Skip to main content

Light Functional Interpretation

An Optimization of Gödel’s Technique Towards the Extraction of (More) Efficient Programs from (Classical) Proofs

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3634))

Abstract

We give a Natural Deduction formulation of an adaptation of Gödel’s functional (Dialectica) interpretation to the extraction of (more) efficient programs from (classical) proofs. We adapt Jørgensen’s formulation of pure Dialectica translation by eliminating his “Contraction Lemma” and allowing free variables in the extracted terms (which is more suitable in a Natural Deduction setting). We also adapt Berger’s uniform existential and universal quantifiers to the Dialectica-extraction context. The use of such quantifiers without computational meaning permits the identification and isolation of contraction formulas which would otherwise be redundantly included in the pure-Dialectica extracted terms. In the end we sketch the possible combination of our refinement of Gödel’s Dialectica interpretation with its adaptation to the extraction of bounds due to Kohlenbach into a light monotone functional interpretation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Avigad, J.: Interpreting classical theories in constructive ones. The Journal of Symbolic Logic 65(4), 1785–1812 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  2. Avigad, J., Feferman, S.: Gödel’s functional (‘Dialectica’) interpretation. In: Buss, S.R. (ed.) Handbook of Proof Theory. Studies in Logic and the Foundations of Mathematics, vol. 137, pp. 337–405. Elsevier, Amsterdam (1998)

    Chapter  Google Scholar 

  3. Barbanera, F., Berardi, S.: Extracting constructive content from classical logic via control–like reductions. In: Bezem, M., Groote, J.F. (eds.) TLCA 1993. LNCS, vol. 664, pp. 45–59. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  4. Bates, J.L., Constable, R.L.: Proofs as programs. ACM Transactions on Programming Languages and Systems 7(1), 113–136 (1985)

    Article  MATH  Google Scholar 

  5. Berger, U.: Uniform Heyting Arithmetic. Annals of Pure and Applied Logic 133(1-3), 125–148 (2005); Festschrift for H. Schwichtenberg’s 60th birthday

    Article  MATH  MathSciNet  Google Scholar 

  6. Berger, U., Buchholz, W., Schwichtenberg, H.: Refined program extraction from classical proofs. Annals of Pure and Applied Logic 114, 3–25 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  7. Berger, U., Schwichtenberg, H., Seisenberger, M.: The Warshall algorithm and Dickson’s lemma: Two examples of realistic program extraction. Journal of Automated Reasoning 26, 205–221 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  8. Constable, R.L., Murthy, C.: Finding computational content in classical proofs. In: Huet, G., Plotkin, G. (eds.) Logical Frameworks, pp. 341–362. Cambridge University Press, Cambridge (1991)

    Chapter  Google Scholar 

  9. Coquand, T., Hofmann, M.: A new method for establishing conservativity of classical systems over their intuitionistic version. Mathematical Structures in Computer Science 9(4), 323–333 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  10. Diller, J., Nahm, W.: Eine Variante zur Dialectica Interpretation der Heyting Arithmetik endlicher Typen. Archiv für Mathematische Logik und Grundlagenforschung 16, 49–66 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  11. Ferreira, F., Oliva, P.: Bounded Functional Interpretation. Annals of Pure and Applied Logic, 48 pp., see Elseviers’s Science Direct on the Internet (to appear)

    Google Scholar 

  12. Friedman, H.: Classical and intuitionistically provably recursive functions. In: Bird, R.S., Woodcock, J.C.P., Morgan, C.C. (eds.) MPC 1992. LNCS, vol. 669, pp. 21–27. Springer, Heidelberg (1993)

    Google Scholar 

  13. Gödel, K.: Über eine bisher noch nicht benützte Erweiterung des finiten Standpunktes. Dialectica 12, 280–287 (1958)

    Article  MATH  MathSciNet  Google Scholar 

  14. Hernest, M.-D.: Technical Appendix to this paper. See the author’s web-page

    Google Scholar 

  15. Hernest, M.-D.: A comparison between two techniques of program extraction from classical proofs. In: Baaz, M., Makovsky, J., Voronkov, A. (eds.) CSL 2003. Kurt Gödel Society’s Collegium Logicum, vol. VIII, pp. 99–102. Springer, Heidelberg (2004)

    Google Scholar 

  16. Hernest, M.-D., Kohlenbach, U.: A complexity analysis of functional interpretations. Theoretical Computer Science 338(1-3), 200–246 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  17. Howard, W.A.: Hereditarily majorizable functionals of finite type. In: [38], pp. 454–461

    Google Scholar 

  18. Johansson, I.: Der Minimalkalkül, ein reduzierter intuitionistischer Formalismus. Compositio Matematica 4, 119–136 (1936)

    MATH  MathSciNet  Google Scholar 

  19. Jørgensen, K.F.: Finite type arithmetic. Master’s thesis, Departments of Mathematics and Philosophy, University of Roskilde, Roskilde, Denmark (2001)

    Google Scholar 

  20. Kohlenbach, U.: Proof Interpretations and the Computational Content of Proofs. Lecture Course, latest version in the author’s web page

    Google Scholar 

  21. Kohlenbach, U.: Analysing proofs in Analysis. In: Hodges, W., Hyland, M., Steinhorn, C., Truss, J. (eds.) Logic: from Foundations to Applications, Keele, 1993. European Logic Colloquium, pp. 225–260. Oxford University Press, Oxford (1996)

    Google Scholar 

  22. Kohlenbach, U., Oliva, P.: Proof mining: a systematic way of analysing proofs in Mathematics. Proc. of the Steklov Institute of Mathematics 242, 136–164 (2003)

    MathSciNet  Google Scholar 

  23. Kreisel, G.: Interpretation of analysis by means of constructive functionals of finite types. In: Heyting, A. (ed.) Constructivity in Mathematics, pp. 101–128. North-Holland Publishing Company, Amsterdam (1959)

    Google Scholar 

  24. Krivine, J.-L.: Classical logic, storage operators and second-order lambda-calculus. Annals of Pure and Applied Logic 68, 53–78 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  25. Leivant, D.: Syntactic translations and provably recursive functions. The Journal of Symbolic Logic 50(3), 682–688 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  26. Luckhardt, H.: Extensional Gödel Functional Interpretation. Lecture Notes in Mathematics, vol. 306. Springer, Heidelberg (1973)

    MATH  Google Scholar 

  27. Luckhardt, H.: Bounds extracted by Kreisel from ineffective proofs. In: Odifreddi, P. (ed.) Kreiseliana: About and around Georg Kreisel, pp. 289–300. A.K. Peters, Wellesley (1996)

    Google Scholar 

  28. Murthy, C.: Extracting constructive content from classical proofs. Tech. Report 90– 1151, Dep.of Comp.Science, Cornell Univ., Ithaca, NY, U.S.A, PhD thesis (1990)

    Google Scholar 

  29. Ostrin, G.E., Wainer, S.S.: Elementary arithmetic. Annals of Pure and Applied Logic 133(1-3), 275–292 (2005); Festschrift for H. Schwichtenberg’s 60s

    Article  MATH  MathSciNet  Google Scholar 

  30. Parigot, M.: λμ–calculus: an algorithmic interpretation of classical natural deduction. In: Voronkov, A. (ed.) LPAR 1992. LNCS, vol. 624, pp. 190–201. Springer, Heidelberg (1992)

    Chapter  Google Scholar 

  31. Paulin-Mohring, C., Werner, B.: Synthesis of ML programs in the system Coq. Journal of Symbolic Computation 15(5/6), 607–640 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  32. Raffalli, C.: Getting results from programs extracted from classical proofs. Theoretical Computer Science 323(1-3), 49–70 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  33. Rath, P.: Eine verallgemeinerte Funktionalinterpretation der Heyting Arithmetik endlicher Typen. PhD thesis, Universität Münster, Germany (1978)

    Google Scholar 

  34. Schwichtenberg, H.: Minimal logic for computable functions. Lecture course on program-extraction from (classical) proofs. Author’s page or Minlog distrib. In: [36]

    Google Scholar 

  35. Schwichtenberg, H.: Monotone majorizable functionals. Studia Logica 62, 283–289 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  36. Schwichtenberg, H., et al.: Proof- and program-extraction system Minlog, Free code and documentation at http://www.minlog-system.de

  37. Stein, M.: Interpretation der Heyting-Arithmetik endlicher Typen. PhD thesis, Universit ät Münster, Germany (1976)

    Google Scholar 

  38. Troelstra, A.S. (ed.): Metamathematical investigation of intuitionistic Arithmetic and Analysis. Lecture Notes in Mathematics, vol. 344. Springer, Heidelberg (1973)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hernest, MD. (2005). Light Functional Interpretation. In: Ong, L. (eds) Computer Science Logic. CSL 2005. Lecture Notes in Computer Science, vol 3634. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11538363_33

Download citation

  • DOI: https://doi.org/10.1007/11538363_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28231-0

  • Online ISBN: 978-3-540-31897-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics