Skip to main content

A Logic of Coequations

  • Conference paper
Book cover Computer Science Logic (CSL 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3634))

Included in the following conference series:

Abstract

By Rutten’s dualization of the Birkhoff Variety Theorem, a collection of coalgebras is a covariety (i.e., is closed under coproducts, subcoalgebras, and quotients) iff it can be presented by a subset of a cofree coalgebra. We introduce inference rules for these subsets, and prove that they are sound and complete. For example, given a polynomial endofunctor of a signature Σ, the cofree coalgebra consists of colored Σ-trees, and we prove that a set T of colored trees is a logical consequence of a set S iff T contains every tree such that all recolorings of all its subtrees lie in S. Finally, we characterize covarieties whose presentation needs only n colors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adámek, J.: Free algebras and automata realizations in the language of categories. Commentationes Mathematicae Universitatis Carolinae 15, 589–602 (1974)

    MATH  MathSciNet  Google Scholar 

  2. Adámek, J.: On a description of terminal coalgebras and iterative theories. Electronic Notes in Theoretical Computer Science, vol. 82.1 (2003); Full version in Information and Computation (to appear)

    Google Scholar 

  3. Adámek, J.: Birkhoff’s covariety theorem without limitation. Commentationes Mathematicae Universitatis Carolinae 46, 197–215 (2005)

    MATH  MathSciNet  Google Scholar 

  4. Adámek, J., Milius, S., Velebil, J.: On coalgebra based on classes. Theoretical Computer Science 316, 3–23 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  5. Adámek, J., Porst, H.-E.: On tree coalgebras and coalgebra presentations. Theoretical Computer Science 311, 257–283 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. Arbib, M.A., Manes, E.G.: Parametrized data types do not need highly constrained parameters. Information and Control 52, 130–158 (1982)

    Article  MathSciNet  Google Scholar 

  7. Awodey, S., Hughes, J.: Modal operators and the formal dual of Birkoff’s completeness theorem. Mathematical Structures in Computer Science 13, 233–258 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  8. Barr, M.: Terminal coalgebras in well-founded set theory. Theoretical Computer Science 124, 182–192 (1984)

    MathSciNet  Google Scholar 

  9. Birkhoff, G.: On the structure of abstract algebras. Proceedings of the Cambridge Philosophical Society 31, 433–454 (1935)

    Article  Google Scholar 

  10. Gumm, H.P.: Elements of the general theory of coalgebras (preprint 1999)

    Google Scholar 

  11. Gumm, H.P.: Birkoff’s variety theorem for coalgebras. Contributions to General Algebra 13, 159–173 (2000)

    Google Scholar 

  12. Gumm, H.P., Schröder, T.: Covarieties and complete covarieties. Electronic Notes in Theoretical Computer Science 11 (1998)

    Google Scholar 

  13. Jacobs, B.: The temporal logic of coalgebras via Galois algebras. Mathematical Structures in Computer Science 12, 875–903 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  14. Rutten, J.: Universal coalgebra: a theory of systems. Theoretical Computer Science 249, 3–80 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  15. Worrell, J.: On the final sequence of a finitary set functor. Theoretical Computer Science 338, 184–199 (2005)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Adámek, J. (2005). A Logic of Coequations. In: Ong, L. (eds) Computer Science Logic. CSL 2005. Lecture Notes in Computer Science, vol 3634. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11538363_7

Download citation

  • DOI: https://doi.org/10.1007/11538363_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28231-0

  • Online ISBN: 978-3-540-31897-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics