Skip to main content

Fully Incremental LCS Computation

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3623))

Abstract

Sequence comparison is a fundamental task in pattern matching. Its applications include file comparison, spelling correction, information retrieval, and computing (dis)similarities between biological sequences. A common scheme for sequence comparison is the longest common subsequence (LCS) metric. This paper considers the fully incremental LCS computation problem as follows: For any strings A,B and characters a,b, compute LCS(aA, B), LCS(A, bB), LCS(Aa, B), and LCS(A, Bb), provided that L = LCS(A, B) is already computed. We present an efficient algorithm that computes the four LCS values above, in O(L) or O(n) time depending on where a new character is added, where n is the length of A. Our algorithm is superior in both time and space complexities to the previous known methods.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Crochemore, M., Rytter, W.: Jewels of Stringology. World Scientific, Singapore (2002)

    Book  Google Scholar 

  2. Gusfield, D.: Algorithms on Strings, Trees, and Sequences. Cambridge University Press, Cambridge (1997)

    Book  Google Scholar 

  3. Crochemore, M., Landau, G.M., Ziv-Ukelson, M.: A sub-quadratic sequence alignment algorithm for unrestricted cost matrices. In: Proc. 13th SIAM Symposium on Discrete Algorithms (SODA 2002), pp. 679–688 (2002)

    Google Scholar 

  4. Hunt, J.W., Szymanski, T.G.: An algorithm for differential file comparison. Communications of the ACM 2, 417–439 (1977)

    Google Scholar 

  5. Amir, A., Eisenberg, E., Porat, E.: Swap and mismatch edit distance. In: Albers, S., Radzik, T. (eds.) ESA 2004. LNCS, vol. 3221, pp. 16–27. Springer, Heidelberg (2004)

    Google Scholar 

  6. Wu, S., Manber, U.: Fast text searching allowing errors. Communications of the ACM 35, 83–91 (1992)

    Article  Google Scholar 

  7. Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J.: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 25, 3389–3402 (1997)

    Article  Google Scholar 

  8. Li, M., Ma, B., Kisman, D., Tromp, J.: PatternHunter II: Highly sensitive and fast homology search. Journal of Bioinformatics and Computational Biology 2, 417–439 (2004)

    Article  Google Scholar 

  9. Apostolico, A.: String editing and longest common subsequences. In: Handbook of Formal Languages, vol. 2, pp. 361–398. Springer, Heidelberg (1997)

    Google Scholar 

  10. Landau, G.M., Myers, E., Ziv-Ukelson, M.: Two algorithms for LCS consecutive suffix alignment. In: Sahinalp, S.C., Muthukrishnan, S.M., Dogrusoz, U. (eds.) CPM 2004. LNCS, vol. 3109, pp. 173–193. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  11. Landau, G.M., Myers, E.W., Schmidt, J.P.: Incremental string comparison. SIAM Journal of Computing 27, 557–582 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kim, S.R., Park, K.: A dynamic edit distance table. In: Giancarlo, R., Sankoff, D. (eds.) CPM 2000. LNCS, vol. 1848, pp. 60–68. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ishida, Y., Inenaga, S., Shinohara, A., Takeda, M. (2005). Fully Incremental LCS Computation. In: Liśkiewicz, M., Reischuk, R. (eds) Fundamentals of Computation Theory. FCT 2005. Lecture Notes in Computer Science, vol 3623. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11537311_49

Download citation

  • DOI: https://doi.org/10.1007/11537311_49

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28193-1

  • Online ISBN: 978-3-540-31873-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics