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Abstract

Graph homomorphism, also called H-coloring, is a natural generalization of
graph coloring: There is a homomorphism from a graph G to a complete graph
on k vertices if and only if G is k-colorable. During the recent years the topic of
exact (exponential-time) algorithms for NP-hard problems in general, and for
graph coloring in particular, has led to extensive research. Consequently, it is
natural to ask how the techniques developed for exact graph coloring algorithms
can be extended to graph homomorphisms. By the celebrated result of Hell and
Nešetřil, for each fixed simple graph H, deciding whether a given simple graph
G has a homomorphism to H is polynomial-time solvable if H is a bipartite
graph, and NP-complete otherwise. The case where H is a cycle of length 5 is
the first NP-hard case different from graph coloring. We show that, for a given
graph G on n vertices and an odd integer k ≥ 5, whether G is homomorphic to
a cycle of length k can be decided in time min{

(
n

n/k

)
, 2n/2} · nO(1). We extend

the results obtained for cycles, which are graphs of treewidth two, to graphs of
bounded treewidth as follows: If H is of treewidth at most t, then whether G
is homomorphic to H can be decided in time (2t+ 1)n · nO(1).
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1 Introduction

Given two undirected graphs G and H, a homomorphism from G to H is a mapping
ϕ : V (G) −→ V (H) that satisfies the following: {x, y} ∈ E(G) =⇒ {ϕ(x), ϕ(y)} ∈
E(H) for every x, y ∈ V (G). When there is a homomorphism from G to H we say
that G is homomorphic to H. The problem of deciding whether graph G is homo-
morphic to graph H is called HOM(G,H). This problem can be seen as labeling,
or coloring, the vertices of G by the vertices of H, and this is why it is often also
called the H-coloring problem. Note that for the special case when H is a complete
graph on k vertices, G is homomorphic to H if and only if the chromatic number of
G is at most k. We refer to the recent book [13] for a thorough introduction to the
topic.

For graph classes G and H we denote by HOM(G,H) the restriction of the graph
homomorphism problem to input graphs G ∈ G and H ∈ H. If G or H is the
class of all graphs then they are denoted by the placeholder ‘ ’. The computational
complexity of graph homomorphism was studied from different ‘sides’.

‘Left side’ of homomorphisms. For any fixed graph G, HOM(G, ) is trivially
solvable in polynomial time. Several authors independently showed that HOM(G, )
is solvable in polynomial time if all graphs in G have bounded treewidth. In this case
polynomial-time algorithms can be obtained even for counting homomorphisms [8].
Grohe, concluding from the results of Dalmau et al. [7], showed that HOM(G, ) is
solvable in polynomial time if and only if the cores of all graphs in G have bounded
treewidth (under some parameterized complexity theoretic assumptions) [11].

‘Right side’ of homomorphisms. Hell and Nešetřil showed that for any fixed
simple graph H, the problem HOM( ,H) is solvable in polynomial time if H is bi-
partite, and NP-complete if H is not bipartite [12]. This resolves the complexity
classification of the whole right side of homomorphisms, and provides a P vs. NP
dichotomy. Consequently the study of the right side of homomorphisms for undi-
rected graphs almost stopped, as research has been mainly concentrated on finding
polynomial-time algorithms for special graph classes from the ’left’ side.

However for the special case of graph homomorphism, graph coloring, extensive
work has been done recently resulting in faster and faster exponential-time algo-
rithms. The recent best bounds are an O(1.3289n)-time algorithm for 3-coloring
[4], an O(1.7504n)-time algorithm for 4-coloring [5], an O(2.1020n)-time algorithm
for 5-coloring [6], and an O(2.1809n)-time algorithm for 6-coloring [6]. For k ≥ 7,
the k-coloring problem can be solved in time O(2.4023n) [5].

Despite considerable progress on exponential-time algorithms for graph coloring
problems, not much is known on exponential-time algorithms for the graph homo-
morphism problem. By the result of Hell and Nešetřil, HOM( ,H) is polynomial-
time solvable when H is bipartite. Another ‘easy’ case is when χ(H) = ω(H), i.e.,
the chromatic number of H is equal to its maximum clique size. It is not hard
to show that in this case the HOM( ,H) problem is equivalent to the k-coloring
problem with k = χ(H). Consequently the HOM( ,H) problem is equivalent to the
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χ(H)-coloring problem for all perfect graphs H.
All this motivates us to study exact exponential-time algorithms for HOM( ,H)

with graphs H satisfying χ(H) > ω(H). Thus chordless cycles of odd length are
the first natural candidates to study exponential-time algorithms for graph homo-
morphisms. For the cycle C3 on 3 vertices HOM( , C3) is equivalent to 3-coloring,
but already for the cycle C5 on 5 vertices no better deterministic algorithm than
the brute-force O∗(5n) time algorithm has been known. (Throughout this paper, in
addition to the standard big-Oh notation O, we sometimes use a modified big-Oh
notation O∗ that suppresses all polynomially bounded factors. For functions f and
g we write f(n) = O∗(g(n)) if f(n) = g(n) · nO(1).)

Our results. In this paper we initiate the study of exponential time complex-
ity of graph homomorphism problems beyond graph coloring. We show that for
a graph G on n vertices and an odd integer k ≥ 5, HOM(G,Ck) is solvable in
O∗(min{

(
n

n/k

)
, 2n/2}) time, where Ck is the cycle on k vertices. In particular, the

running time of our algorithm is O(1.64939n) when k = 5, O(1.50700n) when k = 7,
O(1.41742n) when k = 9, and O(αn) with α <

√
2 for all k ≥ 11. It is interesting

to note that, for k ≥ 15, our algorithm for homomorphism to Ck is faster than the
fastest known 3-coloring algorithm. Hence the natural conjecture that HOM( , Ck)
is at least as difficult as 3-coloring for every odd k ≥ 5 might be mistaken. Our
algorithms use 2-SAT expressions to search for suitable extensions of an initial par-
tial homomorphism: a maximal independent set of G to be mapped to a carefully
chosen subset of vertices of H. To enumerate all possible preliminary choices we use
known algorithms to enumerate all maximal independent sets.

Treewidth and tree decompositions are of great importance in structural graph
theory and graph algorithms. Many NP-hard problems become polynomial-time or
even linear-time solvable when the input is restricted to graphs of bounded treewidth.
We refer to [3] for a survey on this parameter. It seems that the treewidth can be
a useful tool to design exponential-time algorithms as well. We use dynamic pro-
gramming techniques similar to bounded treewidth techniques to solve HOM(G,H)
in time O∗((2 · tw(H) + 1)|V (G)|), assuming that an optimal tree decomposition of
H is known in advance.

2 Preliminaries

We consider undirected and simple graphs, where V (G) denotes the set of vertices
and E(G) denotes the set of edges of a graph G. For a given subset S of V (G), G[S]
denotes the subgraph of G induced by S, and G−S denotes the graph G[V (G) \S].
S is an independent set if G[S] is a graph with no edges, and S is a clique if G[S] is
a complete graph. The set of neighbors of a vertex v in G is denoted by NG(v), and
the set of neighbors of a vertex set S is NG(S) =

⋃
v∈S NG(v) \ S.

Kk denotes the complete graph on k vertices and Ck denotes the chordless cycle
on k vertices. A coloring of a graph G is a function f assigning a color to each vertex
of G such that adjacent vertices have different colors. A k-coloring of a graph uses

3



at most k colors, and the smallest number of colors in a coloring of G is denoted by
χ(G). The maximum size of a clique in a graph G is denoted by ω(G)

Given a mapping ϕ : V (G) −→ V (H) and a set S ⊆ V (H), we denote by ϕ−1(S)
the set of all those vertices of G that are mapped to a vertex of S.

The notion of treewidth was introduced by Robertson and Seymour. A tree
decomposition of a graph G = (V,E) is a pair ({Xi : i ∈ I}, T ), where {Xi : i ∈ I}
is a collection of subsets of G (these subsets are called bags) and T = (I, F ) is a tree
such that the following three conditions are satisfied:

1.
⋃

i∈I Xi = V (G).

2. For all {v, w} ∈ E(G), there is an i ∈ I such that v, w ∈ Xi.

3. For all i, j, k ∈ I, if j is on a path from i to k in T then Xi ∩Xk ⊆ Xj .

The width of a tree decomposition ({Xi : i ∈ I}, T ) is maxi∈I |Xi| − 1. The
treewidth of a graph G, denoted by tw(G), is the minimum width over all its tree
decompositions. A tree decomposition of G of width tw(G) is called an optimal tree
decomposition of G.

3 Homomorphisms to odd cycles

Recall that HOM(G,Ck) is solvable in polynomial time if k is even, and NP-complete
if k is odd. We study the case when k ≥ 5 is an odd integer. Throughout the
remainder of this section we assume the input graph G to be non bipartite, since
every bipartite graph is homomorphic to K2, and thus also homomorphic to Ck for
all k ≥ 3.

For a given graph G and a vertex subset S ⊆ V (G), we define the levels of
breadth first search starting at S as follows:

• L0(S) = S;

• Li(S) = NG(Li−1(S)) \
⋃

j<i Lj(S), for i > 0.

Lemma 1. Let k ≥ 3 be an odd integer. A non bipartite graph G = (V,E) is
homomorphic to Ck if and only if there is a set S ⊂ V such that

• |S| ≤ |V (G)|/k,

• the levels L0(S), L1(S), L2(S), . . . , Lb k
2
c−1(S) are independent sets in G,

• the graph G− S is bipartite, and

• there is a coloring of vertices of L1(S), L2(S), . . . , Lb k
2
c(S) in Red and Blue

such that every two adjacent vertices from different levels have the same color,
and every two adjacent vertices from Lb k

2
c(S) have different colors.
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Proof. Let us choose a vertex v ∈ V (Ck) and let R = (v, r1, r2, . . . , rbk/2c) and
B = (v, b1, b2, . . . , bbk/2c) be the two edge disjoint paths in Ck of length bk/2c starting
at v.

Let G be homomorphic to Ck. Since G is not bipartite, every homomorphism
from G to Ck is surjective. Hence there is a homomorphism τ from G to Ck such
that |τ−1(v)| ≤ |V (G)|/k. We define S = τ−1(v). We then choose a homomorphism
ϕ : G −→ Ck that minimizes∑

1≤i≤bk/2c

|ϕ−1(ri)|+ |ϕ−1(bi)|
i

(1)

subject to ϕ−1(v) = S.
By (1), every vertex of ϕ−1(ri), i ∈ {1, 2, . . . , bk/2c − 1}, is adjacent in G to

a vertex of ϕ−1(ri−1). In fact, suppose on the contrary that there is a vertex x ∈
ϕ−1(ri) that is not adjacent in G to any vertex of ϕ−1(ri−1). Then there is a
homomorphism φ from G to Ck such that φ(y) = ϕ(y) for all y 6= x, and φ(x) = ri+2

if i ≤ bk/2c − 2 and φ(x) = bbk/2c if i = bk/2c − 1. But the existence of such
a homomorphism contradicts (1). By similar arguments, every vertex of ϕ−1(bi)
i ∈ {1, 2, . . . , bk/2c − 1} is adjacent to a vertex of ϕ−1(bi−1).

Thus for every i ∈ {1, 2, . . . , bk/2c − 1}, the vertices of ϕ−1(ri) ∪ ϕ−1(bi) form
the level Li(S) of breadth first search starting at S in G. Furthermore, each of these
sets is an independent set. The graph G− S is bipartite because it is homomorphic
to a path. For i ∈ {1, 2, . . . , bk/2c}, we color the vertices of ϕ−1(ri) in Red and the
vertices of ϕ−1(bi) in Blue. Such a coloring satisfies the conditions of the lemma.

Now suppose that there is a vertex set S ⊆ V (G) and a breadth first search
starting at S satisfying the conditions of the lemma. We construct a homomorphism
from G to Ck by mapping S to v. For i ∈ {1, 2, . . . , bk/2c−1}, all Red vertices from
level Li(S) are mapped to ri and all Blue vertices from level Li(S) are mapped to bi.
For i ≥ bk/2c, Red vertices from level Li(S) are mapped to rbk/2c and Blue vertices
from level Li(S) are mapped to bbk/2c.

We need the following algorithmic version of the result from [14] which is due to
Byskov [5].

Proposition 2 ([5]). All maximal independent sets in a triangle-free graph on n
vertices can be listed in time O∗(2n/2).

Lemma 3. For a given graph G on n vertices, HOM(G,Ck) can be solved in
O∗(

(
n

n/k

)
) time.

Proof. By Lemma 1, a non bipartite graph G is homomorphic to Ck if and only if
there is a set S ⊆ V (G) satisfying the conditions of the lemma.

For a given (independent) set S, one can decide whether S satisfies the conditions
of Lemma 1 as follows.
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1. Find the levels L0(S), L1(S), L2(S), . . . , Lm(S) of breadth first search at S. If
all sets L0(S), L1(S), L2(S), . . . , Lb k

2
c−1(S) are independent sets in G proceed

to step 2.

2. Check if G− S is bipartite. If it is bipartite proceed to step 3.

3. To decide whether there is a coloring of L1(S) ∪ L2(S) ∪ · · · ∪ Lb k
2
c(S) which

meets the condition of Lemma 1, we reduce the problem to 2-SAT as follows.
We encode every vertex x of L1(S) ∪ L2(S) ∪ · · · ∪ Lb k

2
c(S) by a boolean

variable x such that x = true means that vertex x is colored Red, and variable
x = false means that vertex x is colored Blue. Every edge {x, y} between
Li(S) and Li+1(S), for each 1 ≤ i ≤ bk

2c− 1, is encoded by two clauses (x̄∨ y)
and (x∨ ȳ). This forces vertex x and vertex y to receive the same color. Every
edge {u, v} with both endpoints in Lb k

2
c(S) is encoded by two clauses (u ∨ v)

and (ū ∨ v̄). This forces vertex u and vertex v to receive opposite colors.
The corresponding 2-SAT formula is satisfiable if and only if S satisfies the
conditions of Lemma 1 and there is a homomorphism from G to Ck that can
be derived from S.

Consequently, for each given set S, constructing a homomorphism from G to
Ck using S or concluding that S cannot be used can be done by solving the corre-
sponding 2-SAT formula, and thus requires polynomial time. There are less than
(n/k)

(
n

n/k

)
different subsets S of size at most n/k. Hence the total running time is

O∗(
(

n
n/k

)
).

The following algorithm improves upon the running time of the previous one for
k ∈ {5, 7, 9}.

Lemma 4. For a given graph G on n vertices, and an odd integer k ≥ 5, HOM(G,Ck)
can be solved in O∗(2n/2) = O(1.41422n) time.

Proof. We may assume that G = (V,E) is not bipartite. Furthermore Ck is 3-
colorable and triangle-free for every odd integer k ≥ 5. Thus G is homomorphic to
Ck implies that G is 3-colorable and triangle-free.

Let v1, v2, v3, . . . , vk−1, vk be the vertices of Ck, with vi adjacent to vi+1 (where
indices are taken modulo k). We choose the following maximal independent set of
Ck: U = {v2, v4, . . . , vk−3, vk−1}. Suppose there is a homomorphism ϕ : G −→ Ck.
Then ϕ−1(U) is an independent set of G. We claim that in this case there is even
a homomorphism ψ : G −→ Ck such that ψ−1(U) is a maximal independent set of
G. Let x ∈ V (G) \ ϕ−1(U) such that {x} ∪ ϕ−1(U) is an independent set of G, and
let y be a neighbor of x in G. Then {x, y} ∈ E(G) implies {ϕ(x), ϕ(y)} = {v1, vk}.
Thus the following modification of ϕ is a homomorphism from G to Ck. Let I ′ ⊆
V (G) \ ϕ−1(U) such that I = I ′ ∪ ϕ−1(U) is a maximal independent set of G. We
define a homomorphism ψ : G −→ Ck such that ψ−1(U) = I ′. For every vertex

6



v ∈ V (G) \ I ′, we let ψ(v) = ϕ(v). For every vertex v ∈ I ′, we let ψ(v) = v2 if
ϕ(v) = vk, and we let ψ(v) = vk−1 if ϕ(v) = v1.

The goal of our algorithm is to test, for every maximal independent set I of G,
whether there is a homomorphism ψ : G −→ Ck such that ψ−1(U) = I. By the above
claim, ψ must exist if G is homomorphic to Ck. For every maximal independent set
I in G the test is done as follows: First, if G− I is not bipartite, then reject I since
a non bipartite graph cannot be homomorphic to H −U which consists of a K2 and
(k− 1)/2 isolated vertices. If G− I is bipartite, let A be the set of isolated vertices
of G − I, and let J be the set of vertices in connected components of G − I that
have at least two vertices. Clearly V (G) = I ∪ A ∪ J . Furthermore, since G is not
bipartite, J 6= ∅.

Every vertex of J must be mapped to v1 or vk since each component ofG[J ] has at
least two vertices. Then every vertex of N(J) must be mapped to v2 or vk−1. Clearly
N(J) ⊆ I. Following Lemma 1, we map the vertices of G in a breadth first search
manner starting from J , with levels L0(J)=J, L1(J)=N(J), L2(J), ..., L(k−1)/2(J).
At any stage we consider only the vertices that have to be mapped due to adjacencies
in G to already mapped vertices. Therefore the vertices of L2(J) must be mapped
to v3 or vk−2. Clearly L2(J) ⊆ A. The vertices of L3(J) must be mapped to v4 or
vk−3, . . ., the vertices of L(k−3)/2(J) must be mapped to v(k−1)/2 or v(k+3)/2, and
finally the vertices of L(k−1)/2(J) must be mapped to v(k+1)/2. Now, there may
be some remaining vertices of G that are not assigned to any vertex of H by the
above procedure. If (k+ 1)/2 is even, then all remaining vertices should be mapped
to v(k−1)/2 or v(k+3)/2 if they belong to A, and to v(k+1)/2 if they belong to I. If
(k + 1)/2 is odd, then we should do the reverse: the remaining vertices should be
mapped to v(k+1)/2 if they belong to A and to v(k−1)/2 or v(k+3)/2 if they belong to
I. Consequently, in the end, vertices of A∪J are mapped to V (H) \U , and vertices
of I are mapped to U .

To check whether our partial mapping can be transformed into a homomorphism
we shall use a 2-SAT formula. For all vertices of G except those mapped to v(k+1)/2

there is a choice between two vertices of the host graph Ck. Furthermore adjacent
vertices of G must be mapped to adjacent vertices of Ck. For every vertex x of G
with ϕ(x) ∈ {vi, vk−i+1} we define a boolean variable x such that variable x = true
means that vertex x is mapped to vi with i = 1, 2, . . . , (k − 1)/2, and variable
x = false means that vertex x is mapped to vi with i = (k+ 3)/2, (k+ 5)/2, . . . , k.
For each edge {x, y} ∈ E(G[J ]), either ϕ(x) = v1 and ϕ(y) = vk, or vice versa.
Otherwise, for each edge {x, y} ∈ E(G) with {x, y} 6⊆ J , either ϕ(x) = vi and
ϕ(y) = vj with i, j ∈ {1, 2, . . . , (k − 1)/2}, or ϕ(x) = vi and ϕ(y) = vj with i, j ∈
{(k + 3)/2, . . . , k}. Therefore, for each edge {x, y} ∈ E(G[J ]) NG(J), we insert the
following two clauses in our 2-SAT formula: (x̄∨ y) and (x∨ ȳ). For all other edges
{x, y} ∈ E(G), i.e., at least one of x and y does not belong to J , we insert the
following two clauses in our 2-SAT formula: (x̄ ∨ ȳ) and (x ∨ y).

The corresponding 2-SAT formula is satisfiable if and only if there is a homo-
morphism ϕ from G to Ck such that ϕ−1(U) = I. Consequently, for each maximal
independent set I of G, constructing a homomorphism from G to Ck using I or
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concluding that I cannot be used can be done by solving the corresponding 2-SAT
formula, and thus requires linear time (see [1]). By Proposition 2, the number of
maximal independent sets in a triangle free graph on n vertices is at most 2n/2 and
all maximal independent sets of a triangle free graph can be enumerated in time
O∗(2n/2). Thus the overall running time of our algorithm is O∗(2n/2).

The algorithm of Lemma 3 has running timeO(1.64939n) when k = 5, O(1.50700n)
when k = 7, and O(1.41742n) when k = 9, and its running time is O(αn) with
α <

√
2 for all k ≥ 11. Hence the algorithm of Lemma 3 is faster for all k ≥ 11, and

the algorithm of Lemma 4 is faster for k ∈ {5, 7, 9}. Combining Lemmata 3 and 4
we obtain the following theorem.

Theorem 5. For a given graph G on n vertices and an odd integer k ≥ 5, HOM(G,Ck)
can be solved in O∗(min{

(
n

n/k

)
, 2n/2}) time.

4 Homomorphisms to graphs of bounded treewidth

A tree decomposition ({Xi : i ∈ I}, T ) of a graph G is said to be nice if a root of
T can be chosen such that every node i ∈ I of T has at most two children in the
rooted tree T , and

1. if a node i ∈ I has two children j1 and j2 then Xi = Xj1 = Xj2 . (i is called a
join node.)

2. if a node i ∈ I has one child j, then either Xi ⊂ Xj and |Xi| = |Xj | − 1
(i is called a forget node), or Xj ⊂ Xi and |Xj | = |Xi| − 1 (i is called an
introduce node).

3. if a node i ∈ I is a leaf of T , then |Xi| = 1. (i is called a leaf node.)

Given a nice tree decomposition ({Xi : i ∈ I}, T ), we denote by Ti the subtree
of T rooted at node i, for each i ∈ I. The parent of node i is denoted by p(i).

It is known that every graph G with n vertices and of treewidth at most t has
a nice tree decomposition ({Xi : i ∈ I}, T ) of width t such that |I| = O(t · n).
Furthermore, given a tree decomposition of G of width t, a nice tree decomposition
of G of width t can be computed in time O(n).

There is an O(1.9601n) algorithm to compute the treewidth and an optimal
tree decomposition of a given graph [10]. There is also a well-known linear-time
algorithm to compute the treewidth and an optimal tree decomposition for graphs
of bounded treewidth [2].

We now present an algorithm to decide whether for given graphs G and H there
is an homomorphism from G toH. The algorithm is based on dynamic programming
on a nice tree decomposition of H.

Theorem 6. There is an O∗((2 · tw(H)+1)|V (G)|) time algorithm taking as input a
graph G, a graph H, and an optimal tree decomposition of H, that solves HOM(G,H)
and produces a homomorphism ϕ : G −→ H if the answer is yes.
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Proof. Let n = |V (G)| and t = tw(H). First our algorithm transforms the given
optimal tree decomposition of H into a nice tree decomposition ({Yi : i ∈ J}, U)
of width t. Then we modify this nice tree decomposition as follows. For every non
leaf node i ∈ J of tree U we add a new nochange node i′ as the parent of i, and
we let the old parent of i in tree U become the parent of i′ in the new tree. We let
Xi′ = Xi = Yi. In this way we obtain a new nice tree decomposition ({Xi : i ∈ I}, T )
of H of width t. In the new tree T , the parent of every node of U is a nochange
node, which is more convenient for our following argumentation, because there is a
difference of at most one vertex between a child and the parent of a node i in T .

We define two auxiliary subsets of vertices of H for each node i ∈ I of T :
Vi = ∪j∈TiXj , and X̃i = Xi∩Xp(i). Notice that X̃i = Xi if p(i) is an introduce, join,
or nochange node, and that X̃i = Xi\{u} if p(i) is a forget node withXp(i) = Xi\{u}.
For r, the root of T , we define X̃r = Xr.

Our algorithm computes for each node i ∈ I of T in a bottom-up fashion all
characteristics of i, defined as follows.

Definition. A tuple (S; (v1, S1), (v2, S2), . . . , (vli , Sli); i) is a characteristic of node
i ∈ I of T if S ⊆ V (G) and {S1, S2, . . . , Sli} is a partition of S such that there is a
homomorphism ϕ : G[S] −→ H[Vi] that satisfies the following two conditions.

• X̃i = {v1, v2, . . . , vli}

• For every j ∈ {1, 2, . . . , li}, ϕ−1(vj) = Sj.

Notice that characteristics are defined in such a way that G is homomorphic to
H if and only if there is at least one characteristic for the root r of T . Furthermore
the number of characteristics of a node of T is at most

∑n
i=0

(
n
i

)
· ti = (t+ 1)n.

For each forget, introduce, nochange, and join node i ∈ I of T , our algorithm
computes by dynamic programming all characteristics (S; (v1, S1), . . . , (vli , Sli); i) of
i using the full set of characteristics of i’s children. Thus it suffices to describe
how the full set of characteristics can be computed from the characteristics of the
children for the different types of nodes in T .
Leaf node:
Let i be a leaf node, thus Xi = {u} for some vertex u of H. For a subset S
of V (G), there is a homomorphism ϕ from G[S] to H[Vi] with Vi = {u} if and
only if ϕ−1({u}) = S, and hence S is an independent set. Thus (S; (u, S); i) is a
characteristic of the leaf node i if and only if S is an independent set of G.

Introduce node:
Let i be an introduce node with child j. Thus Xi = Xj ∪ {u} for some vertex
u ∈ V (H)\Vj , and consequently X̃j = Xj . Notice that the parent of i is a nochange
node, and thus Xi = Xp(i) and X̃i = X̃j ∪ {u}.

All characteristics of node i can be obtained by extending a characteristic of j.
Since X̃i = X̃j∪{u}, each characteristic of i obtained from (S; (v1, S1), . . . , (vlj , Slj ); j)
is of the form (S ∪ S′; (v1, S1), . . . , (vlj , Slj ), (u, S

′); i) where S′ ⊆ V (G) \ S is an in-
dependent set in G, and for all x ∈ NG[S](S′), ϕ(x) ∈ NH(u). These conditions can
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be checked in polynomial time. Finally one characteristic of j extends to at most
2n−|S| characteristics of i, since S′ must be an independent set of G− S. Therefore
we compute at most

∑n
i=0

(
n
i

)
· ti · 2n−i = (2t + 1)n characteristics to obtain a full

set of characteristics of an introduce node.

Forget node:
Let i be a forget node with child j. Thus Xi = Xj \ {u} for some vertex u ∈ Xj ,
and consequently X̃j = Xi. The parent of i is a nochange node, and thus Xi = Xp(i)

and X̃i = X̃j .
X̃i = X̃j implies that each characteristic of i can be obtained directly from a

characteristic of j by simply replacing j with i. Thus each characteristic of j is a
characteristic of i.

Nochange node:
Let i be nochange node with child j. Thus Xi = Xj . If the parent of i is a forget
node then Xp(i) = Xi \ {u} for some vertex u ∈ Xi, and thus X̃i = X̃j \ {u}. If the
parent of i is an introduce or join node, then X̃i = X̃j .

If X̃i = X̃j then each characteristic of i extends into one characteristic of j by
simply replacing j by i. Otherwise, X̃i = X̃j\{u} implies that each characteristic of i
can be obtained from a characteristic of j, say (S; (v1, S1), . . . , (vlj , Slj ); j), by simply
removing the pair (vq, Sq) where u = vq. One obtains (S; (v1, S1), . . . , (vq−1, Sq−1),
(vq+1, Sq+1), . . . , (vli , Sli); i).

Thus again each characteristic of j extends into a characteristic of i.
Join node:
This is the most interesting node type. Let i be a join node with children j1 and j2;
thus Xi = Xj1 = Xj2 . The parent of i is a nochange node, thus X̃i = X̃j1 = X̃j2 =
Xi.

Let (S′; (v1, S1), . . . , (vlj1
, Slj1

); j1) be a characteristic of j1. It extends into a
characteristic of node i if there is a characteristic (S′′; (v1, S1), . . . , (vlj2

, Slj2
); j2) of

j2, i.e., both characteristics have the same set of pairs (vi, Si) which requires that
li = lj1 = lj2 . In this case (S′ ∪ S′′; (v1, S1), . . . , (vli , Sli); i) is a characteristic of i, if
there are no edges between S′ \ S′′ and S′′ \ S′ in G.

Thus we compute characteristics (S′ ∪ S′′; (v1, S1), . . . , (vli , Sli); i) of i, for each
subset S′∪S′′ of V (G), each partition of S into at most t subsets, and any choice of a
subset S′. Therefore we compute at most

∑n
i=0

(
n
i

)
· ti · 2i = (2t+1)n characteristics

to obtain a full set of characteristics of a join node.

Finally, notice that the number of nodes in the decomposition is a polynomial
in |V (H)|, and that suitable data structures guarantee that the characteristics of a
node can be stored such that find and insert operations can be done in polynomial
time. Thus the overall running time of our algorithm is O∗((2·tw(H)+1)|V (G)|).
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5 Concluding remarks and open questions

For given graphs G and H, within which time bound can we solve HOM(G,H)?
The trivial solution brings us O(|V (G)||V (H)|) running time. There is a randomized
O((0.4518·|V (H)|)|V (G)|)-time algorithm solving HOM(G,H) which is a consequence
of a more general result on constraint satisfaction problems [4].

In this paper we observed that if the right side graph H is of bounded treewidth,
then HOM(G,H) can be solved in time c|V (G)| · |V (H)|O(1) for some constant c. Can
it be that for any graphs G and H the problem HOM(G,H) is solvable with running
times 1. f(|V (H)|)·|V (G)|O(1), or 2. f(|V (G)|)·|V (H)|O(1) for some computable
function f : N → N? (Unfortunately) the answer to each of the questions is negative
up to some widely believed assumptions in complexity theory.

In fact, for question 1, an f(|V (H)|)·|V (G)|O(1) time algorithm is also a polynomial-
time algorithm for the NP-complete 3-coloring problem implying that P = NP. To
answer question 2, we use the widely believed assumption from parameterized com-
plexity [9] that the p-clique problem is not fixed parameter tractable, or in other
words, that there is no algorithm for finding a clique of size p in a graph on n ver-
tices in time f(p) ·nO(1) unless FPT = W[1], a collapse of a parameterized hierarchy
which is considered to be very unlikely. Since Kp is homomorphic to H if only if H
has a clique of size at least p, the HOM(Kp,H) problem is equivalent to finding a
p-clique in H. Therefore, the existence of an f(|V (G)|) · |V (H)|O(1) time algorithm
for HOM(G,H) would imply that the p-clique problem is fixed parameter tractable,
thus FPT = W[1].

Now our question is whether a running time of O((c · |V (H)|)|V (G)|) for some
constant c is the best we that can hope for solving HOM(G,H)? Can it be solved,
say by an O(c|V (G)|+|V (H)| · |V (G)|O(1) · |V (H)|O(1))-time algorithm?
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