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Algorithms for graphs embeddable
with few crossings per edge∗

Alexander Grigoriev† Hans L. Bodlaender‡

Abstract

We consider graphs that can be embedded on a surface of bounded genus such
that each edge has a bounded number of crossings. We prove that many optimization
problems, including maximum independent set, minimum vertex cover, minimum
dominating set and many others, admit polynomial time approximation schemes
when restricted to such graphs. This extends previous results by Baker [1] and
Eppstein [7] to a much broader class of graphs. We also show that testing if a graph
can be drawn in the plane with at most one crossing per edge is NP-complete.

1 Introduction

Already more than two decades ago, Baker [1] showed that the maximum independent
set and many other NP-hard optimization problems on graphs admit polynomial time
approximation schemes (PTAS) when restricted to planar graphs. The basic idea of Baker’s
algorithm was to remove the vertices in every kth level of a breadth first search tree
(BFS) and to solve the problem on the remaining components by a dynamic programming
algorithm. Baker proved that from k ways of choosing which set of levels to remove there
is at least one which only decreases the size of the maximum independent set by a factor of
at most (k−1)/k. Moreover, remaining components after levels deletion are k-outerplanar
graphs, and dynamic programming can solve the problem on these components efficiently.

Recently, Eppstein in [7] observed that the results by Baker [1] can be extended to
any minor-closed family of graphs satisfying so-called diameter-treewidth property. This
implies that the problem admits a PTAS if restricted to bounded-genus graphs. This result
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has been generalized to other minor-closed classes; in particular, Grohe gave PTAS’s for
several problems, for any minor-closed family that does not contain all graphs [6].

Nowadays, there is a growing body of work, mainly developed by Demaine and Haji-
aghayi, based on the concept of “bidimensionality” and presenting directions for general-
izations of the Baker-Eppstein ideas of using a diameter like parameter to bound treewidth
and thus yielding polynomial time approximation schemes for problems on even more gen-
eral classes of graphs; see Demaine et al. in [2, 3, 4].

In this paper we continue the line of investigations — in which way can Baker’s tech-
nique be further extended? Revisiting Eppstein [7] result, we observe that the restriction
that the class of graphs must be minor-closed can be relaxed. By moving from the input
graph to an auxiliary graph obtained by replacing each crossing by a vertex and back, we
can obtain Baker-type PTAS’s for several problems on graphs that are embeddable on a
surface of bounded genus (e.g., the plane, the torus) with a bounded number of crossings
per edge. We emphasize on the fact that all known results, also in Demaine et al. [2, 3, 4],
work only under assumption that the graph family is minor-closed. In contrast, in this
paper, we introduce the graph families on which Baker-Eppstein techniques work perfectly
but actually any graph is a minor of sufficiently large graph of the considering families.

In the end of the paper we present several additional results which provide an insight
on the graphs with few crossings per edge.

2 Problem and Definitions

We illustrate the basic ideas of the PTAS on the maximum independent set problem. Given
a graph G = (V, E), we look for a maximum cardinality independent set in G, i.e., a vertex
subset V ′ ⊆ V such that no two vertices from V ′ are adjacent by an edge from E. This
problem is known to be NP-hard even for planar graphs. The problem admits a PTAS if
restricted to planar graphs [1] and even to bounded-genus graphs [7]. Let n = |V |.
Definition 2.1 (Good embedding). We call an embedding of graph G on a surface S
of genus g a good embedding if it satisfies the following conditions: (i) all vertices of the
graph are given as distinct points in S; (ii) no two edge crossings happen in the same point
in S; (iii) for any edge no vertex of the graph, except the endpoints of the edge, is situated
on the edge.

Definition 2.2 (Crossing parameter). Let the crossing parameter ϕ of a graph (on
surface S) be the minimum over all good embeddings on S of the maximum over all edges
e of the number of edge crossings of e.

Through this paper we assume that a good embedding of G is given and both the
crossing parameter ϕ and the genus g of S are bounded by some constants. Clearly, the
graph is planar if g = 0 and ϕ = 0.
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Definition 2.3 (Tree decomposition). A tree decomposition ({Xi | i ∈ I}, T = (I, F ))
of a graph G = (V, E) is a pair, with {Xi | i ∈ I} a collection of subsets of V (called bags),
such that

• ⋃
i∈I Xi = V .

• For all {v, w} ∈ E, there is an i ∈ I with v, w ∈ Xi.

• For each v ∈ V , the set Tv = {i ∈ I | v ∈ Xi} forms a connected subtree of T .

Definition 2.4 (Treewidth). The width of a tree decomposition {Xi | i ∈ I} is maxi∈I |Xi|−
1. The treewidth of a graph G is the minimum width over all tree decompositions of G.

3 The Polynomial Time Approximation Scheme

We now describe our polynomial time approximation scheme for the maximum independent
set problem on graphs with bounded crossing parameter on bounded genus. We assume
the embedding is given. Consider the following algorithm A which is a revised version of
the algorithms by Baker [1] and Eppstein [7].

Input: Graph G, parameter k (without loss of generality, let ϕ < k).

Algorithm A:

1. Construct the graph G′ = (V ′, E ′) obtained from G by replacing each edge crossing
by a vertex.

2. Build a breadth first search tree T of G′, with an arbitrary root v0, and consider the
levels of the tree (i.e., vertex sets with equal distance to v0).

3. For all i, 0 ≤ i ≤ k, we perform the following procedure.

(a) Remove from G′ all levels of T congruent to i( mod k) together with their
ϕ successive levels. This decomposes G′ into a collection of subgraphs H =
{H1, H2, . . . , Hr} where each subgraph Ht = (Vt, Et) is induced by k − ϕ − 1
consecutive levels in T of G′.

(b) Consider a subgraph Gt of G induced by vertices Vt ∩ V . Since the number of
crossings per edge is at most ϕ and we removed ϕ + 1 consecutive levels from
G′, we have that after deletion of levels there is no an edge e ∈ E such that
its two endpoints belong to two different subgraphs Gt′ and Gt′′ . Therefore,
for each i, 0 ≤ i ≤ k, we have a subgraph of G formed by a collection of
disconnected subgraphs G1, G2, . . . , Gr. By Lemma 3.1 below, the treewidth of
Gt is bounded by O(k) for all t = 1, 2, . . . , r. Hence, the maximum independent
set for Gt can be found in time O(n2O(k)) by a dynamic programming algorithm,
using standard treewidth techniques; see, e.g., Telle and Proskurowski [12].
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(c) Let Si be a union of the maximum independent sets of all Gt, t = 1, 2, . . . , r.

4. Define Smax by a maximum cardinality set over all Si, 0 ≤ i ≤ k.

Output: Return Smax.

The following lemma is a key for algorithm A and for the main result of the paper.

Lemma 3.1. The treewidth of Gt is bounded by O(k) for all t = 1, . . . , r.

Proof. Consider a subgraph Ht induced by levels r + 1, r + 2, . . . , r + s in T of G′ where
s = k − ϕ− 1 = O(k). Consider a minor of G′ obtained by contraction of the first r levels
in T to a single vertex and deletion of all levels above r + s. Clearly, this minor is a graph
of genus g. Moreover, it has a diameter of at most 2(k − ϕ − 1) = O(k). By Eppstein [7]
the treewidth of such a minor is O(gk). Therefore, Ht as a subgraph of such a minor has
the treewidth of at most O(gk) as well.

Now, let us estimate how much the treewidth of Gt and Ht can differ. Construct a
graph H ′

t from Ht by replacing each vertex v in Ht that represents an edge crossing, say
e1 and e2, by two adjacent vertices v1 and v2 representing e1 and e2 respectively. Let v1

be adjacent to all vertices corresponding to the neighborhood of v representing e1, and let
v2 be adjacent to all vertices corresponding to the neighborhood of v representing e2. A
tree decomposition of Ht of treewidth d can be turned into a tree decomposition of H ′

t of
treewidth at most 2d+1, by replacing each occurrence of an vertex that represents a crossing
of two edges in a bag by the corresponding two vertices; this gives a tree decomposition of
H ′

t whose maximum bag size is at most doubled. One can also observe that we can select
for each edge in Gt a path in H ′

t between its endpoints, such that these paths do not have
internal vertices in common. Thus, Gt is a minor of H ′

t and hence the treewidth of Gt is
at most twice the treewidth of Ht plus one, and thus O(gk) = O(k) as required.

Now, we are ready to summarize the main results of the paper in the following theorem
and corollary.

Theorem 3.1. Algorithm A outputs an independent set of graph G of size at least 1 −
O(1/k) times the optimum in time O(kn2O(k)), and thus, there is a PTAS for maximum
independent set for graphs given with an embedding on a surface of bounded genus and with
bounded crossing parameter.

Proof. Since for all i, 0 ≤ i ≤ k, set Si is a union of independent sets of disconnected
subgraphs of G, Algorithm A returns an independent set of graph G.

As in Baker [1], there is at least one i, 0 ≤ i ≤ k, such that at most (ϕ + 1)/k of the
nodes in the optimal solution are at the level that is congruent to i( mod k). This implies
that |Smax| is approximating the optimum within a factor (k − ϕ − 1)/k = 1 − O(1/k).

Notice that the most time consuming operation in Algorithm A is the dynamic pro-
gramming used in step 3. As we already noticed above, this dynamic programming requires
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O(n2O(k)) time. Since we run step 3 for all choices of i, 0 ≤ i ≤ k, the total running time
of Algorithm A is O(kn2O(k)).

Corollary 3.1.1. For each of the following problems (and many others) there is a PTAS
for graphs embeddable on a surface of bounded genus with bounded crossing parameter:

• minimum vertex cover;

• minimum dominating set;

• minimum edge dominating set;

• minimum triangle matching;

• maximum H-matching;

• maximum tile salvage.

Proof. This can be proven in the same way as Theorem 3.1, using techniques similar to
those of Baker [1].

4 More on the Crossing Parameter

Graphs with bounded crossing parameter were investigated by several authors in the con-
text of graph drawing; see, e.g., Pach and Toth [11]. However, before this article nothing
was known on the recognition complexity of the graphs with small crossing parameter. To
give the reader more insight on the graphs with few crossings per edge, in this section we
present some results on the computational complexity of the crossing parameter and some
other useful properties of the class of graphs with bounded crossing parameter.

Theorem 4.1. The problem to determine if a given graph G can be embedded on the plane
with crossing parameter 1 is NP-complete.

Proof. We prove the theorem by reduction of the well known strongly NP-complete problem
3-PARTITION; see Garey and Johnson [5]: Given a set A of 3m elements, a bound B ∈
Z

+, and a size s(a) ∈ Z
+ for each a ∈ A such that B/4 < s(a) < B/2 and such that∑

a∈A s(a) = mB, can A be partitioned into m disjoint sets A1, A2, . . . , Am such that for
1 ≤ i ≤ m,

∑
a∈Ai

s(a) = B?
Before starting the reduction, we would like to mention several properties of the com-

plete graph on six vertices: (i) by Guy’s conjecture proven for complete graphs on up to 10
vertices, see, e.g., [13], K6 has crossing number 3; (ii) K6 can be drawn in the plane with
three crossings, at most one crossing per edge, and two vertices in the exterior, see Figure
1; (iii) in any drawing of K6 having at most one crossing per edge for any two vertices of
the graph there is a path between those two vertices such that all edges of the path are
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crossed. For a proof of (iii) see Theorem 6.1 in Appendix. Taking into account properties
(i)-(iii), we can use graph K6 as an edge that cannot be crossed. In the figures below thick
edges are graphs K6.

Figure 1: Thick edge is a graph K6.

Now, we reduce 3-PARTITION to the crossing parameter 1 recognition. Given an
instance of 3-PARTITION, we construct the graph for the crossing parameter 1 recognition
as follows. For each element a ∈ A we introduce a gadget Pa called splitter which is a simple
star having s(a) + 1 edges. We also introduce two special gadgets called transmitter and
collector. Both these gadgets have a ”double”-wheel form with 3m thick radials for the
transmitter and Bm thick radials for the collector; see Figure 2.

Figure 2: m = 2 transmitter and B = 10, m = 2 collector.

We finish construction by adding the following edges:

• We connect the transmitter center to a degree 1 vertex of each splitter Pa, a ∈ A.

• We connect remaining s(a) degree 1 vertices of each splitter Pa, a ∈ A, to the collector
center.

• Let a cycle [t1, t2, . . . , t3m] be an exterior circuit of the transmitter and a cycle
[c1, c2, . . . , cBm] be an exterior circuit of the collector. For all i ∈ {1, 2, . . . , m},
connect vertex t3i to vertex cBi by a thick edge; for illustration see Figure 3.

Let us refer to the obtained graph as to G. Now, we claim that G is embeddable with at
most one crossing per edge if and only if the instance of 3-PARTITION has an affirmative
answer.

Part “IF” of the claim is rather straightforward. We illustrate this with an instance
of 3-PARTITION having 6 elements of weights 2,3,3,3,4,5. This instance has a required
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partition (3+3+4=10 and 2+3+5=10) and the corresponding graph G can be drawn with
at most one crossing per edge as on Figure 3. In general, we draw graph G as follows. First
we draw transmitter and collector such that both are placed in the exterior face of each
other. Then, we connect by thick edges in the exterior each third vertex of the transmitter
to each Bth vertex of the collector, creating m distinct faces. We assign the splitters to
the faces according to the partition. Since the total size of each triple in the partition is
B and in each of the m faces the collector has B edges in the exterior circle, we can assign
the edges of splitters to the sectors of the collector such that each edge will be crossed only
once.

Figure 3: Instance with A = {2, 3, 3, 3, 4, 5}.

Now we prove part “ONLY IF” of the statement. Consider a drawing of G having
at most one crossing per edge and let us construct the corresponding partition for 3-
PARTITION.

First, let us analyze the possible ways of drawing G. It is convenient to consider the
possible drawings on a globe. It is well known that a sphere drawing has an equivalent
planar representation with respect to the edge crossings; see [8, Proposition 8.3.1]. Without
loss of generality we can assume that the transmitter center is a North Pole and the collector
center is a South Pole of the globe. By construction, the globe is partitioned by the thick
non-crossable meridian paths into m distinct faces F1, F2, . . . Fm. Moreover, since these
meridian paths are non-crossable, the ordering of the meridian paths on the globe and the
ordering of the faces on the globe correspond to the vertex ordering in the exterior circuits
of the transmitter and collector.
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Now, let us find out how can we draw the thick paths of the transmitter adjacent to the
North Pole but not participating in the meridian paths. Consider four consequent vertices
of the exterior circuit of the transmitter, for instance, t3m, t1, t2, t3. By construction and
observation above, t3m and t3 are the vertices on two consequent meridian paths. These
two meridian paths form one of the distinct faces, say F1. Vertices t1 and t2 in the drawing
must be placed in F1 otherwise at least one of the meridian paths will be crossed. Moreover,
since the transmitter is a “double”-wheel, the ordering of the thick paths adjacent to the
North Pole and ending in t1 and t2 must be consistent with the ordering of the vertices in
the exterior circuit of the transmitter. The same arguments work for all other consequent
four-tuples of the exterior circuit of transmitter. This implies that there is a unique way
of drawing the transmitter around the North Pole. Similarly, there is a unique way of
drawing the collector around the South Pole. We also notice, that since we can not cross
thick edges and other edges can be crossed at most once, we do not have any intersections
between transmitter and collector.

Now, consider a drawing of the splitters. In any face Fi, i ∈ {1, 2, . . . , m}, we can
place at most 3 splitters, otherwise one of the edges of the transmitter will be crossed
more than once. The center of a splitter must be placed in the exterior of the transmitter
and collector, otherwise one of the splitter edges will be crossed more than once. Hence,
for each face Fi, i ∈ {1, 2, . . . , m}, the number of paths between the South Pole and the
centers of three splitter assigned to Fi is at most B. Since we have in total Bm such paths,
each face contains exactly three splitters with exactly B paths between the splitter centers
and the South Pole.

Consider a partition of set A correspondent to the assignment of splitters to the faces.
By observation above, each triple of numbers correspondent to three splitters assigned
to a face sums to B. Therefore, A has a required partition. It remains to notice that 3-
PARTITION is strongly NP-complete and we are allowed to use unary encoding to describe
the inputs of the problems. Hence, the reduction was polynomial.

Corollary 4.1.1. When P6=NP, there does not exist a polynomial time 2-approximation
algorithm for finding the crossing parameter of a graph on the plane.

Notice, however, that several natural classes of graphs have a bounded crossing parame-
ter on the plane. For instance, graphs of intersections of objects in the plane with bounded
objects density (disk graphs with bounded density are special case of these); graphs with
bounded degree and bounded tree width; planar graphs.

Observation 4.1. The class of graphs with an embedding on the plane with crossing pa-
rameter 1 is not closed under taking minors. In fact, every graph is a minor of a graph
with crossing parameter 1: take any good embedding, and then add a new vertex of degree
two between every two successive crossings.

From work on the crossing number of graphs (the minimum total number of crossings
in a planar embedding), we can also obtain bounds on the crossing parameter (on the
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plane). E.g., the crossing number of a complete graph with n vertices is Θ(n4) [9], hence
its crossing parameter is Θ(n2).

5 Conclusions and Open Problems

For several classes of graphs, it is now known that there are polynomial time approximation
schemes for a large collection of problems. Each of these build upon the work by Baker [1].
In this paper, we gave a new class of graphs where the same approach can be used. An
interesting question is whether there is an general notion under which the different results
of the type can be unified.

A disadvantage of our algorithm is that an embedding with bounded crossings per
edge is requested as part of the input. As discussed earlier, for some applications, we
indeed get such an embedding. However, it would be interesting if “robust” versions of
the algorithms can be designed, i.e., algorithms that do not need the embedding as part
of the input. Note that such a robust PTAS has been designed by Nieberg et al. for the
dominating set problem on unit disk graphs [10].

Recent work (see e.g., [2]) shows that there is a PTAS for the connected dominating set
problem and other related problems on planar graphs and generalizations of it. It would
be interesting to see if these results carry over to graphs with bounded crossing parameter.
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6 Appendix

Theorem 6.1. In any planar embedding of K6 having at most one crossing per edge,
between any two vertices there exists a path such that all edges in that path are crossed.

Proof. First we prove that each vertex is contained in at least two distinct crossed edges.
Assume this is not true and there is an embedding of K6 such that for some vertex v1

edges e1 = (v1, v2), e2 = (v1, v3), e3 = (v1, v4), e4 = (v1, v5) are not crossed by any edge.
Without loss of generality, we assume that edges e1, e2, e3, e4 are drawn clockwise in this
particular order. Since graph is complete, there is a simple cycle formed by edges e1, e3

and e5 = (v2, v4) with only one edge e5 that can be crossed. Vertices v3 and v5 belong to
the different faces formed by that cycle. Therefore edge (v3, v5) crosses e5. On the other
hand, there is a vertex v6 that must be connected to both v3 and v5. Hence e5 is crossed
at least twice that leads to the contradiction.

Now, we prove that crossed edges form a connected graph. For a contradiction we
assume that there are 2 or more connectivity components. Since every vertex is contained in
two distinct crossed edges, each connectivity component has at least 3 vertices. Therefore,
we can have only two components with 3 vertices each. Moreover, each component forms
a triangle (cycle). Hence, the question is whether we can cross two triangles with curved
sides such that each side of each triangle will be crossed exactly once? Take a side (v1, v2)
of triangle 1. Vertices v1 and v2 belong to different faces formed by triangle 2. The third
vertex v3 of triangle 1 will share the face either with v1 or with v2. Therefore, either edge
(v3, v1) or edge (v3, v2) will cross the boundary of triangle 2 even number of times which
contradicts to the requirement that each edge is crossed once. Therefore, crossed edges in
K6 form a connected graph as required.

The reader may even verify that, when K6 is drawn with at most one crossing per edge,
the crossing edges form a Hamiltonian circuit. This observation is out of the scope of this
article and we leave it without a proof.
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