectively allowed us to distinguish the tooth’s four anatomical regions (cement, 
enamel, dentin, and pulp) (Figure 4).  

Figure 5(a) shows a volume-rendered image of the target dataset using an accentu-
ated transfer function; Figures 5(b), (c), and (d) show cross-sections of the dataset. 
Figure 5(b) shows a volume-rendered image of the cross-section; Figure 5(c) shows a 
cross-section obtained by cutting off a polygon; and Figure 5(d) shows a volume-
rendered image of the dataset on the far side of the cutting plane. 

 

245245

213213

201201

135135

77

245

213

201

135

7
7

scalar field value

 
                                   (a)                                            (b) 

Figure 4. National Library of Medicine (NLM) tooth volume: (a) A change in isosurface and 
critical points; (b) The corresponding volume skeleton tree. 

 
           (a)                             (b)                              (c)                              (d) 

Figure 5. Visualization of the National Library of Medicine (NLM) tooth volume: (a) Volume-
rendered image of target datasets using an accentuated transfer function; (b) Volume-rendered 
image of cross-section; (c) Cutting off a polygon; (d) Volume-rendered image of the dataset on 
the far side of the cutting plane. 

 



4.2.   Antiproton-Hydrogen Atom Collision 

The second example is an antiproton-hydrogen atom collision at an intermediate-
collision energy in which a single antiproton collide with a single hydrogen atom. 
Details of the formulation and established numerical schemes can be found in [22]. 

Figure 6(a) shows a volume-rendered image of the target dataset using an accentu-
ated transfer function; Figures 6(b), (c), and (d) show cross-sections of the dataset. 
Figure 6(b) shows a volume-rendered image of the cross-section; Figure 6(c) shows a 
cross-section obtained by cutting off a polygon; and Figure 6(d) shows a volume-
rendered image of the dataset on the far side of the cutting plane. By using VST, the 
system successfully finds the characteristic cross-section that contains a point where 
the proton collides with the hydrogen atom.  

 

 
            (a)                              (b)                               (c)                              (d) 

Figure 6. Visualization of an antiproton-hydrogen atom collision: (a) Volume-rendered image 
of the target datasets using an accentuated transfer function; (b) Volume-rendered image of the 
cross-section; (c) Cutting off a polygon; (d) Volume-rendered image of the dataset on the far 
side of the cutting plane. 

 

4.3.   Nucleon 

The last target is a ‘nucleon’ dataset, obtained by simulating the two-body distribu-
tion probability of a nucleon in the atomic nucleus of 16O [23]; its resolution here is 
41×41×41. 

Figure 7(a) shows a volume-rendered image of the target datasets using an accen-
tuated transfer function; Figures 7(b), (c), and (d) show cross-sections of the dataset. 
Figure 7(b) shows a volume-rendered image of the cross-section; Figure 7(c) shows a 
cross-section obtained by cutting off a polygon; and Figure 7(d) shows a volume-
rendered image of the dataset on the far side of the cutting plane. Figure 7(c) demon-
strates that a cross-section actually passes through all the critical isosurfaces. 

 



 
            (a)                              (b)                               (c)                             (d) 

Figure 7. Visualization of the nucleon: (a) Volume-rendered image of target datasets using an 
accentuated transfer function; (b) Volume-rendered image of the cross-section; (c) Cutting off 
a polygon; (d) Volume-rendered image of the dataset on the far side of the cutting plane. 

5. Conclusion and Future Work 

This paper proposed a method for automatically generating characteristic cross-
sections a given volume dataset of based on topological structure. Furthermore, we 
have implemented a prototype system to prove the effectiveness of the method and 
performed an experiment with various datasets. Existing system requires the user’s 
knowledge and experience to find characteristic cross-sections. We automated the 
process and confirmed that our system can find appropriate cross-sections without 
tedious manual control. 

In the future, we plan to extend our algorithm to generate cross-sections including 
curved surfaces and multiple planes. We also intend to try other methods, such as 
medial axes and generalized symmetry for analyzing inner structures, to apply auto-
matic cross-sectioning to other model representations, in particular surface models. 
Finally, we would like to design better user interfaces for examining volume datasets. 
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