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Abstract

We introduce a “derandomized” analogue of graph squaring. This op-
eration increases the connectivity of the graph (as measured by the second
eigenvalue) almost as well as squaring the graph does, yet only increases the
degree of the graph by a constant factor, instead of squaring the degree.

One application of this product is an alternative proof of Reingold’s re-
cent breakthrough result that S-T Connectivity in Undirected Graphs can be
solved in deterministic logspace.

1 Introduction

“Pseudorandom” variants of graph operations have proved to be useful in a va-
riety of settings. Alon, Feige, Wigderson, and Zuckerman [AFWZ] introduced
“derandomized graph products” to give a more illuminating deterministic reduc-
tion from approximating clique to within relatively small (eg constant) factors to
approximating clique to within relatively large (eg) factors. Reingold, Vadhan,

and Wigderson [RVW] introduced the “zig-zag graph product” to give a new con-
struction of constant-degree expander graphs. The zig-zag product and its relatives
found a number of applications, the most recent and most dramatic of which is
Reingold’s deterministic logspace algorithm [Rei2] for connectivity in undirected
graphs.

*An extended abstract of this paper has appear€@ANDOM ‘05[RV].
fSupported by NSF grant CCF-0133096, ONR grant N0O0014-04-1-0478, and US-Israel BSF
grant 2002246.



In this paper, we present a pseudorandom analogue of graph squaring. The
square X2 of a graphX is the graph on the same vertex set whose edges are
paths of lengtl2 in the original graph. This operation improves many connectivity
properties of the graph, such as the diameter and mixing time of random walks of
the graph (both of which roughly halve). However, the degree of the graph squares.
In terms of random walks on the graph, this means that although half as many steps
are needed to mix, each step costs twice as many random bits. Thus, there is no
savings in the amount of randomness needed for mixing.

Our derandomized graph squaring only increases the degree by a constant fac-
tor rather than squaring it. Nevertheless, it improves the connectivity almost as
much as the standard squaring operation. The measure of connectivity for which
we prove this is the second eigenvalue of the graph, which is well-known to be a
good measure of the mixing time of random walks, as well as of graph expansion.
The standard squaring operation squares the second eigenvalue; we prove that the
derandomized squaring does nearly as well.

The main application of derandomized squaring we give here is a new logspace
algorithm for connectivity in undirected graphs, thereby giving a new proof of
Reingold’s theorem [Rei2]. Our algorithm, while closely related to Reingold’s
algorithm, is arguably more natural. Reingold’s algorithm is based orzitite
zag product and constructs a sequence of graphs with an increasing number of
vertices. Our analysis, based on derandomized squaring, only works on the vertex
set of the original input graph, and has a simpler analysis of the space requirements.
More significantly, it can be viewed as applying a natural pseudorandom generator,
namely that of Impagliazzo, Nisan, and Wigderson [INW], to random walks on the
input graph. Reingold himself [Reil] conjectured that it should be possible to
use INW generator to solve undirected connectivity in logspace; we confirm his
conjecture by the relating the INW generator to derandomized squaring.

Below we describe the derandomized squaring and its application to undirected
s-t connectivity in more detail.

1.1 Derandomized Graph Squaring

Let X be an undirected regular graph of degféé The squareX? of X has an
edge for every path of lengthin X. One way to visualize it is that for every vertex
v in X, we place a clique on it& neighbours (this connects every pair of vertices
that has a length path throughv). The degree thus becom&S. (Throughout the
paper, we allow multiple edges and self-loops.)

LActually, following [RTV], we actually work with reguladirectedgraphs in the technical sec-
tions of the paper, but thinking of undirected graphs suffices for the informal discussion here.



In derandomized squaring, we use an auxiliary grépbn K vertices and
place it instead of a clique on th€ neighbours of every vertex(thus connecting
only someof the pairs of vertices which have a leng@tpath throughy). We denote
the resulting graph bx ®G.

If the degree ot is D, the derandomized square will have degkéP, which
will be smaller thank'2. We will see, however, that iff is an expander, then even
if D is much smaller thark, the derandomized square &f with respect toG
improves connectivity similarly to standard squaring.

Our measure of connectivity is the second eigenvalge|0, 1] of (the random
walk on) the graph; smal indicates that the random walk mixes rapidly and that
the graph has good expansion (i.e. is highly connected). If the second eigenvalue
of X is A then the second eigenvalue &F is A\2. The second eigenvalue of the
derandomized square is not very far. For example, we prove that it is at most
A\? + u wherey is the second eigenvalue 6f In fact, we give a tight analysis of
the second eigenvalue of the derandomized square as a functicamali..

1.2 A New Logspace Algorithm for Undirected Connectivity

Recall that the problem of undirected st-connectivity is: given an undirected graph
G and two vertices, t, decide whether there is a path frenmo ¢ in G. The time
complexity of this problem is well understood — search algorithms like breadth-
first search (BFS) and depth-first search (DFS) solve it in linear time. The space
complexity is harder to tackle. A line of research starting inlthe (N)-space
deterministic algorithm of Savitch [Sav] and the randomikeg V)-space algo-
rithm of Aleliunas et. al. [AKL"] culminated in Reingold’s optimal deterministic
log(NN)-space algorithm [Rei2] (See Reingold’s paper and the references therein
for more on the history and applications of this problem). We now shortly describe
Reingold’s algorithm, then present our algorithm and compare the two.

Reingold’s Algorithm.

Notice that undirected connectivity is solvable in log-space on bounded-degree
graphs withlogarithmic diamete(simply enumerate all paths of logarithmic length
in the graph out of the origin vertex). Examples of graphs with logarithmic diam-
eter are expander graphs, i.e. graphs whose second eigenvalue is bounded away
from 1. Reingold’s idea is to transform the input graph into a bounded-degree
expander by gradually decreasing its second eigenvalue.

A natural attempt would be to square the graph. This indeed decreases the
second eigenvalue, but increases the degree. To decrease the degree, Reingold



uses thezig-zag graph produaf [RVW], or the relatedeplacement productWe
describe his algorithm in terms of the latter product.

Given aK-regular graphX on N vertices, and an auxiliaryp-regular graph
G on K vertices, the replacement produ¢tOG is aD + 1-regular graph oV K
vertices. On each edde, w) in X put two vertices, one calle¢}, “near” v and
another callee,, “near” w, for a total of N K vertices. This can be thought of as
splitting each vertex into K vertices forming a “cloud” neaw. Place the graph
G on each cloud. Now for each edge-= (v, w) of X, put an edge between and
ew. The resultis D + 1)-regular graph. Notice thaX G is connected if and
only if both X andG are.

The replacement product reduces the degree fforno D + 1. It is proven
in [RVW] (and also follows from [MR]) that whei- is a good enough expander,
replacement product roughly preserves the second eigenvalkie 8tippose that
X is (D + 1) regular and> has(D + 1)? vertices and degreB. ThenX?OG
is again a D + 1)-regular graph, whose second eigenvalue is roughly the square
of the second eigenvalue df . lterating this proceduribg N times leads to a
constant-degree expander palynomially many verticesince at each iteration
the number of vertices grows by a factor of abéift On the resulting expander
we can therefore solve connectivity in logarithmic space. (One also must confirm
that the iterations can be computed in logarithmic space as well).

Our Algorithm.

Our approach also follows from this idea of increasing connectivity by squaring
the graph. However, instead of squaring, and then reducing the degree by a zigzag
product (and thus increasing the number of vertices) we will replace the squar-
ing by derandomized squaring, which maintains the vertex set (but increases the
degree). lterating the derandomized squaring operation yields highly connected
graphs with relatively small degree compared to doing the same iterations with
standard squaring. In the next two paragraphs we compare the resulting graphs in
each case.

Let X be aregular graph oN vertices. Squaring the grapbg IV times, results
in the graphx2**" = XV (whose edges are all paths of lengthin X). This
graph is extremely well connected; it contains an edge between every two vertices
which are connected by a path. The degree however, is huge — exponential
in N. We want to simulate the behavior & with a graph that has much smaller

degree.
Suppose that instead of standard squaring at each step we apply derandomized
squaring to obtain a sequence of graphs X, .... At each step the degree in-



creases by a constant factor (instead of the degree squaring at each Eap).

m = O(log N) the degree 0¥, is only polynomialin NV. But we will show that

is as well-connected a¥” (as measured by the second eigenvalue). In particular,
X, will contain an edge between every pair of vertieesthat are connected by

a path inX . Deciding whethes, t are connected therefore reduces to enumerating
all neighbors ofs in X,,, and looking fort. There are only polynomially many
neighbors, so the search can be done in logarithmic space. We will show that com-
puting neighbors inX,,, can also be done in logarithmic space. These two facts
yield a logarithmic space algorithm for undirected connectivity.

Comparing our approach to Reingold’s original solution, the main way in which
our algorithm differs from (and is arguably more natural than) Reingold’s algo-
rithm is that all the graphs we construct are on shenevertex set. Edges in the
graph X,,, correspond to paths of leng®* in X. The price we pay is that the
degree increases, but, thanks to the usgesdndomizedquaring, only by a con-
stant factor (which we can afford). In contrast, each step of Reingold’s algorithm
creates a graph that is larger than the original graph (but maintains constant degree
throughout).

1.3 Embedding Expander Graphs in Arbitrary Graphs

Another consequence of our algorithm is a logspace algorithm to find an “embed-
ding” of an expander graph in every graph. SpecificallyXihas spectral gap

(i.e., second eigenvalue— ~), then fork = O(log(1/7)), the graphXy is an
expander in the sense that it has constant spectral gap. It is embeddad the

sense that edges i, correspond to paths of length= 2¢ = poly(1/+) in X, and

if X has degred, then the graptX;, has degred - ¢ for t = 20%) = poly(1/~).

In addition, it can be shown that this embedding has low congestion, in the sense
that every edge oK is contained in precisely - ¢ of the paths. This embedding

has a similar spirit to the “expander flows” of [ARV], though it does not seem to
provide a better algorithm or certificate for approximating a graph’s expansion.

1.4 Derandomized Squaring as a Pseudorandom Generator

Impagliazzo, Nisan, and Wigderson [INW] proposed the following pseudorandom
generator. Letz be an expander graph witli vertices and degreP. Choose a
random vertext < [K], a random edge label «— [D], and output(z, z[a]) €

[K] x [K]. This pseudorandom generator is at the heart of derandomized squaring.

2Actually, for the lastloglog N steps, we use auxiliary graphs of nonconstant degree and thus
the degree increases by nonconstant factors, but the degrees are chosen in such a way that the total
increase is still polynomial idv.



Notice that using this pseudorandom generator to generate a pseudorandom walk
of length 2 in a graphX of degreekK is equivalentto taking a random step in the
derandomized square &f using auxiliary graplt'.

Impagliazzo, Nisan, and Wigderson [INW] suggested to increase the stretch
of the above generator by recursion. They proved that when the géapised
in the construction are sufficiently good expanders of relatilatye degreethis
construction fools various models of computation (including randomized logspace
algorithms)® However, the resulting generator has seed ler@tivg® n), and
hence does not prove that RL=L.

Our construction of the graph,,, in our st-connectivity algorithm is precisely
the graph corresponding to using the INW generator to derandomize random walks
of length2™ in X. 4 However, we are able to usenstant-degreexpanders fo€;
(for most levels of recursion), thereby obtaining seed lexddfttog ) and hence a
logspace algorithm (albeit for undirected st-connectivity rather than all of RL).

Moreover, it follows from our analysis that taking the pseudorandom walk in
corresponding to a random stepXn, (equivalently, according to the INW genera-
tor with appropriate parameters) will end at an almost-uniformly distributed vertex.
A pseudorandom generator with such a property was already given in [RTV] based
on Reingold’s algorithm and the zig-zag product, but again it is more natural in
terms of derandomized squaring.

1.5 Relation to Other Graph Products

The Zig-Zag Product. The reader may have noticed a similarity between the
derandomized squaring and the zig-zag product of [RVW] (which we define pre-
cisely later in the paper). Indeed, they are very closely related. When we use a
square grapli:? as auxiliary graph, the derandomized squir®G? turns out to

be a “projection” of the square of the zigzag prod(i&t@ G)?. In the conference
version of this paper [RV], we used this observation to prove the expansion prop-
erty of the derandomized squaring by reduction to that of the zig-zag product. In
this version, however, we provide a direct analysis, which gives a cleaner and tight
bound.

We note that the derandomized squaring has complementary properties to the
zigzag product. In the zigzag product we are given a grénd can decrease its
degree while (nearly) maintaining its second eigenvalue. We must pay by slightly
increasing the number of vertices. In the derandomized squaring we manage to

3specifically, to fool an algorithm running in spakeg n, they use expanders of degreely (n).

“This holds provided that the labelling of edgesinsatisfies a certain consistency condition,
to be described in Sect. 3. The st-connectivity problem in general undirected graphs can easily be
reduced to st-connectivity in graphs with such a consistent labelling.



decrease the second eigenvalue while maintaining the number of vertices, and we
pay by slightly increasing the degree.

Derandomized Graph Products. Alon, Feige, Wigderson, and Zuckerman [AFWZ]
studied a “derandomization” of a different kind of graph product, where given a
graphG = (V, E), we consider the grapfi*) whose vertex set i§’* and whose
edges aré(uy, ..., ug), (v1,...,v;))suchthafuy, ..., ug,v1,...,v;}isaclique

in G. A nice property of this product is that the clique numbe66f) is precisely

the k'th power of the cligue number aff, and thus this allows one to “amplify”
inapproximability results for the Clique problem. A problem, however, is that the
number of vertices grows exponentially withThus, Alon et al. [AFWZ] showed,

using random walks on expanders, how to pick a much smaller “pseudorandom”
subset of vertices of!(*) such that the clique number behaves in much the same
way. Thus, their “derandomization” is concerned with saving on the number of
vertices, whereas ours is concerned with the degree, and they are interested in
maintaining the cligue number and similar parameters, whereas we are interested
in maintaining expansion.

2 Overview of the Paper

In Section 3, we set notation and definitions, and state basic lemmas we will need
later. In Section 4, we define derandomized squares and state the main lemma on
them. In Section 5, we give a log-space algorithm for connectivity via iterated
applications of derandomized squaring, and deduce a pseudorandom generator for
walks in a graph. Section 6 extends the results to a more general notion of la-
belled graphs, where at each vertex, both incoming edges and outgoing edges are
numbered (whereas the earlier sections only consider labellings of outgoing edges,
and require the labelling to satisfy a certain consistency condition). In Section 7,
we give a logspace algorithm to find an expander embedded as paths in a regular
graph, with small dilation and congestion.

3 Preliminaries

Reingold, Trevisan, and Vadhan [RTV] generalized Reingold’s algorithm and the
Zig-zag product to (reguladirectedgraphs, and working in this more general set-
ting turns out to be useful for us, too (even if we are only interested in solving
st-connectivity for undirected graphs). We present the necessary background on
such graphs in this section.



Let X be a directed graphdigraphfor short) onV vertices. We say thak
is K-outregularif every node has outdegre€, K-inregular if every node has
indegreek, and K -regular if both conditions hold. Graphs may have self-loops
and multiple edges, where a self-loop is counted as both an outgoing and incoming
edge. All graphs in this paper are outregular directed graphs (and most are regular).

For aK-regular graphX on NV vertices, we denote by/ x the transition matrix
of the random walk onX, i.e. the adjacency matrix divided by. Letuy =
(1/N,...,1/N) € RY be the uniform distribution on the vertices &t Then, by
regularity, M xuy = uy (SOuy is an eigenvector of eigenvalue 1).

Following [Mih], we consider the following measure of the rate at which the
random walk onX converges to the stationary distribution:

wherev | wupy refers to orthogonality with respect to the standard dot product
(z,y) = >, ziy; onRY and||z| = \/(z, ) is the Ly norm. The smalleA(X),
the faster the random walk converges to the stationary distribution and the better
“expansion” propertiesX has. Hence, families of graphs witiX) < 1 — Q(1)
are referred to asxpanders

In caseX is undirected)(X) equals the second largest eigenvalue of the sym-
metric matrixMx in absolute value. In directed graphs, it equals the square root
of the second largest eigenvalueMdf, M.

A K-regular directed grap on NV vertices withA(X) < A will be called an
(N, K, \)-graph. We defing(X) = 1 — A\(X) to be thespectral gapof X .

The “best mixing” graph orV vertices is a clique with a loop on each vertex.
The transition matrix is/y, which has all elements equglN. A random walk on
this graph reaches uniform distribution after a single step, and the second eigen-
value is0. The next proposition shows that the transition matrix of any graph can
be decomposed into a convex combination/gfand another matrix with matrix
norm at most.

Definition 3.1. Foran N x N matrix C' define the matrix normiC|| = maxyern ||Cv||/||v||
The matrix norm satisfies
o ||[AB| < ||A]l - || B]| for every pair of matrices!, B.
o [A® Bl <|[A]-[B]|

e If Ais the transition matrix of a graph théjnl|| = 1.



Proposition 3.2. Let A be the transition matrix of aQV, D, \) - graph. Let/y be
the N x N matrix with all entries equal /N. ThenA = (1 — A\)Jy + AC where
IC] < 1.

Intuitively, this proposition says that a random step on the graph can be viewed
as going to the uniform distribution with probability— A and “not getting any
further from uniform” with probabilityA. This intuition would be precise it
were a stochastic matrix, but it need not be.

Proof. Write C = (A — (1 — \)J)/A. SinceAuy = Jyuy = uy it follows that
C(uy) = un. Forv L uy we haveJv L uy andAv L uy which implies that
Cv L uy. It therefore suffices to show tha€v|| < ||v|| for everyv L uy. Since
Jv = 0 and||Av|| < A|Jv|| then||Cv|| < |jv||, which proves the proposition. 1

A labelling of a K -outregular graptX is an assignment of a number|[if] to

every edge ofX, such that the edges exiting every vertex h&velistinct labels.

For a vertexo of X and an edge label € [K| we denote by|[z] the neighbor ob

via the outgoing edge labelled We say that a labelling isonsistenif for every
vertex all incoming edges have distinct labels. Notice that if a graph has a con-
sistent labelling, then it ig(-inregular (and hencé& -regular). Conversely, it can

be shown (using matching theory) that evéfyregular digraph has a consistent
labelling.

The notion of consistent labelling described above is the same as in [HW] and
[RTV]. We will work with consistently labelled graphs in this extended abstract
for simplicity and to make the connection between derandomized squaring and
the INW pseudorandom generator [INW] more apparent. But this condition can
be relaxed by allowing each edge, v) to have two labels, one as an outgoing
edge fromu and one as an incoming edgewpas formalized using the “rotation
maps” of [RVW, RTV]. We present generalizations of our results to this setting in
Section 6.

If G'is a K-regularundirectedgraph, then we view it as & -regular directed
graph by replacing each undirected edgev} with two directed edgegu, v) and
(v,u). One can then consider a stronger notion of consistent labelling whereby
(u,v) is required to have the same label @su). We call this anundirected
consistent labelling Note that such a labelling has the property thigl[i] = v,
and can be viewed as decomposing the set of edges into the unigrpeffect
matchings. However, this property has the disadvantages that (a) not all undirected
graphs possess such a labelling (eg graphs with an odd number of vertices), (b) it
is not preserved under the operations we perform (such as the squaring operation
below). Therefore, even for undirected graphs, we will typically work with the
basic notion of consistency given in the previous paragraphs.




The squareX? of a graphX is the graph whose edges are paths of leagth
X. The square of d-regular graph ig<2-regular, and a consistent labelling of
X induces a consistent labelling &f? in a natural way. Specifically, for a label
(z,y) € [K]?, we definev[z,y] = v[z][y]. Notice that\(X?) < A\(X)2. (This
is always an equality for undirected graphs, but not necessarily so for directed
graphs). We similarly define theth powerX™ using paths of length in X.

Like undirected graphs, the mixing time @gular connected directed graphs
is bounded by a polynomial. One can give an inverse polynomial bound on the
spectral gap provided the graph has a self-loop on every vertex.

Lemma 3.3. Let X be a connected-regular graph with a loop on every vertex.
ThenA(X) <1 -—1/(2D?N?).

Proof. We will prove this by reduction to the bound for the undirected case, given
by [AS]. As mentioned above\(X)? = A\(MTM). The matrix M7 M is the
adjacency matrix of ®2-regularundirectedyraphY” on the vertex set ak’, whose
edges are pairfv, w} such that there exist edgés =) and(w, z) are edges oX
(counted with multiplicity according to the number of such pairs). In other words,
to obtain a neighbor of a vertex I, take a step on an eddé and followed by an
inverse of an edge ofX.

Since X contains a loop on every vertex, the graplcontains an undirected
edge{v, w} for every directed edgév,w) € E(X). In particular, inY there
is a loop on every vertex. It follows thaf is connected, non-bipartite, aroP-
regular. From [AS], every such graph satisfid’) < 1 — 1/D?N?2. Therefore,
MX)<\/1-1/D2N2<1-1/2D?>N?%. 1

The next proposition shows that when the second eigenvalue is very small, the
graph is very well connected - it contains a clique.

Proposition 3.4. Let X be an(N, D, 1/2N*?)-graph. ThenX contains an edge
between any pair of vertices. Indeed, for a pair of vertices the probability that
a random neighbor of is equalw is at leastl /N — 1/N?2.

Proof. The probability distribution of a random neighbor of vertexs the vec-
tor Mxe, wheree, is the vector which ha$ in coordinatev and0 in the other
coordinates. We need to show that every coordinat&@/gfe, has value at least
1/N — 1/N2. Letu be the vector with valud /» in all coordinates. Since
Mxu = u, it suffices to show thad/x (e, — u) has absolute value at maistV?

5In the conference version of our paper [RV], instead of assuming that every vertex has a self-
loop, we erroneously used the standard notion of aperiodicity (the gcd of all cycle lengths is 1). In
that case, the the spectral gap can actually be zero, as shown by the following ex@mplg’, F)
whereV = {a, b, c,d} andE = {(a,b), (a,c), (b,b), (b,d), (¢, ¢), (¢,d), (d,a), (d,a)}.
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in each coordinate. As, — u has coordinate sum zero afyd, — u|| < 2 we know
that||Mx (e, —u)||? < 1/N3. Letm be the minimal absolute value of a coordinate
of Mx (e, — u). ThenNm? < ||Mx (e, —u)||?> < 1/N3 which proves the result.

1

4 Derandomized Squaring

After giving a formal definition of derandomized squaring, we will show in Theo-
rem 4.4 that it decreases the second eigenvalue of a graph in a way comparable to
squaring it.

Definition 4.1. Let X be a labelledK -regular graph on vertex s¢iV], let G be a
labelled D-regular graph on vertex seék’|. Thederandomized square grapiSG
has vertex seftV] and is K D-outregular. The edges exiting a vertexare paths
v[z][y] of length two inX such thaty is a neighbor ofc in G. Equivalently, when
x € [K]is an edge label inX anda € [D] is an edge label iri7, the neighbor of
v € [N] via the edge labellefix, a) is v[z][z]a]].

The derandomized square may, in general, not produce an in-regular graph.
However, it will do so provided thaX is consistently labelled.

Proposition 4.2. If X is consistently labelled, thek ®G is K D-regular. If, in
addition, G is consistently labelled, thek © G is consistently labelled. 1

Notice that even ifX andG are consistently labelled and undirected, i.e. for
every edgdu, v) there is a corresponding reverse edge.), then the derandom-
ized square¥X®G need not be undirectédin Section 6, we present a more general
formulation that is more amenable to maintaining undirectedness.

A Cayley graphis a graph whose vertices are elements of a géapd whose
edges are all pairg;, gu) for all g € G and allu € U whereU is a subset of. A
Cayley graph is consistently labelled, by labelling the e@gew) by u. The next
observation states that X is a Cayley graph then so ¥ ®G. We will not use
Cayley graphs in other parts of the paper.

Observation 4.3. Let X be a Cayley graph given by a grogpand subset/ C G,
and letG be a consistently labellefd’|-regular graph. ThenX ®G is a Cayley
graph given by the same grogpand subsefu,u;|(i, ) € E(G)}.

bIf X satisfied the stronger notion of consistent labelling whigrev) and (v, u) are required to
have the same label, thexn® G would be undirected. Alas, this stronger notion is not preserved
under the derandomized square (or even the standard squaring).

11



Our main result on derandomized squares is that whémna good expander,
then the expansion of G is close to that off 2.

Theorem 4.4.1f X is a consistently labelle@V, K, \)-graph andG isa(K, D, u)-
graph, thenX ®G is an(N, K D?, f(\, u))-graph, where

FOop) =1=(1 =X (1—-p)
The functionf is monotone increasing ik and ., and satisfies
o f(Ap) <A+,
e 1— f(1—~,1/100) > (3/2) - v, when~ < 1/4.

Notice that wher — 0 (i.e. G is a good expander), thefi\, ) — A2
(i.e. X ®G is nearly good an expander as we exp&étto be.). After proving
the theorem, we show (Proposition 4.5) that the upper bgigndy) is tight in a
very strong sense. No such tightness result is known for the bounds on the second
eigenvalue of the zig-zag product.

In the conference version of this paper [RV], we analyze the derandomized
square by reduction to the zig-zag product, obtaining a weaker bound than above.
Below, we present a direct proof, which uses some of the ideas from the analysis
of the zig-zag product in [RVW, RTV], but is significantly simpler. Specifically, it
applies Proposition 3.2 to the expandérintuitively, this says that we can view the
random step oK in the derandomized square as going to the uniform distribution
on [K| with probability 1 — x, and otherwise doing no harm. In case the step on
G goes to the uniform distribution, the derandomized square is identical to two
independent, random steps &n This suggests a bound 6f — ) - A% + - 1,
which equalsf (), 1). The proof below makes this intuition formal.

Proof. Let M be the transition matrix of the random walk 6h®G. We must
show that, for every vectar € R" orthogonal to the uniform distributiomy, Mv
is shorter than by a factor off (\, u).

In order to relaté/ to the transition matrices of andG, we think of a random
step onX ©G started at a vertex as consisting of the following steps:

1. Choose: uniformly at random if K7, to go to “state”(u, a) € [N] x [K].
2. Go to statgu[a], a).
3. Goto stat€u[a], b), whereb is a random neighbor afin G.

4. Go to statgula][b], b).

12



5. Outputu[a][b].

Step 1 corresponds to mappihghat “lifts” probability distributions orjN] to
probability distributions odN] x [K] given byL(v) = v ® ur, wherev € RV is
a probability distribution olN], ® is tensor product andy is the uniform distri-
bution on[K]. Step 2 corresponds to theK x NK matrix A, whereA, ,) /)
is 1iff o’ = a andu’ = ula]. SinceX is consistently labelledd is a permutation
matrix. Step 3 corresponds to the matix= Iy ® B, wherely is the N x N
identity matrix andB is the transition matrix for5. Step 4 is again given byl.
Step 5 is given by the linear maPp that “projects” probability distributions on
[N] x [K] to probability distributions ofiV] given by(Pz), = ), Zuq- (Thisis
inverse to Step 1 in the sense tifat (v) = v for anyv € RY). Thus,

M = PABAL.
By Proposition 3.2 we can decompaBe= (1 — p)J + pC where||C|| < 1,

which induces the decompositidh= Iy ®B = (1—pu)(In®J)+pu(Iy2C) =
(1 — p)J + pC. Therefore

M = (1 - p)PAJAL + nPACAL.
Now, the key observation is that
PAJAL = PALPAL = A?,

because/ = LP and PAL = A. SincellAl|,|C|| < 1, ||L]| = 1/VK, and
|P|| = VK, we conclude tha PACAL|| < 1. Therefore, for some matrix
with | D] < 1

M = (1 — pu)A% 4+ uD.

The last equation implies that M) < (1 — ) A? + i, which is equalf (), p).
1

The next proposition shows that the bound of Theorem 4.4 is tight in a strong
sense. The proof of the proposition also clarifies the intuition of the proof of The-
orem4.4.

Proposition 4.5. For every K € N and rationalu € [0, 1], there is aD € N,
and an undirected K, D, u)-graphG such that for everyN, K, \)-graph X with
an undirected, consistent labelling, we haveX ®G) > f(\, u), for f(\, u) =
1 — (1 - p)(1—A?). (Recall that in an undirected labelling we havg][i] = v
for all v, 7).
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Proof. We choose to be the undirected graph whose transition matrigBis=

pl + (1 — p)Ji, wherel is the K x K identity matrix and/k is the K x K
matrix all of whose entrie$/ K. That is, a random step aH stays in place with
probability » and goes to a uniformly random vertex with probability .. Thus a
random step on the derandomized squa@G amounts to taking two steps a0,

using the same random edge label for both steps with probahiktyd using two
independent edge labels with probability- .. The fact thatX has an undirected
consistent labelling implies that using the same edge label twice brings you back to
the same vertex. Thus the transition matrix 068G is pulx + (1 — ) A%, where

A is the transition matrix fo’, and thus has second eigenvalue (1 —p) - \2 =

fOup). 1

5 A Log-Space Algorithm for Undirected Connectivity

We describe how to solve undirected st-connectivity on an undirected grapth
N vertices in logarithmic space.

Overview.

We will assume that the input graph is 4-regular, consistently labelled and con-
tains a loop on each vertex. Prop. 5.3 shows that this assumption does not lose
generality. By Lemma 3.3, ever¢regular connected graph with a loop on each
vertex has second eigenvalue Q(1/N). Our goal is to use derandomized squar-

ing to decrease the second eigenvalue (of each connected component) to less than
1/N3 (we will need to squar®(log N) times). By Prop. 3.4, the resulting graph
must contain a clique on every connected componeti ofMe can therefore go

over all the neighbors of in the resulting graph and search for vertex

Starting with (some power ofX, we define a sequence of grapXs,, each of
which is a derandomized square of its predecessor using a suitable auxiliary graph.
The algorithm works in two phases. Phase one worksfo< 100log N, and
reduces the second eigenvalue to a constgfif)( by using as auxiliary graphs a
sequencé,, of fixed-degreexpanders. We will see that the spectral gag,,)
grows by at least a factor &/2 at each step. Therefore, aftery = O(log N)
steps, we obtain an expandgy,, with second eigenvalue at mdst4 and degree
polynomial inV.

At this point we cannot use fixed-degree expanders as auxiliary graphs any
more. If we did, the second eigenvalue of the derandomized square would be dom-
inated by the second eigenvalue of the auxiliary graph, which is constant. Thus we
would not be able to decrease the eigenvalue/fg?. In phase two, we therefore
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use auxiliary graphs&-,,, with non-constant degrees. Specifically, far > my,

the auxiliary graphG,,, will have degree doubly-exponentialin — mg. The fast
growth of the degree allows the eigenvalue of the auxiliary graph to remain small
enough to imply that(X,,11) < ¢ \(X,,)? for someec > 1 quite close tol.
Therefore, after an additionklg log N + O(1) steps we obtain a grapX,,,, with
second eigenvalue at mastV?.

Since the graphX,,, has degree polynomial ifv, we can enumerate all the
neighbors ofs in logarithmic space. We will show (in Prop. 5.7) that neighbors in
Xm, are log-space computable, making the whole algorithm work in logarithmic
space.

The Auxiliary Expanders.

We will need a family of logspace-constructible constant-degree expanders with
the following parameters, (which can be obtained from e.g. [GG] or [RVW)]).

Lemma 5.1. For some constar® = 49, there exists a sequenég,, of consistently
labelled(Q™, @, 1/100)-graphs. Neighbors ii#,,, are computable in spag@(m)
(i.e. given a vertex name € [Q™] and an edge labet € [Q], we can compute
v[z] in spaceO(m) and timepoly (m)).

Definition 5.2. Let H,,, be the graph sequence of Lemma 5.1. For a positive integer
N, we setmy = [1001og N|, we define a graph sequen€g, by

Whenm < mg: G, = (Hp)
When?n > mo Gm = (H 0_1+2m—m,0)2mim0 .

m

Neighbors inG,,, are computable in spag@(m + 2™~ ™0),

The Algorithm.

Let (X, s, t) be an instance of undirected st-connectivity; we want to decide whether
there is a path from vertexto ¢t in X.

Proposition 5.3. We may assume without loss of generality that the input graph is
4-regular, contains a loop on every vertex, and is consistently labelled.

Proof. The easy proof appears in [Rei2]. We repeat it for completeness. We are
given a (not necessarily regulamdirectedgraph.X. SupposeX is described by
a function that, given a vertexof X, returns the degreéeg(v) of v and an array
of neighborsu[1], ..., v[deg(v)]. Define a4-regulardirectedgraph Xreg whose
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vertices are pair&, 7) for every vertex of X and0 < i < deg(v). The neighbors
of (v,i) are

(v, )[1] = (v, i + 1 mod deg(v))

(v,9)[2] = (v, i — 1 mod deg(v))

(v,7)[3] = (v[i], location ofv in the array of neighbors afii]).
(v,9)[4] = (v,1).

This is equivalent to replacing each verteby a cycle of lengthleg[v], and
connecting each vertex on the cyclewdto exactly one of the neighbors of and
adding a loop on each vertex. This operation can be done in logarithmic space.
The result is al-regular directed grapAreg, and the labelling used to define the
graph is consistent. 1

Let X be a4-regular graph with a loop on each vertex, given by a consistent la-
belling. Given two vertices, ¢ connected inX, we describe a log-space algorithm
that outputs a path betweerandt. For simplicity, assume thaX is connected
(else carry out the analysis below on each connected compondit of

Define X; = XY, where) = 47 is from Lemma 5.1. Define inductively
X1 = X, ®G,,. It can be verified by induction that the degrBg, of X, is
equal to the number of vertices 6f,,, so the operatioX,,, ©G,, is indeed well-
defined. Specifically, we hav@,, = Q™ for m < myg, andD,,, = Qmo+2" "0—1
for m > my.

Phase One.

By Lemma 3.3 we have(X;) > 1/32N2. We will reduce the second eigenvalue
to 3/4. From Theorem 4.4 it follows that

g(Xm+41) > g(Xm) - (3/2) > g(X41) - (3/2)™

as long agz(X,,—1) < 1/4. Therefore for somen < 100log N we will get
AMX.,) < 3/4. The inequality\(X,,) < 1/4 holds for all largerm due to the
monotonicity mentioned in Theorem 4.4. We deduce the following corollary.

Corollary 5.4. Letmg be the smallest integer such thaty > 100log N. Then
AN X)) < 3/4.

Phase Two.

We now decrease the second eigenvalue figinto 1/2N3.

Proposition 5.5. For m > mg we have\(X,,,) < (7/8)2<m_m0).
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Proof. DefineA,, = (64/65) - (7/8)2" ™, jim = (1/100)2"~"°. We will show
that\(X,,,) < A, form > my. Thisis true forn = myg, and suppose by induction
that it holds for somen. Since\(G,,) < pm < A2,/64 we can use Theorem 4.4
to deduce that

(m+1-mq)
1 64\% [(7\° 65
Xm < \2 m < 21 —) < | = o — < A\

which proves the proposition. 1
Corollary 5.6. Letm; = mq + loglog N + 10. Then\(X,,,) < 1/2N3.

By Proposition 3.4 the grapK,,,, contains a cliqgue on th& vertices. More-
over, it has degred,,, = Q00lsN+2°# 8N 10-1 _ 41v(N). If we could
compute neighbors iX,,, in space0(log N) we could find a path from to ¢ in
logarithmic space.

Proposition 5.7. Neighborhoods in¥,,,, are computable in spad@(log V).

Proof. Edge labels inX,, are vectorsy,, = (y1,a1,...,am—1) Wherey; is an
edge label inX; anda; is an edge label o6;. Given a vertex and an edge label
ym IN X, we wish to compute the neighbofy,,] in X,,.

Every edge inX,, corresponds to a path of leng2i¥ in X. It suffices to give
a (log-space) algorithm that, givery and an integeb in the rang€1, 2™, returns
the edge label ik of theb-th edge in this path of leng2i”. As we will see below,
this edge label is actually independent of the vert€and thus can be computed
given onlyy andb).

The path of lengtl2™ originating fromv corresponding to the edge lahg),
consists of two paths of leng@f~! corresponding to two edges KXi,,_;. These
two edges inX,,_; have labelsy,,_1 = (y1,a1,...,am-2) and y,,—1[am—1],
where the latter is a neighbor computatior@dp,_ .

From these observations the algorithm is simpleh # 2! then solve the
problem encoded by,,_1,b in X,,_i. If b > 2™~ then instead sej,,_1
Ym—1lam—-1], b — b —2m~1 and now solve the problem encodedy 1,b on
Xm—1.

Here is a pseudo code for the algorithm. Wbitel as a binary stringb,,—1, ..., bg),
and lety; be the stringy;, a1,...,a;-1.
fori=m —1to0do
if b; = 1then
sety; = y;[a;] (this is a computation iidr;).
end if
end for
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outputyg

Now we argue that this can be computed in sp@¢k®g N) whenm = m;.
Notice that the input length to the algorithmss + log D,,,, = O(log N). By
Lemma 5.1, the computation in tlf&;-computation steps in the loop described in
the code can be performed in sp@gen +2™~"™0) = O(log N), and we are done.
1

This ends the log-space algorithm for undirected connectivity. We now use
the same construction idea to generate a (log-space computable) pseudorandom
generator for random walks on consistently labelled graphs.

A Pseudorandom Generator for Walks on Consistently Labelled Graphs.

We solved the undirected connectivity problem by using the fact that the graph
Xm, contains a clique on all the vertices (assumingvas connected). Actually,
by Proposition 3.4, a random neighbor of a verter X,,,, has distribution which
is 1/N?-close to uniform. Every edge exitingin X,,,, corresponds to a path with
length2™ (polynomial inN) in X. As the degree oX,,, is only polynomial in
N, we deduce thab(log N) uniformly random input bits (encoding an edge of
Xm,) suffice to generate a “pseudorandom” walkXnof poynomial length, such
that the endpoint is almost uniformly distributed, as it would be for a truly random
walk of polynomial length (which needsoly(/N) random bits). Moreover, the
edge labels in the walk do not depend on graphbut only on the edge label
chosen inX,,, and the number of verticed'. Indeed, the algorithm given in
Proposition 5.7 describes how to compute the labels in the output walk given the
input edge label,,, in X,,,. In fact, the map frony,,, to the sequence of edge
labels in the walk is precisely the Impagliazzo—Nisan—-Wigderson pseudorandom
generator [INW] constructed using the expandeys. .., G,,_1.

We state the properties of this generator precisely and in a more general form
in the following theorem.

Theorem 5.8. For given parametersN, D, \) there is a pseudorandom generator
PRG: {0,1}" — [D]* with seed lengti® (log(DN)) and walk length

log N 1
/= 2 J.polv | ——
O(Hk)g(m)) poy(l—A)’

such that for everyonsistently labelled N, D, \)-graph X and every vertex
in X, if we choose a random seed— {0, 1}" then following the walk PRG)
fromv ends at a distribution that i§1 /N?2)-close to uniform. Give, D, A, and
1 <i < ¢, thei'th step of PRGs) is computable in spac®(log(DN)) and time
poly(log N log D).
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The above theorem is more general than the one implicit in our undirected con-
nectivity algorithm in that it produces shorter walks when the graphs are known to
have better expansion than the boundef 1 — 1/(2D?N?) from Lemma 3.3. A
pseudorandom walk generator with similar properties was given by Reingold, Tre-
visan, and Vadhan [RTV] based on Reingold’s algorithm (which uses the zig-zag
product). However, the generator does not have as simple a description as above.
In particular, computing thé&th step in the walk seems to require computing all
the previous — 1 labels of the walk (which may take timely(/V)), rather than
being computable directly as above (in timey (log(N D))). Reingold, Trevisan,
and Vadhan [RTV] also proved that if a similar pseudorandom generator could be
given for walks on regular digraphs with arbitrary labellings (as opposed to con-
sistent labellings), then every problem in solvable in randomized logspace is also
solvable in deterministic logspace (i.RL = L).

Proof. To simplify the proof we will show the proof wheh < 3/4, and after-
wards mention the approach for largerDefineX; = X2, which is a consistently
labelled (N, D%, \?)-graph. DefineX,, inductively by X,,,,1 = X,, ®G,, as
in Section 5. However, we use slightly different auxiliary graghs. Similar
to Lemma 5.1 one can show that for some constaaind everyD there exists a
consistently labelledD2Q™~!, Q, 1/100)-graph H,,, such that neighbors iff,,
are computable in spac@(log D + m) and timepoly(log D, m). The auxiliary
graph sequence is defined By = Hf wherek = O(log(1/))) is the minimal
integer such that(H;) < M\/64 andG,, = (H1+k_(2m71,1))k‘27H71. Simi-
lar to the analysis of Phase two in Section 5, we obtain graphswith degree
D2QF2"'=1) and second eigenvalug(X,,) < (1.1A)2"". Letm, be the
minimal integer satisfying\(X,,) < 1/N3. This holds for somen; satisfying
2™ = O(log N/log(1/)\)).

We can now define the generator. The seed is an edge lalig] inencoded by
O(log D + k - 2™) bits. Every edgév, w) exiting a vertex of X,,, corresponds
to a walk fromo to w of length2™:~! in X;. This walk corresponds to a walk
of length2™! in X. This walk the is the output of the generator. As in the proof
of Proposition 5.7, the edge labels in the walk do not depend on the gfgplt
only on the auxiliary expanderts, ..., Gy,).

By Proposition 3.4, walking on a random edgelip,, results in a distribution
on the vertices that i/ N2-close to uniform. This proves the pseudorandomness
property of our generator. The seed lengtiog D + k - 21) = O(log(DN)).
The walk length i2™~! = O(log N/1og(1/))).

To compute thé-th step in the walk we use the same algorithm used in Propo-
sition 5.7. The algorithm runs im; steps, each requiring a computation in some
graphG,, for somem < k - 2™, and manipulation of strings of length(k£2™).
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Each step requires spacglog(DN)) and timepoly(log(N D)), and there are
m1 = O(loglog N) steps, so the total required timepisly (log(N D)).

For A > 3/4 we first takem, derandomized square steps with auxiliary graphs
of constant degre€). Each step increases the spectral gap by a fact8y fso
when(1—X)-(3/2)™ > 1/4 we obtain a graph with spectral gap at legst. This
holds for somen, = O(log(1/1—\)). We can now proceed as in the proof above.
The walk length increases by a multiplicative factoR®P = poly(1/(1— X)), but
the seed length increases only by an additive fact@p@fi;) = O(log V), since
the degree of the final graph increases by a multipicative factQ’t6f 1

6 Extension to Two-Way Labellings

Until now, we have focused on applying the derandomized square to gkaghest

are consistently labelled. Indeed, ifXf is not consistently labelled, thek ©G

may not even be inregular (in which case its stationary distribution will not be
uniform). Nevertheless, working with consistently labelled graphs sufficed for our
Undirected s-t Connectivity algorithm (via Proposition 5.3).

In this section, we consider a more general notion of labelling (previously used
for the zig-zag product in [RVW, RTV]), and show how both the derandomized
square and Theorem 4.4 can be extended to this more general notion. This exten-
sion has several benefits, and in particular addresses two deficiencies of the basic
notion of consistent labelling considered in previous sections:

e Even though every<-regular digraph has a consistent labelling, it may not
be possible to find such a labelling in logspace. Indeed, this problem is
equivalent to decomposing a regular bipartite graph into the union of perfect
matchings, and matching is not known to be in logspace. (Nevertheless,
s — t connectivity on regular digraphs can be reduced tot connectivity
on consistently labelled graphs, as in Proposition 5.3.) The more general
labelling notion presented below is easy to achieve in logspace.

e The derandomized square of a consistently labaliedirectedgraph need
not be undirected. One can impose a stronger condition on consistent la-
belling for undirected graphs that does ensure that the derandomized square
is undirected, but alas this condition itself is not preserved under the deran-
domized square. (See Footnote 4.) The labelling notion presented below has
an undirected analogue for which the derandomized square preserves both
undirectedness as well as the labelling notion itself.

If X isaK-regular digraph, &avo-way labellingof X provides, for each vertex
v, a humbering from, ..., K of the K edges leaving as well as a numbering
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from 1,..., K of the K edges entering. So each edgéu,v) has two numbers,
one as an outgoing edge framand one as an incoming edgeitoClearly, given a
K-regular digraph, a two-way labelling for it can be found in logarithmic space. A
graph together with a two-way labelling can be specified by the following notion
of a “rotation map,” taken from [RVW, RTV].

Definition 6.1. For a K-regular graphG on N vertices with a two-way labelling,
therotation map Rot; : [N]x[K] — [N]x[K]is defined as follows: Rgtv, i) =
(w, j) if the i-th outgoing edge from vertexleads tow, and this edge is th¢-th
incoming edge ofv.

Notice that the rotation function of &-regular directed graph is a permutation
on [N] x [K], and conversely, every permutation pN| x [K] specifies aK-
regular digraph oV vertices together with a two-way labelling. Observe that if a
K-regular graplG has a consistent labelling, then the function(®Rot) = (v[d], )
is a permutation, corresponding to the two-way labelling that takes the incoming
label for each edge to be the same as its outgoing label.

Recall that ifG is a K -regularundirectedgraph, then we view it as & -regular
directed graph by replacing undirected edgev} with two directed edgegu, v)
and(v,u). Then it is natural to insist that the label @f, v) as an edge leaving
u is the same as the label ¢f, ) as an edge entering. Indeed, such a two-
way labelling corresponds to simply numbering thieundirected edges incident
to each vertex; thus we refer to it asveo-way labelling Notice that the resulting
rotation map Rot is an involution, i.e. R the identity map. Conversely, every
involution on[N] x [K] corresponds to a regular undirected graph together with an
undirected labelling.

Now, we generalize the definition of the derandomized square to support two-
way labellings, specified by rotation maps.

Definition 6.2. Let X be a K-regular graph on vertex sdtV] with a two-way
labelling, letG be aD-regular graph on vertex sgf] with a two-way labelling.
Thederandomized square grapkeG has vertex sgtV] and rotation map Rgg@a
defined as follows:g € [N}, ig € [K],jo € [D]):

Rot, gy, (vo, (i0, jo)):
1. Let(vy,71) = Rotx (vo, o).
2. Let (iq, j1) = Rot (i1, jo).
3. Let(vq,i3) = Rotx (v1,i2).

4. Output(vz, (i3, j1))-
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Since the three operations above are permutatiofd’pr K] x [D], we have
indeed defined a regular directed graph, with a two-way labelling. Moreover, if
X andG are undirected graphs with undirected labellings (i.e. their rotation maps
are involutions), then the rotation map &fSG is an involution and in particular,

X ®G is undirected. Finally, we note that when the rotation mapX @idG are
obtained from a consistent labelling (i.e. Roti)) = (v[i],4)), then Definition 6.2
coincides with Definition 4.1.

Just like the analysis of the zig-zag product [RVW, RTV], the eigenvalue bound
on the derandomized square given by Theorem 4.4 also holds for graphs given by
rotation maps:

Theorem 6.3. If X is an (N, K, \)-graph with a two-way labelling and: is a
(K, D, 1)-graph with a two-way labelling, theW ®G' is an (N, KD?, f(\, u1))-
graph, where

FO) =1 =1 =X) - (1—p) <N +p

Proof. The only change in the proof of Theorem 4.4 is that the matrishould
now be taken to be the permutation matrix corresponding to the permutatign Rot
The only facts used about in the proof were thatl is of norm at most 1, and that
PAL = A. Both of these still hold. |

7 Embedding expanders in general graphs

Another consequence of our algorithm for undirected connectivity is a logspace
algorithm to find an “embedding” of an expander graph in every regular graph
with congestion and dilation that is polynomially related to the spectral gap.

Theorem 7.1.Let X be an(NV, D, 1—~)-graph. Then there exists &V, D, 1/2)-
graph X on the same vertex set with the following properties:

e D/D = poly(1/7).

e There is an embedding functighmapping edges of to paths of length at
most! = poly(1/v) in X.

e Each edge o is co[ltained in exactly - D/D = poly(1/~) paths corre-
sponding to edges iX underf.

Furthermore, givenX and the valuey, the graphX and embedding’ can be
computed in spac@(log N).
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Proof. Add self-loops to each vertex of until it has degree that is a pow&®

of @ (whereQ@ is from Lemma 5.1) to obtain a grapty;, and construct any two-
way labelling of X;. (We do not use a consistent one-way labelling, because it
may not be feasible to find in logspace.) It is easy to checkgh&ti) > ~/Q.
(Recall thatg(()G) = 1 — A(G) is the spectral gap of graph.) Similar to the
construction of the sequencg,, given in Section 5, define inductivell,, 1 =
Xm®H,, 1 WhereH,, are defined in Lemma 5.1 and we use the generalization
of the derandomized square to two-way labellings from Section 6.

One can check that the degreeXf, and the size off,,, are bothQ® - Q™.
Observe thag(X,,,+1) > (3/2)g(X,,) aslong ag(X,,) < 1/4. Takem, to be the
smallest integer larger tha log(Q/v). The graphX,,, has second eigenvalue
atmost3/4, and degre® = Q°- Q™1 = D-poly(1/7). We will embedX,,, in
X with the properties claimed in the theorem. Each edg¥,qf corresponds to a
path of length exactly = 2™0~! = poly(1/~) in X;. Each such path corresponds
to a path inX by ignoring the steps on the added self-loopskef The path inX
therefore has length at mast

We now prove the congestion claim in the theorem. This follows by induction
from the following fact: LetX be an(N, D, \)-graph and letG be a(D, K, u)-
graph. The edges of ©G correspond to paths of leng?in X, and each edge of
X is covered by exactl@ K of these paths of length It follows by induction that
if one draws all the paths iX corresponding to edges &f,,,, every edge o¥X is
covered exactly2Q)™o~! paths.

Finally, we note that, even though we have used two-way labellings, the con-
struction of the graphX,,, and the embedding can be computed in logspace.
This is not as simple to see as for the case of consistent one-way labellings, but can
be shown using a similar recursive algorithm to the one presented in [Reidl.

The embedding above resembles the “expander flow” embedding of [ARV],
where an(N, D, 1/2)-graph is embedded as paths in an input grapbn N ver-
tices. The maximal number of times an edgeXofs covered by these paths de-
pends linearly on the edge expansion®fip to a multiplicative factor of/log N,
providing a certificate for the edge expansion@f In our embedding the number
of times each edge of is covered by paths depends polynomially on the spectral
gap of X, but does not depend on the graph si¢e Furthermore, we find our
embedding inX in logarithmic space (rather than polynomial time).
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