Skip to main content

Manifold Embedding of Graphs Using the Heat Kernel

  • Conference paper
Book cover Mathematics of Surfaces XI

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3604))

Abstract

In this paper, we investigate the use of heat kernels as a means of embedding the individual nodes of a graph on a manifold in a vector space. The heat kernel of the graph is found by exponentiating the Laplacian eigen-system over time. We show how the spectral representation of the heat kernel can be used to compute both Euclidean and geodesic distances between nodes. We use the resulting pattern of distances to embed the nodes of the graph on a manifold using multidimensional scaling. The distribution of embedded points can be used to characterise the graph, and can be used for the purposes of graph clustering. Here for the sake of simplicity, we use spatial moments. We experiment with the resulting algorithms on the COIL database, and they are demonstrated to offer a useful margin of advantage over existing alternatives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Linial, N., London, E., Rabinovich, Y.: The geometry of graphs and some its algorithmic application. Combinatorica 15, 215–245 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  2. Alexandrov, A.D., Zalgaller, V.A.: Intrinsic geometry of surfaces. Transl. Math. Monographs 15 (1967)

    Google Scholar 

  3. Busemann, H.: The geometry of geodesics. Academic Press, London (1955)

    MATH  Google Scholar 

  4. Weinberger, S.: Review of algebraic l-theory and topological manifolds by a.ranicki. BAMS 33, 93–99 (1996)

    Article  Google Scholar 

  5. Ranicki, A.: Algebraic l-theory and topological manifolds. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  6. Tenenbaum, J.B., Silva, V.D., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290, 586–591 (2000)

    Article  Google Scholar 

  7. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290, 2323–2326 (2000)

    Article  Google Scholar 

  8. Belkin, M., Niyogi, P.: Laplacian eigenmaps and spectral techniques for embedding and clustering. Neural Information Processing Systems 14, 634–640 (2002)

    Google Scholar 

  9. Chung, F.R.K.: Spectral graph theory. American Mathematical Society, Providence (1997)

    MATH  Google Scholar 

  10. Atkins, J.E., Bowman, E.G., Hendrickson, B.: A spectral algorithm for seriation and the consecutive ones problem. SIAM J. Comput. 28, 297–310 (1998)

    Article  MATH  Google Scholar 

  11. Shokoufandeh, A., Dickinson, S., Siddiqi, K., Zucker, S.: Indexing using a spectral encoding of topological structure. In: IEEE Conf. on Computer Vision and Pattern Recognition, pp. 491–497 (1999)

    Google Scholar 

  12. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE PAMI 22, 888–905 (2000)

    Google Scholar 

  13. Umeyama, S.: An eigen decomposition approach to weighted graph matching problems. IEEE PAMI 10, 695–703 (1988)

    MATH  Google Scholar 

  14. Luo, B., Hancock, E.: Structural graph matching using the em algorithm and singular value decomposition. IEEE PAMI 23, 1120–1136 (2001)

    Google Scholar 

  15. Yau, S.T., Schoen, R.M.: Differential geometry. Science Publication (1988)

    Google Scholar 

  16. Gilkey, P.B.: Invariance theory, the heat equation, and the atiyah-singer index theorem. Publish or Perish Inc. (1984)

    Google Scholar 

  17. Grigor’yan, A.: Heat kernels on manifolds, graphs and fractals. European Congress of Mathematics: Barcelona I, 393–406 (2001)

    MathSciNet  Google Scholar 

  18. Lafferty, J., Lebanon, G.: Diffusion kernels on statistical manifolds. Technical Report CMU-CS-04-101 (2004)

    Google Scholar 

  19. Barlow, M.T.: Diffusions on fractals. In: TPHOLs 1999. Lecture Notes Math, vol. 1690, pp. 1–121 (1998)

    Google Scholar 

  20. Smola, A.J., Bartlett, P.L., Schölkopf, B., Schuurmans, D.: Advances in large margin classifiers, vol. 354, pp. 5111–5136. MIT Press, Cambridge (2000)

    MATH  Google Scholar 

  21. de Verdiere, C.: Spectra of graphs. Math of France 4 (1998)

    Google Scholar 

  22. Rosenberg, S.: The laplacian on a Riemannian manifold. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  23. Flusser, J., Suk, T.: Pattern recognition by affine moment invariants. Pattern Recognition 26, 167–174 (1993)

    Article  MathSciNet  Google Scholar 

  24. Harris, C., Stephens, M.: A combined corner and edge detector. In: Fourth Alvey Vision Conference, pp. 147–151 (1994)

    Google Scholar 

  25. Rand, W.M.: Objective criteria for the evaluation of clustering. Journal of the American Statistical Association 66, 846–850 (1971)

    Article  Google Scholar 

  26. Lindman, H., Caelli, T.: Constant curvature Riemannian scaling. Journal of Mathematical Psychology 17, 89–109 (1978)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bai, X., Wilson, R.C., Hancock, E.R. (2005). Manifold Embedding of Graphs Using the Heat Kernel. In: Martin, R., Bez, H., Sabin, M. (eds) Mathematics of Surfaces XI. Lecture Notes in Computer Science, vol 3604. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11537908_3

Download citation

  • DOI: https://doi.org/10.1007/11537908_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28225-9

  • Online ISBN: 978-3-540-31835-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics