

U. Aßmann, M. Aksit, and A. Rensink (Eds.): MDAFA 2003/2004, LNCS 3599, pp. 174 – 188, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Platform-Independent Modelling in MDA: Supporting
Abstract Platforms

João Paulo Almeida, Remco Dijkman, Marten van Sinderen,
and Luís Ferreira Pires

Centre for Telematics and Information Technology, University of Twente,
PO Box 217, 7500AE, Enschede, The Netherlands

{almeida, dijkman, sinderen, pires}@cs.utwente.nl

Abstract. An MDA-based design approach should be able to accommodate
designs at different levels of platform-independence. We have previously
proposed a design approach [2], which allows these levels to be identified. An
important feature of this approach is the notion of abstract platform. An abstract
platform is determined by considering the platform characteristics that are
relevant for applications at a certain level of platform-independence as well as
the various design goals. In this paper, we discuss how our design approach can
be supported using the MDA standards UML 2.0 and MOF 2.0. Since our
methodological framework is based on the notion of abstract platform, we pay
particular attention to the representation of abstract platforms and the language
requirements to specify abstract platforms.

1 Introduction

A current trend in the development of distributed applications is to separate their
technology-independent and technology-specific aspects, by describing them in
separate models. The most prominent example of this trend is the Model-Driven
Architecture (MDA) [15], [18]. A common pattern in MDA development is to define
a platform-independent model (PIM) of a distributed application, and to apply
(parameterised) transformations to this PIM to obtain one or more platform-specific
models (PSMs). The main benefit of this approach stems from the possibility to
derive different alternative PSMs from the same PIM depending on the target
platform, and to partially automate the model transformation process and the
realization of the distributed application on specific target platforms.

The concept of platform-independence plays a central role in MDA development.
We believe that platform-independence can only be defined once a set of target
platforms is known, such that their general capabilities and their irrelevant
technological and engineering details can be established. This leads to the observation
that there can be several PIMs, possibly at different abstraction levels, depending on
whether one wants to consider different sets of target platforms. Another observation
is that different application characteristics or different sets of target platforms
generally lead to different types of (intermediate) models, design structures or
patterns, and model transformations. These observations have motivated our
investigations into what types of models can be useful in the MDA development

 Platform-Independent Modelling in MDA: Supporting Abstract Platforms 175

trajectory, how these models are related, and which criteria should be used for their
application. Some of the results of these investigations have been presented earlier in
[2], where we have proposed an MDA design trajectory that accommodates designs at
different levels of platform-independence.

An architectural concept that plays an important role in this approach is that of
abstract platform. An abstract platform defines an acceptable or, to some extent, ideal
platform from an application developer’s point of view; it represents the platform
support that is assumed by the application developer at some point of (the platform-
independent phase of) the design trajectory. Alternatively, an abstract platform
defines characteristics that must have proper mappings onto the set of concrete target
platforms that are considered for an MDA design process, thereby defining the level
of platform-independence for this particular process. Defining an abstract platform
forces a designer to address two conflicting goals: (i) to achieve platform-
independence, and (ii) to reduce the size of the design space explored for platform-
specific realization.

Any design approach that is intended to be successfully applied in practice should
be supported by suitable design concepts in suitable design languages. In this paper,
we present some methodological guidelines for platform-independent design and
define requirements for design languages intended to support platform-independent
design. Since our methodological framework is based on the notion of abstract
platform, we pay particular attention to the representation of abstract platforms and
the language requirements to specify them. We discuss how the architectural concept
of abstract platform can be supported in UML 2.0 [23] and MOF 2.0 [19].

This paper is further structured as follows: Section 2 provides some background on
the concept of abstract platform; Section 3 discusses how abstract platforms relate to
design languages; Section 4 discusses how abstract platforms can be represented in
UML 2.0 and MOF 2.0; Section 5 presents examples of abstract platforms and their
representations; Section 6 discusses limitations of UML 2.0 with respect to the
representation of abstract platforms; Section 7 positions our work with respect to
related work. Finally, Section 8 presents our conclusions and outlines future work.

2 Abstract Platforms

Platform-independence is a quality of a model that relates to the extent to which the
model abstracts from the characteristics of particular technology platforms. In order to
refer to platform-independent or platform-specific models, one must define what a
platform is. The following rather general definition of platform can be found in [18]
(page 2-3): “a platform is a set of subsystems and technologies that provide a coherent
set of functionality through interfaces and specified usage patterns”. This paper
concentrates on platforms that correspond to some middleware technology supporting
operation invocation and asynchronous message exchange, such as CORBA/CCM
[16], .NET [13] and Web Services [28], [29].

When pursuing platform-independence, one could strive for PIMs that are neutral
with respect to all different classes of middleware platforms. This is possible for
models in which the characteristics of the supporting technological infrastructure are
irrelevant, such as, e.g., conceptual domain models [4] and RM-ODP Enterprise

176 J.P. Almeida et al.

Viewpoint models [9], which can be considered as Computation Independent Models
[18]. However, along a development trajectory, when system architecture is captured,
some platform characteristics become relevant, and different sets of platform-
independent modelling concepts may be used, each of which being adequate only
with respect to specific classes of target middleware platforms. This leads to the
observation that platform-independence is not a binary quality of models; instead, a
distributed application can be described at several levels of platform-independence.
The level of platform-independence of a model must be carefully identified. We
propose to make this identification an explicit step in MDA development. The notion
of abstract platform, as proposed initially in [2], supports a designer in this step.

An abstract platform is determined by the platform characteristics that are relevant
for applications at a certain platform-independent level. For example, if a platform-
independent design contains application parts that interact through operation
invocations, then operation invocation is a characteristic of the abstract platform.
Capabilities of a concrete platform are used during platform-specific realization to
support this characteristic of the abstract platform. For example, if CORBA is
selected as a target platform, this characteristic can be mapped onto CORBA
operation invocations.

The PIM of a distributed application depends on an abstract platform model, in the
same way as the PSM depends on a (concrete) platform model (see Figure 1). Given
the PIM of an application and an abstract platform model, we distinguish two
contrasting extreme approaches to proceed with platform-specific realization:

1. Adjust the concrete platform, so that it corresponds directly to the abstract
platform.

2. Adjust the (scope of the) application during platform-specific realization, such that
the requirements specified at platform-independent level are preserved and the
platform-specific application model can be composed with the target platform
model.

In approach 1, the boundary between abstract platform and platform-independent
application model is preserved during platform-specific realization. This implies the
introduction of some platform-specific abstract platform logic to be composed with
the concrete target platform. The nature of this composition depends on the particular
requirements for the abstract platform. It may be possible to implement abstract
platform logic on top of the concrete platform. Nevertheless, this composition may
also imply the introduction of platform-specific (e.g., QoS) mechanisms, possibly
defined in terms of internal components of the concrete platform. Extension in a non-
intrusive manner is often the preferred way to adjust the concrete platform.
Techniques that can be used for non-intrusive extension include interceptors [16],
aspect-oriented programming and composition filters [5].

Approach 2 may imply the introduction of (e.g., QoS) mechanisms in the platform-
specific design of the application. This approach may be suitable in case it is
impossible to adjust the concrete target platform, e.g., due to the lack of extension
mechanisms or the cost implications of these adjustments.Figure 1 illustrates these
approaches to platform-specific realization.

 Platform-Independent Modelling in MDA: Supporting Abstract Platforms 177

(1)

(2)
Abstract –
Platform

Model

Application
(PIM)

Application
(PSM)

Concrete
Platform
Model

Application
(PSM)

trivial

Abstract-Plat.
Logic (PSM)

Concrete
Platform

Model

conformance

Fig. 1. Alternative approaches to platform-specific realization

Both approaches allow us to target different concrete platforms from the same
platform-independent model, with different quality characteristics [2]. Approach 1
can be generalized as a recursive application of service definition (external
perspective) and the service’s internal design, resulting in a hierarchy of abstract
platforms and a concrete target platform. At each step of the recursion, both
approaches to realization can be chosen.

3 Design Languages

Designs must be supported by suitable design concepts and represented using suitable
design languages. In an MDA design trajectory, several design languages may be
used, e.g., to produce models at different levels of abstraction. Alternatively, a single
“broad spectrum” design language [6] may be used. The design language adopted for
a design has an important role in defining characteristics of an abstract platform
assumed for the design.

In an MDA-based development trajectory, we may apply the implicit abstract
platform definition approach, in which the characteristics of an abstract platform are
implied by the set of design concepts used for describing the platform-independent
model of a distributed application. These concepts are often inherited from the
adopted modelling language. For example, the exchange of “signals” between
“agents” in SDL [10] may be considered to define an abstract platform that supports
reliable asynchronous message exchange. The restricted use of particular constructs in
a design language or the use of certain modelling styles can serve as a means to select
subsets of a language’s design concepts.

Instead of implying an abstract platform definition from the adopted set of design
concepts for platform-independent modelling, it may be useful or even necessary to
define the characteristics of an abstract platform explicitly, resulting in one or more
separate and reusable design artefacts. We call this approach explicit abstract
platform definition. During platform-independent modelling, parts of a pre-defined

178 J.P. Almeida et al.

abstract platform model may be composed with the model of the distributed
application. For example, although group communication is not a primitive design
concept of UML 2.0, it is possible to specify the behaviour of a group communication
sub-system using UML 2.0. This sub-system is then re-used in the design of a
distributed application. Other examples of pre-defined artefacts that may be included
in abstract platforms are the ODP trader [8] and the OMG pervasive services [18] (yet
to be defined). The set of design concepts of a design language is still relevant in this
approach, since the distributed application and the abstract platform model are
described in the language.

In both the implicit and explicit abstract platform definition approaches, there is
some overlap between language characteristics and abstract platform characteristics.
This leads to the formulation of an important requirement for a design language to
support platform-independent design: the concepts underlying the design language
should be precisely defined, so that the characteristics of the abstract platform can be
unambiguously derived from these concepts. This is important for at least two
reasons: (1) designers need to know the characteristics of the abstract platform when
defining platform-independent models of an application; and (2) abstract platforms
are a starting point for platform-specific realization.

Furthermore, a comprehensive MDA design approach should allow designers to
select or define suitable abstract platforms for their platform-independent designs.
This leads to the formulation of a second requirement for design languages suitable
for MDA: a design language should enable the definition of appropriate levels of
platform-independence.

4 Abstract Platform Definition with MDA Standards

In this section, we pay particular attention to the definition of abstract platforms using
MDA standards, namely UML 2.0 [23] and MOF 2.0 [19]. We discuss the fulfilment
of the design language requirements presented in Section 3, with both the implicit and
explicit abstract platform definition approaches.

4.1 Implicit Abstract Platform Definition

The concepts that plain UML prescribes for specifying communication between
application parts (objects or components) imply an abstract platform that is based on
request-response invocations and on message passing. In the UML 2.0 meta-model,
BehavioredClassifiers may offer operations and receptions. Operations represent the
capability of a classifier to receive and to respond to requests. Requests are sent when
objects execute CallOperationActions. Receptions represent the capability of a
classifier to receive Signal instances, which are sent asynchronously by other objects
when these execute SendSignalActions and BroadcastSignalActions. For plain UML,
the usefulness of the implicit abstract platform definition approach is restricted to
abstract platforms based on request-response invocations and on point-to-point
message passing.

UML has been developed as a general purpose language that is expected to be
customized for a wide variety of domains, platforms and methods [25]. A certain

 Platform-Independent Modelling in MDA: Supporting Abstract Platforms 179

degree of customization may be obtained in UML through semantic variation points
and profiles. This choice in the definition of UML has two implications for implicit
abstract platform definition: the UML specification (“plain” UML) is not conclusive
with respect to the abstract platform implied, and, the customization mechanisms have
to be applied in order to precisely define specific abstract platforms.

Semantic variation points provide an intentional degree of freedom for the
interpretation of the UML’s metamodel semantics. Some semantic variation points
defined in the UML specification should be resolved for plain UML to be conclusive
with respect to the abstract platform implied by the language. An example of such a
semantic variation point is described in the UML 2.0 specification [23] (page 381):
“The means by which requests are transported to their target depend on the type of
requesting action, the target, the properties of the communication medium, and
numerous other factors. In some cases, this is instantaneous and completely reliable
while in others it may involve transmission delays of variable duration, loss of
requests, reordering, or duplication.” Without resolving this semantic variation point,
a designer would be forced to assume worst-case interpretations, e.g., that the implied
abstract platform provides an unreliable request/response mechanism. If this is
undesirable, e.g., because the abstract platform should provide a reliable
request/response mechanism, a designer should resolve the semantic variation point,
by defining that requests and response signals are transported reliably. Semantic
variation points may be partially resolved, i.e., only for the relevant aspects. For
example, a designer may consider the reliability characteristics of requests relevant,
but may consider the timing characteristics irrelevant. In this case, any interpretation
of the timing characteristics of requests would be acceptable. One could resolve these
semantic variation points by relating the UML metamodel with a formal semantics, or
to a basic set of design concepts with a formal semantics.

The specialization of UML for defining abstract platform characteristics can be
made more manageable and clearly defined through the use of UML profiles. Profiles
are language extensions consisting of metamodel elements that specialise elements of
a reference metamodel. The specialized elements can be given specific semantics, in
this way resolving semantic variation points. Furthermore, constraints expressed in a
language like OCL [22] can be added to profiles to restrict the use of specific
concepts or combinations of concepts. This use of profiling for implicit abstract
platform definition is restricted to constraining or specialising the abstract platform
implicitly defined by plain UML. In this approach, the referenced metamodel (UML
2.0’s metamodel) in combination with the UML profile assumes the role of abstract
platform model.

In case the relevant abstract platform characteristics cannot be represented by
resolving semantic variation points through the definition of profiles, one should
define new languages in terms of MOF metamodels. The design concepts of these
languages are not constrained by UML, and can be arbitrarily defined through
mappings from the metamodel elements to any suitable semantic domain. In this
approach, the MOF metamodel assumes the role of abstract platform model. Profiling
is more suited to the abstract platforms that require concepts that can be represented
as specialisations of UML concepts. MOF metamodelling is suited in case the
required concepts differ too much from the UML concepts, so that a new independent
metamodel has to be defined. When used systematically, profiling has the advantage

180 J.P. Almeida et al.

that UML tools can be used for model validation and verification, since the resulting
models still comply with the UML rules and constraints. MOF metamodelling has a
potential drawback that available validation and verification tools may be impossible
to reuse, so that new tools may have to be built for the new metamodel.

4.2 Explicit Abstract Platform Definition

As an alternative to changing the design concepts of plain UML by means of profiling
and thereby changing the implicit abstract platform, we can define the abstract
platform explicitly. The abstract platform is then composed with the design of the
application. This can be accommodated in UML 2.0 by using model library packages
[23] to define the abstract platform model. Model library packages are packages
stereotyped with the standard <<modelLibrary>> stereotype. The abstract platform
model library package can be imported by the PIM of the application. This is
represented by creating a dependency between the package where the PIM is defined
and the model library package where the abstract platform is defined.

An abstract platform can have an arbitrarily complex behaviour and structure,
varying from a simple one-way message passing mechanism to a communication
system that maintains transactional integrity and time order of messages. To make the
design of complex abstract platforms manageable, we can use UML 2.0’s composite
structures to break up a complex design into smaller pieces. State-machine and
activity diagrams may be associated with encapsulated classifiers to define their
behaviour.

Since the behaviour of the abstract platform is also described in UML, it may be
necessary to combine the explicit and the implicit abstract platform definition
approaches, e.g., by resolving semantic variation points that are relevant for the
composition of the abstract platform (explicitly defined) and the platform-independent
model of the application.

5 Examples

In order to illustrate both approaches to abstract platform definition in UML, we
specify the platform-independent model of a simple chatting application. This
application allows users residing in different hosts to exchange text messages.

Initially, the application is described in terms of an abstract platform that supports
the interaction of objects through a conference binding object. We call this abstract
platform the ConferenceAbstractPlatform. In order to define the composition of the
conference binding object with the application, we use reliable exchange of
asynchronous signals. For this purpose, we define an abstract platform that supports
reliable signal exchange with the implicit approach, by defining a UML profile. Later,
we consider two possible realizations of the ConferenceAbstractPlatform, one of
these relies on an event-based platform we define explicitly, and the other relies
solely on the exchange of reliable signals. The relations between the different models
are depicted in Figure 2 (the EventAbstractPlatform is only necessary for the
realization presented in section 5.4).

 Platform-Independent Modelling in MDA: Supporting Abstract Platforms 181

«profile»
ReliableSignalsProfile

«system»
Application

«modellibrary»
ConferenceAbst ractPlatform

«modellibrary»
EventAbstractPlatform

«apply»
«apply»

«apply»

«import»

«import»

Fig. 2. Relations between the PIM of the application and the abstract platforms defined with the
implicit and explicit approaches

5.1 Reliable Signal Exchange

Figure 3 depicts the ReliableSignalsProfile that specializes the exchange of
asynchronous messages in UML 2.0. A stereotype <<reliable>> is defined that can
be applied to instances of SendSignalAction (defined in the package
IntermediateActions of the UML 2.0 meta-model). Signals created by executing a
SendSignalAction with this stereotype are exchanged reliably, in that they cannot be
lost or duplicated. The SendSignalAction meta-class is the only meta-class specialized
in the profile. It is not necessary to specialise the meta-classes Signal and Reception,
since these represent respectively, the type of signal instances exchanged and the
ability to receive signal instances. The semantics of these meta-classes are
independent of the manner of transmitting signal instances.

«profile»
ReliableSignalsProfile

«metaclass»
IntermediateActions::

SendSignalAction

«stereotype»
reliable

Fig. 3. A UML profile specializing the exchange of asynchronous messages

5.2 The ConferenceAbstractPlatform

The ConferenceBinding component provides the ConferenceInterface and requires the
ParticipantInterface. An application part that uses the ConferenceBinding should
provide the ParticipantInterface. The signals exchanged between application parts
and the abstract platform are defined explicitly. A class diagram showing the
ConferenceAbstractPlatform’s component, signals and interfaces is depicted in
Figure 4.

182 J.P. Almeida et al.

cd ConferenceAbstractPlatform

«interface»

ParticipantInterface

+ «signal» MessageInd(String)

«signal»
MessageInd

+ content: String

«interface»

ConferenceInterface

+ «signal» Join(ParticipantInterface)
+ «signal» Leave(ParticipantInterface)
+ «signal» MessageReq(ParticipantInterface, String)

«signal»
Join

+ participantid: ParticipantInterface

«signal»
Leave

+ participantid: ParticipantInterface

«signal»
MessageReq

+ content: String
+ participantid: ParticipantInterface

ConferenceBinding

Port1

ConferenceInterface

ParticipantInterface

cd ConferenceAbstractPlatform

«interface»

ParticipantInterface

+ «signal» MessageInd(String)

«signal»
MessageInd

+ content: String

«interface»

ConferenceInterface

+ «signal» Join(ParticipantInterface)
+ «signal» Leave(ParticipantInterface)
+ «signal» MessageReq(ParticipantInterface, String)

«signal»
Join

+ participantid: ParticipantInterface

«signal»
Leave

+ participantid: ParticipantInterface

«signal»
MessageReq

+ content: String
+ participantid: ParticipantInterface

ConferenceBinding

Port1

ConferenceInterface

ParticipantInterface

Fig. 4. The ConferenceAbstractPlatform

 sm ConferenceBindingStateMachine

Initial

[joinleave]

[messaging]

Initial

Initial

waitjoinleave

waitmessagereq

«reliable»
MessageInd(content)

to i.next()

processmessage

[i.hasNext()]
[!i.hasNext()]

MessageReq(content, participant) /i=getParticipants()

Join(participant) /addParticipant(participant)

Leave(participant) /removeParticipant(participant)

sm ConferenceBindingStateMachine

Initial

[joinleave]

[messaging]

Initial

Initial

waitjoinleave

waitmessagereq

«reliable»
MessageInd(content)

to i.next()

processmessage

[i.hasNext()]
[!i.hasNext()]

MessageReq(content, participant) /i=getParticipants()

Join(participant) /addParticipant(participant)

Leave(participant) /removeParticipant(participant)

Fig. 5. The ConferenceBinding state-machine

Figure 5 shows the behaviour of the ConferenceBinding component specified as a
state-machine. ComponentBinding keeps a list of conference participants, which is
updated whenever a Join or Leave signal is handled. Upon reception of a MessageReq
signal, the ConferenceBinding sends out MessageInd signals to all participants of the
conference. In order to simplify the behaviour we have assumed that the MessageInd
signals are sent sequentially based on the order imposed by the list of participants
(result of i.next()). This illustrates the use of the <<reliable>> stereotype.

The application that uses the ConferenceAbstractPlatform may be defined at a
high-level of platform-independence, communicating with the conference binding
through signal exchange. Many alternative implementations for signal exchange are
possible, depending on the target platform. Further, there is a large freedom of
implementation for the conference abstract platform itself. Since the application is
shielded from the internal design of the conference abstract platform, it does not
depend on the interaction support eventually used by the conference binding object.

 Platform-Independent Modelling in MDA: Supporting Abstract Platforms 183

5.3 Realization of the ConferenceAbstractPlatform

Figure 6 depicts a realization of the ConferenceBinding. This realization relies on the
abstract platform that provides reliable signals.

The interaction point that corresponds to port1 is of type ConferencePort. The
ConferencePort handles the signals Join and Leave and delegates the handling of
signals MessageReq to the appropriate ConferenceComponent. There is a Conference
Component instance for each participant in the conference. ConferenceComponent
instances exchange message signals among each other and messageInd with the
interaction point of port1. The definition of these signals is omitted. An OCL [22]
constraint is used to define that ConferenceComponent instances are fully connected,
and that there are no links between an instance and itself. Figure 7 shows the
behaviour associated with the ConferenceComponent. The behaviour of
ConferencePort is omitted due to space limitations. The signals are exchanged
reliably, and therefore, the stereotype <<reliable>> is applied to all SendSignal
Action instances.

cd ConferenceAbstractPlatformRealization1

ConferenceBindingRealization1

port1 :
Conf erencePort

c [*] :ConferenceComponent
port2

ConferenceComponent

+ «signal» message(String)
+ «signal» MessageReq(ParticipantInterf ace, String)

port2

«Inv ariant»
{Conf erenceComponent .allInstances ()->f orAll (c 1 |
(c1.target .select(c1)->isEmpty ()) and
(c1.target ->asSet()->size()=c.allInstances ()- >size)
)}

ConferencePort

+ «signal» Join(ParticipantInterf ace)
+ «signal» messageInd(Conf erenceComponent, String)
+ «signal» Leav e(ParticipantInterf ace)
+ «signal» MessageReq(ParticipantInterf ace, String)

Conf erenceInterf ace

ParticipantInterf ace

participant

1 1

+conf comp

+source *

+target *

Fig. 6. A realization of the ConferenceAbstractPlatform

sm ConferenceComponentStateMachine

Initial

waitMessageReq

«reliable»
message(content)

to target[i++]

processMessageReq

waitmessage

«reliable»
MessageInd(this,
content) to port2

InitialInitial

MessageReq(participantid, content) /i=0

[i<target.size()]

[i==target.size()]

message(content)

Fig. 7. Behaviour of the ConferenceComponent represented as a state-machine

184 J.P. Almeida et al.

5.4 ConferenceAbstractPlatform Realized in Terms of EventAbstractPlatform

Figure 8 depicts an alternative realization of the ConferenceBinding. This realization
illustrates the recursive use of an explicitly defined abstract platform. The
EventAbstractPlatform is used as part eap in ConferenceBindingRealization2. The
dashed line around part eap is used to denote that this part is contained by reference.
The multiplicity of eap is one, i.e., only one instance of the EventAbstractPlatform is
used in this decomposition of the ConferenceBinding.

 cd ConferenceAbstractPlatformRealization2

ConferenceBindingRealization2

port1 :
ConferencePort

ConferencePort

+ «signal» Join(ParticipantInterface)
+ «signal» MessageInd(String)
+ «signal» Leave(ParticipantInterface)
+ «signal» MessageReq(ParticipantInterface, String)

eap [1] :EventAbstractPlatform

port1

c [*] :
ConferenceComponent

portc porteap

ConferenceComponent

+ «signal» Join(ParticipantInterface)
+ «signal» notify(Event)
+ «signal» Leave(ParticipantInterface)
+ «signal» MessageReq(ParticipantInterface, String)

portc porteap

«interface»

EventAbstractPlatformPackage::ConsumerInterface

+ «signal» notify(Event)

EventAbstractPlatformPackage::
EventAbstractPlatform

port1 «interface»

EventAbstractPlatformPackage::ProducerInterface

+ «signal» publish(Event)
+ «signal» subscribe(ConsumerInterface, EventKind)
+ «signal» unsubscribe(ConsumerInterface, EventKind)

ConferenceInterface

ParticipantInterface

ConsumerInterface

ProducerInterface

«realize»

*

1

1
*

cd ConferenceAbstractPlatformRealization2

ConferenceBindingRealization2

port1 :
ConferencePort

ConferencePort

+ «signal» Join(ParticipantInterface)
+ «signal» MessageInd(String)
+ «signal» Leave(ParticipantInterface)
+ «signal» MessageReq(ParticipantInterface, String)

eap [1] :EventAbstractPlatform

port1

c [*] :
ConferenceComponent

portc porteap

ConferenceComponent

+ «signal» Join(ParticipantInterface)
+ «signal» notify(Event)
+ «signal» Leave(ParticipantInterface)
+ «signal» MessageReq(ParticipantInterface, String)

portc porteap

«interface»

EventAbstractPlatformPackage::ConsumerInterface

+ «signal» notify(Event)

EventAbstractPlatformPackage::
EventAbstractPlatform

port1 «interface»

EventAbstractPlatformPackage::ProducerInterface

+ «signal» publish(Event)
+ «signal» subscribe(ConsumerInterface, EventKind)
+ «signal» unsubscribe(ConsumerInterface, EventKind)

ConferenceInterface

ParticipantInterface

ConsumerInterface

ProducerInterface

«realize»

*

1

1
*

cd ConferenceAbstractPlatformRealization2

ConferenceBindingRealization2

port1 :
ConferencePort

ConferencePort

+ «signal» Join(ParticipantInterface)
+ «signal» MessageInd(String)
+ «signal» Leave(ParticipantInterface)
+ «signal» MessageReq(ParticipantInterface, String)

eap [1] :EventAbstractPlatform

port1

c [*] :
ConferenceComponent

portc porteap

ConferenceComponent

+ «signal» Join(ParticipantInterface)
+ «signal» notify(Event)
+ «signal» Leave(ParticipantInterface)
+ «signal» MessageReq(ParticipantInterface, String)

portc porteap

«interface»

EventAbstractPlatformPackage::ConsumerInterface

+ «signal» notify(Event)

EventAbstractPlatformPackage::
EventAbstractPlatform

port1 «interface»

EventAbstractPlatformPackage::ProducerInterface

+ «signal» publish(Event)
+ «signal» subscribe(ConsumerInterface, EventKind)
+ «signal» unsubscribe(ConsumerInterface, EventKind)

ConferenceInterface

ParticipantInterface

ConsumerInterface

ProducerInterface

«realize»

*

1

1
*

cd ConferenceAbstractPlatformRealization2

ConferenceBindingRealization2

port1 :
ConferencePort

ConferencePort

+ «signal» Join(ParticipantInterface)
+ «signal» MessageInd(String)
+ «signal» Leave(ParticipantInterface)
+ «signal» MessageReq(ParticipantInterface, String)

eap [1] :EventAbstractPlatform

port1

c [*] :
ConferenceComponent

portc porteap

ConferenceComponent

+ «signal» Join(ParticipantInterface)
+ «signal» notify(Event)
+ «signal» Leave(ParticipantInterface)
+ «signal» MessageReq(ParticipantInterface, String)

portc porteap

«interface»

EventAbstractPlatformPackage::ConsumerInterface

+ «signal» notify(Event)

EventAbstractPlatformPackage::
EventAbstractPlatform

port1 «interface»

EventAbstractPlatformPackage::ProducerInterface

+ «signal» publish(Event)
+ «signal» subscribe(ConsumerInterface, EventKind)
+ «signal» unsubscribe(ConsumerInterface, EventKind)

ConferenceInterface

ParticipantInterface

ConsumerInterface

ProducerInterface

«realize»

*

1

1
*

Fig. 8. Alternative realization of the ConferenceAbstractPlatform

The EventAbstractPlatform accepts events and subsequently forwards these events
to objects that have subscribed to the particular event type. There is a
ConferenceComponent for each participant in the conference. The definition of the
behaviour of the EventAbstractPlatform is omitted here, as well as the classes Event
and EventKind.

The EventAbstractPlatform can be realized on a number of event-based platforms,
such as, e.g., JMS [27] and CORBA (with the Event Service) [16]. Alternatively, a
recursive decomposition of the EventAbstractPlatform can be done, resulting, e.g., in a
design of the EventAbstractPlatform that relies on a request-response abstract platform.

6 Discussion

The example from the previous section illustrates two kinds of problems that can arise
when defining abstract platforms with a particular modelling language.

 Platform-Independent Modelling in MDA: Supporting Abstract Platforms 185

Firstly, a language’s design concepts may force decisions about desired platform
properties to be taken too early in the design process, because they do not permit
abstraction of these properties. The example in the previous section illustrates this for
the case of UML state machines. The state machine in Figure 5 determines that
message requests are processed one at a time. Therefore, a strict interpretation of this
model would exclude realizations of this abstract platform that accept multiple
message requests simultaneously. Alternatively, we could have specified that a
number of concurrent threads process multiple message requests at the same time.
However, this alternative commits to a particular concurrency model. Ideally, we
would have stated only that message requests are independent of each other, which is
appropriate at the level of abstraction considered. The decision on a particular
concurrency model would be delayed, and different alternative implementations
would be deemed acceptable. A designer may try to mitigate the limitation of the
UML representation by interpreting the behavioural specification loosely, e.g.,
informally defining that message requests can also be treated simultaneously despite
the state machine model. However, this limits the usability of models for model
transformation, automated testing, validation and simulation.

Secondly, a language’s design concepts may indirectly favour some platforms over
others, due to similarities in the structure of models and realizations in a particular
platform. Although an implementer could try to ignore the structure and choose to
adhere only to the model’s semantics, he or she will be inclined to use the platform
with the matching structure. The example from the previous section illustrates this for
UML composite structures. In composite structures, interaction points that correspond
to ports can only be created and destroyed along with the component to which they
are attached. This implies that, if we want to model that an unbound number of
distinct users may use the component through ports, we have to use a multiplexing
scheme like the one used in Figures 6 and 8. Although the specification gives the
impression that the multiplexing scheme has to be implemented, it is wiser for the
implementer to ignore this scheme in case the target platform allows the dynamic
creation and destruction of a component’s interaction points.

7 Related Work

The MDA Guide [18] provides some examples of “generic platform types” and
mentions briefly the need for a “generic platform model”, which “can amount to a
specification of a particular architectural style.” Nevertheless, the introduction of
these concepts is superficial: for example, the term “generic platform” is not even
defined explicitly. In our interpretation of that documentation, we position our notion
of abstract platform as subsuming that of generic platform. Abstract platforms can
have other relevant characteristics in addition to defining a “particular architectural
style”. We have identified models that may serve as abstract platform models, in two
different approaches to abstract platform definition that can be incorporated in MDA
using OMG core technologies, namely UML, profiles and MOF.

The UML profile for EDOC Component Collaboration Architecture (CCA) [24]
defines implicitly an abstract platform in which application part interactions are
always decomposed into asynchronous messages that are exchanged through “Flow

186 J.P. Almeida et al.

Ports”. This profile also introduces the notion of recursive component collaboration
(not present in UML 1.5 [26]), which can be explored to define abstract platforms
explicitly, similarly to what we have obtained by using UML 2.0’s composite
structures.

Explicit abstract platform definition is comparable to the definition of (the
behaviour of) connectors in Architecture Description Languages (ADLs), such as
Rapide [11], [12] and Wright [1], when considering exclusively the characteristics of
interaction support. While the role of middleware platform characteristics in ADLs
have been recognized in [14], mechanisms to systematically separate and relate
platform-independent and platform-specific descriptions have not been proposed in
the scope of the work on Software Architecture.

8 Concluding Remarks

We have argued previously [2] that the architectural concept of abstract platform
should have a prominent role in MDA development. An abstract platform defines
platform characteristics that are considered at the particular level of platform-
independence, and may also serve as starting point for platform-specific realization.

Design language concepts and characteristics of abstract platforms are interrelated.
Therefore, careful selection of a design language is indispensable for the beneficial
exploitation of the PIM/PSM separation and the definition of abstract platforms.

Often, some platform characteristics are assumed implicitly in platform-
independent designs. This may lead to PIMs that cannot be reused for different
platforms or it may lead to PIMs that cannot be directly compared and integrated. It
may also lead to transformations that cannot be reused. Platform characteristics
assumed in platform-independent designs are better understood and controlled by
designers if the characteristics of the abstract platform are explicitly represented in
abstract platform definitions. Furthermore, explicitly identifying an abstract platform
brings attention to balancing between two conflicting goals: (i) platform-independent
modelling, and (ii) platform-specific realization.

We have discussed how to support the concept of abstract platform in standard
UML, through both the implicit and the explicit abstract platform definition
approaches. In the implicit definition approach, the semantic variation points of UML
should either be resolved or should be considered irrelevant for deriving intended
abstract platform characteristics. UML Profiles can be useful in this approach to
specialise design concepts, and manage and package abstract platforms. In the explicit
definition approach, UML 2.0’s composite structures are useful both for defining
abstract platforms from an external and from an internal perspective. Composite
structures have been a useful addition to UML 2.0. Nevertheless, we have identified
some limitations with respect to the level of abstraction that can be obtained in the
representation of abstract platforms with composite structures. In addition, UML 2.0
still lacks some notion of behaviour conformance in order to relate behaviours defined
at a high-level of abstraction and the refined realizations of these behaviours.
Consequently, we cannot formally assess the correctness of abstract platform
realizations.

 Platform-Independent Modelling in MDA: Supporting Abstract Platforms 187

We have presented an example in UML in which a number of abstract platforms
can be combined, both in the implicit and the explicit abstract platform definition
approaches. We intend to investigate further modularisation criteria for abstract
platform definitions, aiming at obtaining a reference architecture for abstract platform
definition. A designer should then be able to compose an abstract platform from
abstract platform definition modules. This modularisation would ideally be preserved
in transformation specifications and ultimately at platform-specific level.

Acknowledgements

This work is part of the Freeband A-MUSE project. Freeband (http://www.
freeband.nl) is sponsored by the Dutch government under contract BSIK 03025. This
work has also been partly supported by the European Commission within the MODA-
TEL IST project (http://www.modatel.org).

References

1. Allen, R. J., Garlan, D.: A Formal Basis for Architectural Connection. ACM Transactions
on Software Engineering and Methodology, Vol. 6, No. 3 (1997) 213−219

2. Almeida, J. P. A., van Sinderen, M., Ferreira Pires, L., Quartel, D.: A systematic approach
to platform-independent design based on the service concept. In: Proceedings 7th IEEE
Intl. Enterprise Distributed Object Computing Conference (EDOC 2003). IEEE Computer
Society, Los Alamitos, CA (2003) 112−123

3. Almeida, J. P. A., van Sinderen, M., Ferreira Pires L.: The role of the RM-ODP
Computational Viewpoint Concepts in the MDA approach. In: Proceedings of the 1st
European Workshop on Model-Driven Architecture with Emphasis on Industrial
Applications (MDA-IA 2004). CTIT Technical Report TR-CTIT-04-12. University of
Twente, the Netherlands (2004) 43−51

4. Arango, G.: Domain Analysis: from Art Form to Engineering Discipline. ACM SIGSOFT
Software Engineering Notes, Vol. 14, No. 3 (1989) 152−159

5. Elrad, T., Filman, R. E., Bader, A. (eds.), Communications of the ACM, Special Section
on Aspect-Oriented Programming, Vol. 44, No.10 (2001) 29−97

6. Ferreira Pires, L.: Architectural Notes: a framework for distributed systems development,
Ph.D. Thesis. University of Twente, Enschede, the Netherlands (1994)

7. ITU-T / ISO: Open Distributed Processing - Reference Model - Part 2: Foundations, ITU-
T X.902 | ISO/IEC 10746-2 (1995)

8. ITU-T / ISO: Open Distributed Processing - Reference Model - Part 3: Architecture, ITU-
T X.903 | ISO/IEC 10746-3 (1995)

9. ITU-T / ISO: Open Distributed Processing - Reference Model - Enterprise Language, ITU-
T X.901 | ISO/IEC 15414:2002 (2001)

10. ITU-T: Recommendation Z.100 - CCITT Specification and Description Language.
International Telecommunications Union (2002)

11. Luckham, D., Kenney, J., Augustin, L., Vera, J., Bryan, D., Mann, W.: Specification and
Analysis of System Architecture Using Rapide. IEEE Transactions on Software
Engineering, Vol. 21, No. 4 (1995) 336−355

12. Luckham D., Vera, J.: An Event-Based Architecture Definition Language. IEEE
Transactions on Software Engineering Vol. 21, No. 9 (1995) 717−734

188 J.P. Almeida et al.

13. Microsoft Corporation: Microsoft .NET Remoting: A Technical Overview (2001),
available at http://msdn.microsoft.com/library/en-us/dndotnet/html/hawkremoting.asp

14. Di Nitto, E., Rosenblum D.: Exploiting ADLs to Specify Architectural Styles Induced by
Middleware Infrastructures. In: Proceedings of the 21st International Conference on
Software Engineering (ICSE’99). Los Angeles, CA (1999)

15. Object Management Group: Model driven architecture (MDA), ormsc/01-07-01 (2001)
16. Object Management Group: Common Object Request Broker Architecture: Core

Specification, Version 3.0, formal/02-12-06 (2002)
17. Object Management Group: CORBA Component Model, Version 3.0, formal/02-06-65

(2002)
18. Object Management Group: MDA-Guide, Version 1.0.1, omg/03-06-01 (2003)
19. Object Management Group: Meta Object Facility (MOF) 2.0 Core Specification, ptc/03-

10-04 (2003)
20. Object Management Group: Meta Object Facility (MOF) Specification, Version 1.4,

formal/02-04-03 (2002)
21. Object Management Group: MOF 2.0 Query / Views / Transformations RFP, ad/2002-04-

10 (2002)
22. Object Management Group: Unified Modelling Language: Object Constraint Language

Version 2.0, Draft Adopted Specification, ptc/03-08-08 (2003)
23. Object Management Group: UML 2.0 Superstructure, ptc/03-08-02 (2003)
24. Object Management Group: UML Profile for Enterprise Distributed Object Computing

Specification, ptc/02-02-05 (2002)
25. Object Management Group: Unified Modelling Language (UML) Specification:

Infrastructure, Version 2.0, ptc/03-09-15 (2003)
26. Object Management Group: Unified Modelling Language (UML) Specification, Version

1.5, formal/03-03-01 (2001)
27. Sun Microsystems: Java(TM) Message Service Specification Final Release 1.1 (2002),

available at http://java.sun.com/products/jms/docs.html
28. World Wide Web Consortium: SOAP Version 1.2 Part 1: Messaging Framework, W3C

Proposed Recommendation (2003), available at http://www.w3.org/TR/soap12-part1
29. World Wide Web Consortium: Web Services Description Language (WSDL) 1.1, W3C

Note (2001), available at http://www.w3.org/TR/wsdl

	Introduction
	Abstract Platforms
	Design Languages
	Abstract Platform Definition with MDA Standards
	Implicit Abstract Platform Definition
	Explicit Abstract Platform Definition

	Examples
	Reliable Signal Exchange
	The ConferenceAbstractPlatform
	Realization of the ConferenceAbstractPlatform
	ConferenceAbstractPlatform Realized in Terms of EventAbstractPlatform

	Discussion
	Related Work
	Concluding Remarks
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

