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Abstract. We show that Csanky’s fast parallel algorithm for computing
the characteristic polynomial of a matrix can be formalized in the logical
theory LAP, and can be proved correct in LAP from the principle
of linear independence. LAP is a natural theory for reasoning about
linear algebra introduced in [8]. Further, we show that several principles
of matrix algebra, such as linear independence or the Cayley-Hamilton
Theorem, can be shown equivalent in the logical theory QLA. Applying
the separation between complexity classes AC0[2] ( DET(GF(2)), we
show that these principles are in fact not provable in QLA. In a nutshell,
we show that linear independence is “all there is” to elementary linear
algebra (from a proof complexity point of view), and furthermore, linear
independence cannot be proved trivially (again, from a proof complexity
point of view).
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1 Introduction

This paper makes the following claim: our intuition that the principle of linear
independence is all that there is to elementary linear algebra is justified from
a proof complexity point of view. This means that from the principle of linear
independence we can prove other strong principles of linear algebra (for example,
the Cayley-Hamilton Theorem) using concepts of very low computational com-
plexity. Furthermore, we claim that linear independence itself cannot be proved
using concepts of low computational complexity.

To argue this claim, we present a new feasible proof of the Cayley-Hamilton
Theorem (CHT) from the principle of linear independence in a weak theory of
linear algebra (QLAP). The proof is based on Csanky’s algorithm for computing
the characteristic polynomial of a matrix. Csanky’s algorithm is a fast parallel
algorithm that computes the characteristic polynomial of a matrix over fields of
characteristic zero.

QLAP is a first order theory for reasoning about matrices. Our new proof
of the CHT with Csanky’s algorithm leads to QLAP proofs of equivalence of
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important principles of linear algebra (for example, linear independence and the
CHT). We also show that these principles are independent of QLAP. To show
this independence we use the previously known result that AC0[2] is properly
contained in DET(GF(2)).

The class AC0[2] consists of problems solvable with polynomial size circuits
(in the size of the input), bounded depth, where besides the usual gates {∧,∨,¬}
we are also allowed to use the parity gate ⊕. The class DET(GF(2)) consists
of problems AC0 reducible to computing the determinant over the field of two
elements. Another class which will make a frequent appearance in this paper is
NC2, which consists of those problems which are solvable with polynomial size
circuits of depth O(log2) (in the size of the input).

It is known that AC0[2] ( DET(GF(2)) ⊆ NC2 ⊆ PolyTime, and the sep-
aration between the first two complexity classes is the famous result of Razborov
and Smolensky ([5,6])). This separation will be instrumental in showing our in-
dependence result in the last section.

In this line of research we are motivated by a dual purpose: we want to
understand the proof complexity of linear algebra, and we are also searching for
good candidates for separating the Frege and extended Frege propositional proof
systems. This separation is a central problem in theoretical computer science,
and the theorems of universal linear algebra are considered to be good candidates
to show such a separation—see [1] for more background on this quest.

In [8] we introduced the logical theory LA ⊂ LAP ⊂ ∃LA we gave the
first feasible (i.e., using polynomial time concepts) proof of the CHT, a central
theorem of matrix algebra from which many other universal theorems follow (in
LAP). Our proof was based on Berkowitz’s algorithm, which is an efficient paral-
lel algorithm for computing the characteristic polynomial of a matrix (and hence
the inverse, adjoint, and determinant of a matrix). Berkowitz’s algorithm is field
independent (that is, it works over any field), and it can be formalized with
NC2 circuits. Both Berkowitz’s algorithm and Csanky’s algorithm are NC2 al-
gorithms, and have the following interesting relationship: if they could be shown
to compute the same thing in LAP, they could both be shown correct in LAP.
As things stand now, are best proofs of correctness for both are polytime.

In section 2 we describe the relevant theories, LA, LAP, QLA, and ∃LA.
In section 3 we describe Csanky’s and Berkowitz’s algorithms, and show that
they can be formalized in LAP. In section 4 we show that the CHT follows in
LAP from the principle of linear independence. This result is obtained using
Csanky’s algorithm, and so it requires fields of characteristic zero. In section 5
we show that five main principles of linear algebra can all be shown equivalent
in QLA, and furthermore, QLA does not prove any of them.

2 The theories LA,LAP, ∃LA, and QLA

We define a quantifier-free theory of Linear Algebra (matrix algebra), and call it
LA. Our theory is strong enough to prove the ring properties of matrices such as
A(BC) = (AB)C and A+B = B+A but weak enough so that all the theorems



of LA (over finite fields or the field of rationals) translate into propositional
tautologies with short Frege proofs.

Our theory has three sorts of object: indices (i.e., natural numbers), field
elements, and matrices, where the corresponding variables are denoted i, j, k, . . .;
a, b, c, . . .; and A,B,C, . . ., respectively. The semantics assumes that objects of
type field are from a fixed but arbitrary field, and objects of type matrix have
entries from that field.

Terms and formulas are built from the function and predicate symbols:

0index, 1index,+index, ∗index,−index, div, rem, 0field, 1field,

+field, ∗field,−field,
−1

r, c, e, Σ,≤index,=index,=field,

=matrix, condindex, condfield

(1)

The intended meanings should be clear, except for the following operations on
a matrix A: r(A), c(A) are the numbers of rows and columns in A, e(A, i, j) is
the field element Aij , Σ(A) is the sum of the elements in A. Also cond(α, t1, t2)
is interpreted if α then t1 else t2, where α is a formula all of whose atomic sub-
formulas have the form m ≤ n or m = n, where m,n are terms of type index,
and t1, t2 are terms either both of type index or both of type field. The subscripts

index and field are usually omitted, since they are clear from the context.
In addition to the usual rules for constructing terms we also allow the terms

λij〈m,n, t〉 of type matrix. Here i and j are variables of type index bound by
the λ operator, intended to range over the rows and columns of the matrix. Here
also m,n are terms of type index not containing i, j (representing the numbers
of rows and columns of the matrix) and t is a term of type field (representing
the matrix element in position (i, j)).

The λ terms allow us to construct the sum, product, transpose, etc., of ma-
trices. For example, suppose first that A and B are m×n matrices. Then, A+B

can be defined as λij〈m,n, e(A, i, j) + e(B, i, j)〉. Now suppose that A and B

are m× p and p× n matrices, respectively. Then:

A ∗B := λij〈m,n,Σλkl〈p, 1, e(A, i, k) ∗ e(B, k, j)〉〉

However, even if matrices are of incompatible size, their addition and product
is well defined, since the “smaller” matrix is implicitly padded with zeros (as
e(A, i, j) = 0 for i or j outside the range). Thus, all terms are well defined.

Atomic formulas and formulas are built in the usual manner, but in LA and
LAP we only allow bounded index quantifiers (note that LA, respectively LAP,
with bounded index quantifiers is conservative over LA, respectively LAP, with-
out them).

We use Gentzen’s sequent calculus LK (with quantifier rules omitted) for the
underlying logic. We include 34 non-logical axioms in four groups: Axioms for
equality, indices, field elements, and matrices (all quantifier-free). These specify
the basic properties of the function and predicate symbols (1). By convention
each instance of an axiom resulting from substituting terms for variables is also
an axiom, so the axioms are really axiom schemes. All the axioms are given
in [8].



We need an extra axiom to ensure that the underlying field is of charac-
teristic zero. This can be stated with ΣIn 6= 0, where In is the n × n identity
matrix, which is given with a constructed term λij〈n, n, cond(i = j, 1, 0)〉. This
requirement is necessary for Csanky’s algorithm which works only over fields of
characteristic zero, as it performs divisions by integers.

We need just two non-logical rules: an equality rule for terms of type matrix,
and the induction rule:

Γ, α(i) → α(i + 1), ∆

Γ, α(0) → α(n), ∆
(2)

To formalize Newton’s and Berkowitz’s algorithms we extend the theory LA
to the theory LAP by adding a new function symbol P , where P (n,A) means
An. We also add two new axioms, which give a recursive definition of P ; namely,
P (0, A) = I and P (n + 1, A) = P (n,A) ∗ A. This is enough to formalize the
coefficients of the characteristic polynomial of a matrix, as computed by either
algorithm, as terms in the language of LAP. However, it seems that LAP is
too weak to prove strong properties of the characteristic polynomial (such as the
CHT or the multiplicativity of the determinant).

The theory ∃LA is an extension of LA where we allow induction over formu-
las of the form (∃X ≤ t)α, where α has no quantifiers, and ∃X ≤ t is a bounded
existential matrix quantifier (X ≤ t is just shorthand for r(X) ≤ t ∧ c(X) ≤ t).
Note that the theory ∃LAP, defined analogously, is conservative over ∃LA be-
cause matrix powering (P ) can be defined in ∃LA; so we don’t really need to
include P (see [10]).

Finally, QLA is LA with quantification over matrices, but induction re-
stricted to formulas of LA.

This concludes a brief tour through the theories LA,LAP, ∃LA, and QLA.
They are natural theories, in that they include what one would expect to formal-
ize matrix algebra. LA is the weakest, and it can be thought off as the theory
that proves the ring properties of matrices. LAP is LA together with the ma-
trix powering function (and defining axioms), and it can formalize Csanky’s and
Berkowitz’s algorithm, but it seems too weak to prove strong properties about
them. ∃LA is LA together with an induction over formulas with bounded matrix
quantifiers (which also allows it to simulate LAP).

3 Csanky’s and Berkowitz’s algorithms

Both Csanky’s and Berkowitz’s algorithms compute the characteristic polyno-
mial of a matrix, which is usually defined as pA(x) = det(xI − A), for a given
matrix A. Let pcsankyA and pberkA denote the coefficients of the characteristic poly-
nomial of A given as column vectors, respectively. Let pcsankyA (x) and pberkA (x)
denote the actual characteristic polynomials, with coefficients computed by the
respective algorithms.



Newton’s symmetric polynomials are defined as follows: s0 = 1, and for
1 ≤ k ≤ n, by:

sk =
1

k

k
∑

i=1

(−1)i−1sk−itr(A
i) (3)

Then, pcsankyA (x) = s0x
n−s1x

n−1+s2x
n−2−· · ·±snx

0. It is shown in the proof
of lemma 1 how Csanky’s algorithm computes the si’s more efficiently (in NC2)
than in the straightforward way suggested by the recurrence (3).

Lemma 1. pcsankyA can be given as a term of LAP.

Proof. We follow the ideas in [11, Section 13.4]. We restate (3) in matrix form:
s = Ts− b where s, T, b are given, respectively, as follows:











s1
s2
...
sn
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2 tr(A) 0 0 . . .
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Then s = −b(I − T )−1. Note that (I − T ) is an invertible matrix as it is lower
triangular, with 1s on the main diagonal. The inverse of (I−T ) can be computed
recursively using the following idea: if C is lower-triangular, with no zeros on
the main diagonal, then

C =

(

C1 0
E C2

)

⇒ C−1 =

(

C−11 0
−C−12 EC−11 C−12

)

There are O(log(n)) many steps and the whole procedure can be simulated with
circuits of depth O(log2(n)) and size polynomial in n.

This, however, does not give us an LAP-term, and it would be difficult to
formalize the proof of correctness of this recursive inversion procedure in LAP.
Thus, instead of this recursive computation, we use the fact that the CHT can
be proved correct in LAP for triangular matrices (see [7, Section 5.2]). From
the characteristic polynomial of (I − T ) we obtain its inverse, and the inverse
can be proved correct (i.e., (I − T )(I − T )−1 = (I − T )−1(I − T ) = I) using the
the CHT for triangular matrices, and this can be formalized in LAP.

Berkowitz’s algorithm, just as Csanky’s algorithm, allows us to reduce the
computation of the characteristic polynomial to matrix powering. Its advantage
is that it works over any field; however, certain properties (such as the fact that
similar matrices have the same characteristic polynomial) have easy proofs in
weak theories (LAP) for Csanky’s algorithm, but (seem to) require polytime
theories (∃LA) for Berkowitz’s algorithm.



Berkowitz’s algorithm computes the characteristic polynomial of a matrix in
terms of the characteristic polynomial of its principal minor:

A =

(

a11 R

S M

)

(4)

where R is an 1× (n− 1) row matrix and S is a (n− 1)× 1 column matrix and
M is (n− 1)× (n− 1). Let p(x) and q(x) be the characteristic polynomials of A
and M respectively. Suppose that the coefficients of p form the column vector

p =
(

pn pn−1 . . . p0
)t

(5)

where pi is the coefficient of xi in det(xI −A), and similarly for q. Then:

p = C1q (6)

where C1 is an (n + 1) × n Toeplitz lower triangular matrix (Toeplitz means
that the values on each diagonal are constant) and where the entries in the
first column are defined as follows: ci1 = 1 if i = 1, ci1 = −a11 if i = 2, and
ci1 = −(RM i−3S) if i ≥ 3. Berkowitz’s algorithm consists in repeating this for
q, and continuing so that p is expressed as a product of matrices. Thus:

pberkA = C1C2 · · ·Cn (7)

where Ci is an (n+ 2− i)× (n+ 1− i) Toeplitz matrix defined as above except
A is replaced by its i-th principal sub-matrix. Note that Cn = (1 − ann)

t.
Since each element of Ci can be explicitly defined in terms of A using matrix

powering, and since the iterated matrix product can be reduced to matrix pow-
ering by a standard method, the entire product (7) can be expressed in terms of
A using matrix powering. Thus the right-hand side of (7) can be expressed as a
term in LAP.

Since we can define the characteristic polynomial in LAP (as pcsanky or
pberk), it follows immediately that we can also define the determinant and the
adjoint as terms of LAP.

4 Correctness of Csanky’s Algorithm

The main result of this section, given as theorem 1, is the following:

QLAP ⊢ Linear Independence ⊃ CHT (8)

where CHT (the Cayley-Hamilton Theorem) stands for pA(A) = pcsankyA (A) = 0.
Since ∃LA proves the principle of linear independence (see [10]), we have a
new proof that ∃LA can prove the CHT. We assume that the characteristic
polynomial of A, pA, is computed with Csanky’s algorithm, i.e., in this section
pA = pcsankyA .



Lemma 2. LAP proves that similar matrices have the same characteristic poly-
nomial; that is, if P is any invertible matrix, then pA = pPAP−1 .

Proof. Observe that tr(AB) =
∑

i

∑

j aijbji =
∑

j

∑

i bjiaij = tr(BA), so using

the associativity of matrix multiplication, tr(PAiP−1) = tr(AiPP−1) = tr(Ai).
Inspecting (3), we see that a proof by induction on the si proves this lemma.

Lemma 3. LAP proves that if A is a matrix of the form:
(

B 0
C D

)

(9)

where B and D are square matrices (not necessarily of the same size), and the
upper-right corner is zero, then pA(x) = pB(x) · pD(x).

Proof. Let sAi , s
B
i , s

D
i be the coefficients of the characteristic polynomials (as

given by (3)) of A,B,D, respectively. We want to show by induction on i that

sAi =
∑

j+k=i

sBj s
D
k ,

from which the claim of the lemma follows. The Basis Case: sA0 = sB0 = sD0 = 1.
For the Induction Step, by definition and by the induction hypothesis, we have
that sAi+1 equals

=

i
∑

j=0

(−1)jsAi−jtr(A
j+1) =

i
∑

j=0

(−1)j





∑

p+q=i−j

sBp s
D
q



 tr(Aj+1)

and by the form of A (i.e., (9)):

=
i

∑

j=0

(−1)j





∑

p+q=i−j

sBp s
D
q



 (tr(Bj+1) + tr(Dj+1))

to see how this formula simplifies, we divide it into two parts:

=

i
∑

j=0

(−1)j





∑

p+q=i−j

sBp s
D
q



 tr(Bj+1) +

i
∑

j=0

(−1)j





∑

p+q=i−j

sBp s
D
q



 tr(Dj+1).

Consider first the left-hand side. When q = 0, p ranges over {i, i− 1, . . . , 0}, and
j + 1 ranges over {1, 2, . . . , i + 1}, and therefore, by definition, we obtain sBi+1.
Similarly, when q = 1, we obtain sBi , and so on, until we obtain sB1 . Hence we
have:

=

i+1
∑

j=0

sBi−js
D
j +

i
∑

j=0

(−1)j





∑

p+q=i−j

sBp s
D
q



 tr(Dj+1).



The same reasoning, but fixing p instead of q on the right-hand side, gives us:

=

i+1
∑

j=0

sBi−js
D
j +

i+1
∑

j=0

sBj s
D
i−j =

∑

j+k=i+1

sBj s
D
k

which gives us the induction step and the proof of the lemma.

To show that pA(A) = 0 it is sufficient to show that pA(A)ei = 0 for all
vectors ei in the standard basis {e1, e2, . . . , en}. Let k be the largest integer such
that

{ei, Aei, . . . , A
k−1ei} (10)

is linearly independent; we know that k − 1 < n, by the principle of linear
independence (this is the first place where we use linear independence). Then,
(10) is a basis for a subspace W of Fn, and W is invariant under A, i.e., given
any w ∈ W , Aw ∈ W .

Using Gaussian Elimination we write Akei as a linear combination of the
vectors in (10). Using the coefficients of this linear combination we write a monic
polynomial

g(x) = xk + c1x
k−1 + · · ·+ ckx

0 (11)

such that g(A)ei = 0.
Let AW be A restricted to the basis (10), that is, AW is a matrix represent-

ing the linear transformation TA : Fn −→ Fn induced by A, restricted to the
subspace W . The matrix At

W has the following simple form:















0 0 0 . . . 0 −ck
1 0 0 . . . 0 −ck−1
0 1 0 . . . 0 −ck−2
...

. . .
...

0 0 0 . . . 1 −c1















(12)

i.e., it is the companion matrix of the polynomial g(x). Since pA = pAt , we
consider the transpose of AW , since At

W has the property that its principal
submatrix is also a companion matrix, and that will be used in a proof by
induction in the next lemma.

The proof of the next lemma is the crucial technical result of this section.
The proof is given in the appendix.

Lemma 4. LAP proves that the polynomial g(x) is the characteristic polyno-
mial of AW , in other words, g(x) = pAW

(x).

It is interesting to note that lemma 4 can also be proved (feasibly) for
Berkowitz’s algorithm instead, and the proof is in fact much simpler: consider
again the matrix given by (12). We assume inductively that pberkM (the character-
istic polynomial of the principal submatrix of (12)) is given by (1 c1 c2 . . . ck−1 )t.
Since R = (0 . . . 0 −ck ) and S = e1, p

berk

A = B · pberkM , where B (the matrix



given by Berkowitz’s algorithm) is an (n + 1) × n matrix with 1s on the main
diagonal, 0s everywhere else, except for +ck in position (n+ 1, 1). From this, it
is easy to see that pberkA is given by (1 c1 c2 . . . ck )

t.

As was pointed out in the introduction, if we managed to prove in LAP that
Csanky’s and Berkowitz’s algorithms compute the same thing (i.e., pcsanky =
pberk) we would have an LAP proof of the CHT for both. The reason is that
the CHT follows for Berkowitz’s algorithm from det(A) = det(PAP−1), which
is trivial to prove for Csanky’s algorithm (see proof of Lemma 2).

Lemma 5. ∃LA proves that the polynomial g(x) divides pA(x).

Proof. Extend (10) to a full basis of Fn:

B = {ei, Aei, . . . , A
k−1ei, ej1 , ej2 , . . . , ejn−k

}.

This extension can be carried out easily with Gaussian Elimination, by checking
which vectors from the standard basis ({e1, e2, . . . , en}) are in the span consisting
of (10) and those vectors that have already been added, and adding only those
that are not. This is the only other place (besides the paragraph following the
proof of lemma 3) where we need to use the principle of linear independence.

Let P be the change of basis for A from the standard basis to B. Then,

PAP−1 =

(

AW 0
∗ E

)

where AW is a k × k block, and E is a (n − k) × (k − n) block (corresponding
to the extension), and we have a block of zeros above E since W is invariant
under A. By lemma 3 it follows that pA(x) = pPAP−1(x) = pAW

(x) · pE(x). By
lemma 4, pAW

= g(x), and so g(x) divides pA(x).

Theorem 1. QLAP proves the Cayley-Hamilton Theorem (CHT) from the
principle of linear independence, when the characteristic polynomial is computed
by Csanky’s algorithm.

Proof. By lemma 5,

pA(A)ei = (pAW
(A) · pE(A))ei = (g(A) · pE(A))ei = pE(A) · (g(A)ei) = 0.

Since this is true for any ei in the standard basis, it follows that pA(A) = 0.

The proof of the multiplicativity of the determinant is a ∃LA corollary of
this theorem, as can be seen in [8]. Together, the CHT and the multiplicativity
of the determinant, are two powerful universal principles of linear algebra from
which many others follow directly. An important open question remains: are
they provable in LAP?



5 Equivalence of Matrix Principles

Consider the following five central principles of linear algebra:

1. The Cayley-Hamilton Theorem
2. (∃B 6= 0)[AB = I ∨ AB = 0]
3. Linear Independence (n+ 1 vectors in Fn must be linearly dependent)
4. Weak Linear Independence (nk vectors (n, k > 1) in Fn must be linearly

dependent)
5. Every matrix has an annihilating polynomial

In this section we are going to show that QLA proves their equivalence. Fur-
thermore, we show that these principles are independent of QLA. Thus, even
though QLA is strong enough to show them equivalent, it is too weak to prove
any of them.

Notice however that QLA does not have the matrix powering function, yet
two of these principles, namely 1 and 5, require matrix powering to be stated.
Let POW(A, n) be the formula:

∃〈X0X1 . . . Xn〉(∀i ≤ n)[X0 = I ∧ (i < n ⊃ Xi+1 = Xi ∗A)] (13)

The size of 〈X0X1 . . . Xn〉 can be bounded as it is a r(A)×(r(A)·(n+1)) matrix.
(The abuse of notation in (13) is for better readability, but this formula can be
stated formally as a bounded Σ1 formula of QLA.)

Theorem 2. The five principles of linear algebra can be proved equivalent in
QLAP with POW(A, n).

Proof. 3 implies 1 because of the results of the previous section. Note that here
we need fields of characteristic zero (because of Csanky’s algorithm). It is an
open question whether we can prove this over arbitrary fields—for example in
the context of Berkowitz’s algorithm.

1 implies 2 because B is just the adjoint, for which we have the desired
properties from the Cayley-Hamilton Theorem.

2 implies 3, because suppose that we have (n + 1) vectors in Fn, and that
they are linearly independent. Let A be the n × (n+ 1) matrix whose columns
are these n + 1 vectors. Let A′ be the matrix resulting by appending a row of
zeros to A. Since the vectors are linearly independent, there is no B such that
A′B = 0, so by 2 there must be a B such that A′B = I; but that is not possible,
given that the last row of A′ is zero.

3 obviously implies 4.

4 implies 5 because we can look at {I, A,A2, . . . , Ank

}, where A is n×n, and
k as large as we want, and as vectors these matrices are linearly dependent by 4.

5 implies 2, because if p(A) = 0, we can choose the largest s such that
p(A) = q(A)As. If q(A) 6= 0, we choose the largest k ≤ s so that q(A)Ak 6= 0,
and this is our zero divisor for A. If q(A) = 0, then it has a non-zero constant
coefficient, and hence we can obtain from q(A) the inverse for A.



Recall that the Steinitz Exchange Theorem (SET) says the following:
if T is a (finite) total set for a vector space V , i.e., span(T ) = V , and E is
a linearly independent set, then there exists an F ⊆ T , such that |F | = |E|,
and (T − F ) ∪ E is total. (Note that in general, SET is stated for any T , not
necessarily finite, but here we assume that T is finite.)

We can state SET in the language of QLA as follows: associate the finite
set T of m vectors in Fn with a n × m matrix T , and we can state that T is
total with (∃A)[TA = I]. Let E be a n× k matrix representing the k vectors in
E. We want to find k column in T , and replace them by E. We can state that
there exists a permutation matrix so that TP has those k columns as the last k
columns. Using the λ-constructor, we can “chop of” those last k columns, and
replace them by E, and then state that the result is also total. Thus, SET can
be stated in QLA.

Lemma 6. QLA proves that the Steinitz Exchange Theorem implies the five
principles listed at the beginning of this section.

Proof. We show that SET implies (in QLA) the existence of an annihilating

polynomial. Consider the set E = {I, A,A2, A3, . . . , An2−1}, where A is an n×n

matrix. If E is linearly dependent, we are done: we have an annihilating poly-
nomial. Otherwise, suppose that E is linearly independent.

Let V = Mn×n(F), that is V is the vector space of n×n matrices, over some
field F (note that our argument is field independent). Let T = {eij}1≤i,j≤n,
that is, T is the set of all elementary matrices eij , which are matrices with 1 in
position (i, j), but zeros everywhere else. Note that |T | = |E| = n2, and T is
clearly total.

Therefore, by the Steinitz Exchange Theorem, (T − F ) ∪E is total for some
|F | = |E|, and so E is total since T = F if |T | = |E| = n2. If E is total, then

An2

∈ span(E), and hence E ∪ {An2

} is linearly dependent, and so we have an
annihilating polynomial once again.

Can we show that the five principles, listed at the beginning of this section,
prove (in QLA) the SET? Here is an obvious proof of SET: pick E1 in E, and
since T is total, we can write it as a linear combination of elements in T , say
E1 = a1T1 + a2T2 + · · · anTn, all ai 6= 0. So, T1 can be written as a sum of
elements in T −{T1}∪{E1}. So, put T1 in F . Note that T −{T1}∪{E1} remains
total. Now pick E2, and write it as a linear combination of a finite subset of
elements in T − {T1} ∪ {E1}. By the assumed linear independence of E, E2

cannot be written in terms of E1 alone, so like before, we can pick some T2 and
put it in F . We proceed inductively, at each step putting some Ti in F .

The problem with the proof outlined above is that it requires induction over
formulas with matrix quantifiers, which we do not have in QLA (on the other
hand, this proof could be easily formalized in ∃LA). Thus we propose the fol-
lowing open problem: can SET be proved in QLA from the five principles? More
generally: can Gaussian Elimination, properly stated, be shown correct in QLA
from the five principles?



We conjecture that the answer is “yes” to those two questions, and that they
are not too hard to prove.

Lemma 7. QLA ⊢ (∃B 6= 0)[AB = I ∨AB = 0] ⊃ POW(A, n).

Proof. We use reduction of matrix powering to matrix inverse described in [3].
Let N be the n2×n2 matrix consisting of n×n blocks which are all zero except
for (n − 1) copies of A above the diagonal zero blocks. Then Nn = 0, and
(I −N)−1 = I +N +N2 + . . .+Nn−1 =











I A A2 . . . An−1

0 I A . . . An−2

...
. . .

...
0 0 0 . . . I











.

Set C = I−N . Show that if CB = 0, then B = 0, using induction on the rows of
B, starting with the bottom row. Using (∃B 6= 0)[CB = I ∨ CB = 0], conclude
that there is a B such that CB = I. Next, show that B = I+N+N2+· · ·+Nn−1,
again, by induction on the rows of B, starting with the bottom row. Thus, B
contains I, A,A2, . . . , An−1 in its top rows, and POW(A, n) follows.

Thus, not every implication in theorem 2 requires POW(A, n). In particular,
2 ⇔ 3 and 3 ⇒ 4 can be shown in QLA (for 2 ⇔ 3 see proof of corollary below).
It is an open question whether 4 implies 3 in QLA.

Lemma 8. QLA 0 POW(A, n).

Proof. We can turn QLA into a three-sorted universal theory in the style of
QPV ([2]), by introducing function symbols for all the λ-terms, so we have
number-valued functions, field-valued functions, and matrix valued-functions.
Further, if the underlying field is GF(2), then all these functions are in the
complexity class AC0[2] (by translations given in [8]). Hence, by the Herbrand
Theorem, every existential theorem of QLA can be witnessed by an AC0[2]
function.

Let DET(GF(2)) be the complexity class of functions NC1 reducible to the
determinant over GF(2). This class is equal to the classPOW(GF(2)), by results
in [3]. On the other hand, AC0[2] is properly contained in DET(GF(2)), since
L ⊆ DET(GF(2)) (see [4]), while MAJORITY ∈ L but it is not in AC0[2]
(see [5,6]).

Corollary 1. QLA does not prove the principles 2 and 3 (while it can show
them equivalent without POW(A, n)).

Proof. By lemmas 7 and 8 we see that QLA does not prove 2. Now, 3 implies
2 by the following argument: take A and add ei (the elementary column vector
with 1 in the i-th entry, and zeros everywhere else) as the last column. By linear
independence, we know that there exist b1i, b2i, . . . , b(n+1)i, not all zero, such
that b1iA1 + b2iA2 + · · · bniAn + b(n+1)iei = 0, where Ai is the i-th column of A.
If for all i, b(n+1)i is not zero, we found B such that AB = I. If, on the other
hand, some b(n+1)i = 0, then B consisting of columns given by [b1ib2i . . . bni]

t is
a zero divisor of A, i.e., AB = 0.



6 Conclusions and Open Problems

We gave a new feasible proof of the Cayley-Hamilton Theorem via Csanky’s
algorithm. The new proof requires fields of characteristic zero, but it shows that
the CHT follows in LAP from the principle of linear independence. It is an
open question whether the CHT follows in LAP from the principle of linear
independence over general fields.

We showed that five important principles of linear algebra can be shown
equivalent in QLA, and using a previously known separation of complexity
classes (namely AC0[2] ( DET(GF(2))) we showed that none of these prin-
ciples is provable in QLA.

It is an interesting open problem whether the principles listed in theorem 2
can be proved in QLA + POW(A, n). Likewise, it is an open problem whether
Berkowitz’s and Csanky’s algorithm are provable correct in LAP (they can be
stated in LAP, and weak properties of correctness are provable in LAP).

Acknowledgments: The author would like to thank Stephen Cook for pointing
out the proof of the Cayley-Hamilton Theorem in [9], which is the basis for the
proof in section 4. The material in section 5 came from discussions with Mark
Braverman and Stephen Cook. Finally, the author is grateful to the anonymous
referees, especially to the referee who succinctly and elegantly expressed the
contribution of this paper (see the first sentence of the introduction).
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7 Appendix

Proof (lemma 4). We will drop theW from AW as there is no danger of confusion
(the original matrix A does not appear in the proof); thus, A is a k × k matrix,
with 1s below the main diagonal, and zeros everywhere else except (possibly) in
the last column where it has the negations of the coefficients of g(x).

As was noted above, A is divided into four quadrants, with the upper-left
containing just 0. Let R = (0 . . . 0 −ck ) be the row vector in the upper-right
quadrant. Let S = e1 be the column vector in the lower-left quadrant, i.e., the
first column of A without the top entry. Finally, letM be the principal submatrix
of A, M = A[1|1]; the lower-right quadrant.

Let s0, s1, . . . , sk be the Newton’s symmetric polynomials of A.
To prove that g(x) = pATW

(x) we prove something stronger: we show that

(i) for all 0 ≤ i ≤ k (−1)isi = ci, and (ii) pA(A) = 0.
We show this by induction on the size of the matrix A. Since the principal

submatrix of A (i.e., M) is also a companion matrix, we assume that for i < k,
the coefficients of the symmetric polynomial of M are equal to the ci’s, and that
pM (M) = 0. (Note that the Basis Case of the induction is a 1 × 1 matrix, and
it is trivial to prove.)

Since for i < k, tr(Ai) = tr(M i), it follows from (3) and the induction
hypothesis that for i < k, (−1)isi = ci (note that s0 = c0 = 1).

Next we show that (−1)ksk = ck. By definition (i.e., by (3)) we have that sk
is equal to:

1

k
(sk−1tr(A)− sk−2tr(A

2) + · · ·+ (−1)k−2s1tr(A
k−1) + (−1)k−1s0tr(A

k))

and by the induction hypothesis and the fact that for i < k tr(Ai) = tr(M i) we
have:

=
1

k
(−1)k−1(ck−1tr(M) + ck−2tr(M

2) + · · ·+ c1tr(M
k−1) + c0tr(A

k)).

Note that tr(Ak) = −kck + tr(Mk), so:

=
1

k
(−1)k−1

[

ck−1tr(M) + ck−2tr(M
2) + · · ·+ c1tr(M

k−1) + c0tr(M
k)
]

+ (−1)kck

Observe that

tr(ck−1M + ck−2M
2 + · · ·+ c1M

k−1 + c0M
k) = tr(pM (M)M) = tr(0) = 0



since pM (M) = 0 by the induction hypothesis. Therefore, sk = (−1)kck.

It remains to prove that pA(A) =
∑k

i=0 ciA
k−i = 0. First, show that for

1 ≤ i ≤ (k − 1):

Ai+1 =









0 RM i

M iS
∑i−1

j=0 M
jSRM (i−1)−j +M i+1









(14)

(For A of the form given by (12), and R,S,M defined as in the first paragraph
of the proof.) Define wi, Xi, Yi, Zi as follows:

Ai+1 =

(

wi+1 Xi+1

Yi+1 Zi+1

)

=

(

wi Xi

Yi Zi

)(

0 R

S M

)

=

(

XiS wiR+XiM

ZiS YiR + ZiM

) (15)

We want to show that the right-most matrix of (15) is equal to the right-hand
side of (14). First note that:

Xi+1 =

i
∑

j=0

wi−jRM j wi+1 =

i−1
∑

j=0

(RM jS)wi−1−j (16)

With the convention that w0 = 1. See [8, lemma 5.1] for an LAP-proof of (16).
Since w1 = 0, a straight-forward induction shows that wi+1 = 0. Therefore, at
this point the right-most matrix of (15) can be simplified to:

(

0 RM i

ZiS YiR+ ZiM

)

Again by [8, lemma 5.1] we have:

Yi+1 = M iS +

i−2
∑

j=0

(RM jS)Yi−1−j Zi+1 = M i+1 +

i−1
∑

j=0

Yi−1−jRM j

By the same reasoning as above,
∑i−2

j=0(RM jS)Yi−1−j = 0, so putting it all
together we obtain the right-hand side of (14).

Using the induction hypothesis (pM (M) = 0) it is easy to show that the first
row and column of pA(A) are zero. Also, by the induction hypothesis, the term
M i+1 in the principal submatrix of pA(A) disappears but leaves ckI. Therefore,
it will follow that pA(A) = 0 if we show that

k
∑

i=2

ck−i

i−2
∑

j=0

M jSRM (i−2)−j (17)

is equal to −ckI.



Some observations about (17): for 0 ≤ j ≤ i− 2 ≤ k − 2, the first column of
M j is just ej+1. And SR is a matrix of zeros, with −ck in the upper-right corner.
Thus M jSR is a matrix of zeros except for the last column which is −ckej+1.
Thus, M jSRM (i−2)−j is a matrix with zeros everywhere, except in row (j + 1)
where it has the bottom row ofM (i−2)−j multiplied by −ck. Let m

(i−2)−j denote
the 1× (k − 1) row vector consisting of the bottom row of M (i−2)−j . Therefore,
(17) is equal to:

−ck ·





















∑k

i=2 ck−im
(i−2)

∑k
i=3 ck−im

(i−3)

...

∑k

i=k ck−im
(i−k)





















(18)

We want to show that (18) is equal to −ckI to finish the proof of pA(A) = 0. To
accomplish this, let l denote the l-th row of the matrix in (18) starting with the
bottom row. We want to show, by induction on l, that the l-th row is equal to
ek−l.

The Basis Case is l = 0:

k
∑

i=k

ck−im
(i−k) = c0m

0 = ek,

and we are done.
For the induction step, note that ml+1 is equal to ml shifted to the left by

one position, and with

ml · (−ck−1 −ck−2 . . . −c1 )
t (19)

in the last position. We introduce some more notation: let rl denote the k− l row

of (18). Thus rl is 1×(k−1) row vector. Let
←
r l denote rl shifted by one position

to the left, and with a zero in the last position. This can be stated succinctly in
LAP as follows:

←
r l

def
= λij〈1, (k − 1), e(rl, 1, i+ 1))〉.

Based on (18) and (19) we can see that:

rl+1 =
←
r l +[rl · (−ck−1 −ck−2 . . . −c1 )

t]ek + clm
0.

(Here the “·” in the square brackets denotes the dot product of the two vectors.)

Using the induction hypothesis:
←
r l= ek−(l+1), and

rl · (−ck−1 −ck−2 . . . −c1 )
t = ek−l · (−ck−1 −ck−2 . . . −c1 )

t = −cl

so rl+1 = ek−l − clek + clek = ek−(l+1) as desired. This finishes the proof of the
fact that the matrix in (18) is the identity matrix, which in turn proves that (17)
is equal to −ckI, and this ends the proof of pA(A) = 0, which finally finishes the
main induction argument, and proves the lemma.
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