Skip to main content

Beating a Random Assignment

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3624))

Abstract

Max CSP( P ) is the problem of maximizing the weight of satisfied constraints, where each constraint acts over a k-tuple of literals and is evaluated using the predicate P. The approximation ratio of a random assignment is equal to the fraction of satisfying inputs to P. If it is NP-hard to achieve a better approximation ratio for Max CSP( P ), then we say that P is approximation resistant. Our goal is to characterize which predicates that have this property.

A general approximation algorithm for Max CSP( P ) is introduced. For a multitude of different P, it is shown that the algorithm beats the random assignment algorithm, thus implying that P is not approximation resistant. In particular, over 2/3 of the predicates on four binary inputs are proved not to be approximation resistant, as well as all predicates on 2s binary inputs, that have at most 2s+1 accepting inputs.

We also prove a large number of predicates to be approximation resistant. In particular, all predicates of arity 2s+s 2 with less than \(2^{s^2}\) non-accepting inputs are proved to be approximation resistant, as well as almost 1/5 of the predicates on four binary inputs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and hardness of approximation problems. Journal of the ACM 45(3), 501–555 (1998); Preliminary version appeared in FOCS 1992

    Article  MATH  MathSciNet  Google Scholar 

  2. Bellare, M., Goldreich, O., Sudan, M.: Free bits, PCPs, and nonapproximability - towards tight results. SIAM Journal on Computing 27(3), 804–915 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  3. Charikar, M., Wirth, A.: Maximizing quadratic programs: Extending Grothendieck’s inequality. In: Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science, pp. 54–60 (2004)

    Google Scholar 

  4. Creignou, N.: A dichotomy theorem for maximum generalized satisability problems. Journal of Computer and System Sciences 51(3), 511–522 (1995)

    Article  MathSciNet  Google Scholar 

  5. Engebretsen, L., Holmerin, J.: More efficient queries in PCPs for NP and improved approximation hardness of maximum CSP. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 194–205. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  6. Feige, U.: A threshold of ln n for approximating set cover. Journal of the ACM 45(4), 634–652 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  7. Feige, U.: Relations between average case complexity and approximation complexity. In: Proceedings of the 34th Annual ACM Symposium on Theory of Computing, pp. 534–543 (2002)

    Google Scholar 

  8. Feige, U., Goldwasser, S., Lovász, L., Safra, S., Szegedy, M.: Interactive proofs and the hardness of approximating cliques. Journal of the ACM 43(2), 268–292 (1996); Preliminary version appeared in FOCS 1991

    Article  MATH  MathSciNet  Google Scholar 

  9. Feige, U., Langberg, M.: The RPR2 rounding technique for semidefinite programs. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 213–224. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  10. Goemans, M.X., Williamson, D.P.: Improved Approximation Algorithms for Maximum Cut and Satisfiability Problems Using Semidefinite Programming. Journal of the ACM 42, 1115–1145 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  11. Guruswami, V., Lewin, D., Sudan, M., Trevisan, L.: A tight characterization of NP with 3 query PCPs. In: Proceedings of the 39th Annual IEEE Symposium on Foundations of Computer Science, pp. 8–17 (1998)

    Google Scholar 

  12. Hast, G.: Beating a Random Assignment. PhD thesis, Royal Institute of Technology (2005)

    Google Scholar 

  13. Hăstad, J.: Some optimal inapproximability results. Journal of the ACM 48(4), 798–859 (1997); Preliminary version appeared in STOC 1997

    Article  Google Scholar 

  14. Hăstad, J.: Every 2-CSP allows nontrivial approximation. In: Proceedings of the 37th Annual ACM Symposium on Theory of Computing, pp. 740–746 (2005)

    Google Scholar 

  15. Hăstad, J., Wigderson, A.: Simple analysis of graph tests for linearity and PCP. Random Structures and Algorithms 22(2), 139–160 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  16. Karloff, H., Zwick, U.: A 7/8-approximation algorithm for MAX 3SAT. In: Proceedings of the 38th Annual IEEE Symposium on Foundations of Computer Science, pp. 406–415 (1997)

    Google Scholar 

  17. Khanna, S., Sudan, M., Trevisan, L., Williamson, D.P.: The approximability of constraint satisfaction problems. SIAM Journal on Computing 30(6), 1863–1920 (2000)

    Article  MathSciNet  Google Scholar 

  18. Lewin, M., Livnat, D., Zwick, U.: Improved rounding techniques for the MAX 2-SAT and MAX DI-CUT problems. In: Cook, W.J., Schulz, A.S. (eds.) IPCO 2002. LNCS, vol. 2337, pp. 67–82. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  19. Lund, C., Yannakakis, M.: On the hardness of approximating minimization problems. Journal of the ACM 41(5), 960–981 (1994); Preliminary version appeared in STOC 1993

    Article  MATH  MathSciNet  Google Scholar 

  20. Papadimitriou, C.H., Yannakakis, M.: Optimization, approximation, and complexity classes. Journal of Computer and System Sciences 43(3), 425–440 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  21. Samorodnitsky, A., Trevisan, L.: A PCP characterization of NP with optimal amortized query complexity. In: Proceedings of the 32nd Annual ACM Symposium on Theory of Computing, pp. 191–199 (2000)

    Google Scholar 

  22. Zwick, U.: Approximation algorithms for constraint satisfaction problems involving at most three variables per constraint. In: Proceedings of the 9th Annual ACMSIAM Symposium on Discrete Algorithms, pp. 201–210 (1998)

    Google Scholar 

  23. Zwick, U.: Outward rotations: a tool for rounding solutions of semidefinite programming relaxations, with applications to MAX CUT and other problems. In: Proceedings of the 31st Annual ACM Symposium on Theory of Computing, pp. 679–687 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hast, G. (2005). Beating a Random Assignment. In: Chekuri, C., Jansen, K., Rolim, J.D.P., Trevisan, L. (eds) Approximation, Randomization and Combinatorial Optimization. Algorithms and Techniques. APPROX RANDOM 2005 2005. Lecture Notes in Computer Science, vol 3624. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11538462_12

Download citation

  • DOI: https://doi.org/10.1007/11538462_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28239-6

  • Online ISBN: 978-3-540-31874-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics