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Abstract

We introduce a “derandomized” analogue of graph squaring. This op-
eration increases the connectivity of the graph (as measured by the second
eigenvalue) almost as well as squaring the graph does, yet only increases the
degree of the graph by a constant factor, instead of squaring the degree.

One application of this product is an alternative proof of Reingold’s re-
cent breakthrough result that S-T Connectivity in Undirected Graphs can be
solved in deterministic logspace.

1 Introduction

“Pseudorandom” variants of graph operations have proved to be useful in a va-
riety of settings. Alon, Feige, Wigderson, and Zuckerman [AFWZ] introduced
“derandomized graph products” to give a more illuminating deterministic reduc-
tion from approximating clique to within relatively small (eg constant) factors to
approximating clique to within relatively large (egnε) factors. Reingold, Vadhan,
and Wigderson [RVW] introduced the “zig-zag graph product” to give a new con-
struction of constant-degree expander graphs. The zig-zag product and its relatives
found a number of applications, the most recent and most dramatic of which is
Reingold’s deterministic logspace algorithm [Rei2] for connectivity in undirected
graphs.

∗An extended abstract of this paper has appeared inRANDOM ‘05[RV].
†Supported by NSF grant CCF-0133096, ONR grant N00014-04-1-0478, and US-Israel BSF

grant 2002246.
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In this paper, we present a pseudorandom analogue of graph squaring. The
squareX2 of a graphX is the graph on the same vertex set whose edges are
paths of length2 in the original graph. This operation improves many connectivity
properties of the graph, such as the diameter and mixing time of random walks of
the graph (both of which roughly halve). However, the degree of the graph squares.
In terms of random walks on the graph, this means that although half as many steps
are needed to mix, each step costs twice as many random bits. Thus, there is no
savings in the amount of randomness needed for mixing.

Our derandomized graph squaring only increases the degree by a constant fac-
tor rather than squaring it. Nevertheless, it improves the connectivity almost as
much as the standard squaring operation. The measure of connectivity for which
we prove this is the second eigenvalue of the graph, which is well-known to be a
good measure of the mixing time of random walks, as well as of graph expansion.
The standard squaring operation squares the second eigenvalue; we prove that the
derandomized squaring does nearly as well.

The main application of derandomized squaring we give here is a new logspace
algorithm for connectivity in undirected graphs, thereby giving a new proof of
Reingold’s theorem [Rei2]. Our algorithm, while closely related to Reingold’s
algorithm, is arguably more natural. Reingold’s algorithm is based on thezig-
zag product, and constructs a sequence of graphs with an increasing number of
vertices. Our analysis, based on derandomized squaring, only works on the vertex
set of the original input graph, and has a simpler analysis of the space requirements.
More significantly, it can be viewed as applying a natural pseudorandom generator,
namely that of Impagliazzo, Nisan, and Wigderson [INW], to random walks on the
input graph. Reingold himself [Rei1] conjectured that it should be possible to
use INW generator to solve undirected connectivity in logspace; we confirm his
conjecture by the relating the INW generator to derandomized squaring.

Below we describe the derandomized squaring and its application to undirected
s-t connectivity in more detail.

1.1 Derandomized Graph Squaring

Let X be an undirected regular graph of degreeK.1 The squareX2 of X has an
edge for every path of length2 in X. One way to visualize it is that for every vertex
v in X, we place a clique on itsK neighbours (this connects every pair of vertices
that has a length2 path throughv). The degree thus becomesK2. (Throughout the
paper, we allow multiple edges and self-loops.)

1Actually, following [RTV], we actually work with regulardirectedgraphs in the technical sec-
tions of the paper, but thinking of undirected graphs suffices for the informal discussion here.
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In derandomized squaring, we use an auxiliary graphG on K vertices and
place it instead of a clique on theK neighbours of every vertexv (thus connecting
only someof the pairs of vertices which have a length2 path throughv). We denote
the resulting graph byX©s G.

If the degree ofG is D, the derandomized square will have degreeKD, which
will be smaller thanK2. We will see, however, that ifG is an expander, then even
if D is much smaller thanK, the derandomized square ofX with respect toG
improves connectivity similarly to standard squaring.

Our measure of connectivity is the second eigenvalueλ ∈ [0, 1] of (the random
walk on) the graph; smallλ indicates that the random walk mixes rapidly and that
the graph has good expansion (i.e. is highly connected). If the second eigenvalue
of X is λ then the second eigenvalue ofX2 is λ2. The second eigenvalue of the
derandomized square is not very far. For example, we prove that it is at most
λ2 + µ whereµ is the second eigenvalue ofG. In fact, we give a tight analysis of
the second eigenvalue of the derandomized square as a function ofλ andµ.

1.2 A New Logspace Algorithm for Undirected Connectivity

Recall that the problem of undirected st-connectivity is: given an undirected graph
G and two verticess, t, decide whether there is a path froms to t in G. The time
complexity of this problem is well understood — search algorithms like breadth-
first search (BFS) and depth-first search (DFS) solve it in linear time. The space
complexity is harder to tackle. A line of research starting in thelog2(N)-space
deterministic algorithm of Savitch [Sav] and the randomizedlog(N)-space algo-
rithm of Aleliunas et. al. [AKL+] culminated in Reingold’s optimal deterministic
log(N)-space algorithm [Rei2] (See Reingold’s paper and the references therein
for more on the history and applications of this problem). We now shortly describe
Reingold’s algorithm, then present our algorithm and compare the two.

Reingold’s Algorithm.

Notice that undirected connectivity is solvable in log-space on bounded-degree
graphs withlogarithmic diameter(simply enumerate all paths of logarithmic length
in the graph out of the origin vertex). Examples of graphs with logarithmic diam-
eter are expander graphs, i.e. graphs whose second eigenvalue is bounded away
from 1. Reingold’s idea is to transform the input graph into a bounded-degree
expander by gradually decreasing its second eigenvalue.

A natural attempt would be to square the graph. This indeed decreases the
second eigenvalue, but increases the degree. To decrease the degree, Reingold
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uses thezig-zag graph productof [RVW], or the relatedreplacement product. We
describe his algorithm in terms of the latter product.

Given aK-regular graphX on N vertices, and an auxiliaryD-regular graph
G onK vertices, the replacement productX©r G is aD + 1-regular graph onNK
vertices. On each edge(v, w) in X put two vertices, one calledev “near” v and
another calledew “near” w, for a total ofNK vertices. This can be thought of as
splitting each vertexv into K vertices forming a “cloud” nearv. Place the graph
G on each cloud. Now for each edgee = (v, w) of X, put an edge betweenev and
ew. The result is a(D + 1)-regular graph. Notice thatX©r G is connected if and
only if bothX andG are.

The replacement product reduces the degree fromK to D + 1. It is proven
in [RVW] (and also follows from [MR]) that whenG is a good enough expander,
replacement product roughly preserves the second eigenvalue ofX. Suppose that
X is (D + 1) regular andG has(D + 1)2 vertices and degreeD. ThenX2©r G
is again a(D + 1)-regular graph, whose second eigenvalue is roughly the square
of the second eigenvalue ofX . Iterating this procedurelog N times leads to a
constant-degree expander onpolynomially many vertices, since at each iteration
the number of vertices grows by a factor of aboutD2. On the resulting expander
we can therefore solve connectivity in logarithmic space. (One also must confirm
that the iterations can be computed in logarithmic space as well).

Our Algorithm.

Our approach also follows from this idea of increasing connectivity by squaring
the graph. However, instead of squaring, and then reducing the degree by a zigzag
product (and thus increasing the number of vertices) we will replace the squar-
ing by derandomized squaring, which maintains the vertex set (but increases the
degree). Iterating the derandomized squaring operation yields highly connected
graphs with relatively small degree compared to doing the same iterations with
standard squaring. In the next two paragraphs we compare the resulting graphs in
each case.

LetX be a regular graph onN vertices. Squaring the graphlog N times, results
in the graphX2log N

= XN (whose edges are all paths of lengthN in X). This
graph is extremely well connected; it contains an edge between every two vertices
which are connected by a path inX. The degree however, is huge — exponential
in N . We want to simulate the behavior ofXN with a graph that has much smaller
degree.

Suppose that instead of standard squaring at each step we apply derandomized
squaring to obtain a sequence of graphsX1, X2, . . .. At each step the degree in-
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creases by a constant factor (instead of the degree squaring at each step).2 For
m = O(log N) the degree ofXm is only polynomialin N . But we will show that
is as well-connected asXN (as measured by the second eigenvalue). In particular,
Xm will contain an edge between every pair of verticess, t that are connected by
a path inX. Deciding whethers, t are connected therefore reduces to enumerating
all neighbors ofs in Xm and looking fort. There are only polynomially many
neighbors, so the search can be done in logarithmic space. We will show that com-
puting neighbors inXm can also be done in logarithmic space. These two facts
yield a logarithmic space algorithm for undirected connectivity.

Comparing our approach to Reingold’s original solution, the main way in which
our algorithm differs from (and is arguably more natural than) Reingold’s algo-
rithm is that all the graphs we construct are on thesamevertex set. Edges in the
graphXm correspond to paths of length2m in X. The price we pay is that the
degree increases, but, thanks to the use ofderandomizedsquaring, only by a con-
stant factor (which we can afford). In contrast, each step of Reingold’s algorithm
creates a graph that is larger than the original graph (but maintains constant degree
throughout).

1.3 Embedding Expander Graphs in Arbitrary Graphs

Another consequence of our algorithm is a logspace algorithm to find an “embed-
ding” of an expander graph in every graph. Specifically, ifX has spectral gapγ
(i.e., second eigenvalue1 − γ), then fork = O(log(1/γ)), the graphXk is an
expander in the sense that it has constant spectral gap. It is embedded inX in the
sense that edges inXk correspond to paths of length` = 2k = poly(1/γ) in X, and
if X has degreed, then the graphXk has degreed · t for t = 2O(k) = poly(1/γ).
In addition, it can be shown that this embedding has low congestion, in the sense
that every edge ofX is contained in preciselỳ · t of the paths. This embedding
has a similar spirit to the “expander flows” of [ARV], though it does not seem to
provide a better algorithm or certificate for approximating a graph’s expansion.

1.4 Derandomized Squaring as a Pseudorandom Generator

Impagliazzo, Nisan, and Wigderson [INW] proposed the following pseudorandom
generator. LetG be an expander graph withK vertices and degreeD. Choose a
random vertexx ← [K], a random edge labela ← [D], and output(x, x[a]) ∈
[K]× [K]. This pseudorandom generator is at the heart of derandomized squaring.

2Actually, for the lastlog log N steps, we use auxiliary graphs of nonconstant degree and thus
the degree increases by nonconstant factors, but the degrees are chosen in such a way that the total
increase is still polynomial inN .
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Notice that using this pseudorandom generator to generate a pseudorandom walk
of length 2 in a graphX of degreeK is equivalentto taking a random step in the
derandomized square ofX using auxiliary graphG.

Impagliazzo, Nisan, and Wigderson [INW] suggested to increase the stretch
of the above generator by recursion. They proved that when the graphsG used
in the construction are sufficiently good expanders of relativelylarge degree, this
construction fools various models of computation (including randomized logspace
algorithms).3 However, the resulting generator has seed lengthO(log2 n), and
hence does not prove that RL=L.

Our construction of the graphXm in our st-connectivity algorithm is precisely
the graph corresponding to using the INW generator to derandomize random walks
of length2m in X. 4 However, we are able to useconstant-degreeexpanders forG
(for most levels of recursion), thereby obtaining seed lengthO(log n) and hence a
logspace algorithm (albeit for undirected st-connectivity rather than all of RL).

Moreover, it follows from our analysis that taking the pseudorandom walk inX
corresponding to a random step inXm (equivalently, according to the INW genera-
tor with appropriate parameters) will end at an almost-uniformly distributed vertex.
A pseudorandom generator with such a property was already given in [RTV] based
on Reingold’s algorithm and the zig-zag product, but again it is more natural in
terms of derandomized squaring.

1.5 Relation to Other Graph Products

The Zig-Zag Product. The reader may have noticed a similarity between the
derandomized squaring and the zig-zag product of [RVW] (which we define pre-
cisely later in the paper). Indeed, they are very closely related. When we use a
square graphG2 as auxiliary graph, the derandomized squareX©s G2 turns out to
be a “projection” of the square of the zigzag product(X©z G)2. In the conference
version of this paper [RV], we used this observation to prove the expansion prop-
erty of the derandomized squaring by reduction to that of the zig-zag product. In
this version, however, we provide a direct analysis, which gives a cleaner and tight
bound.

We note that the derandomized squaring has complementary properties to the
zigzag product. In the zigzag product we are given a graphX and can decrease its
degree while (nearly) maintaining its second eigenvalue. We must pay by slightly
increasing the number of vertices. In the derandomized squaring we manage to

3Specifically, to fool an algorithm running in spacelog n, they use expanders of degreepoly(n).
4This holds provided that the labelling of edges inX satisfies a certain consistency condition,

to be described in Sect. 3. The st-connectivity problem in general undirected graphs can easily be
reduced to st-connectivity in graphs with such a consistent labelling.
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decrease the second eigenvalue while maintaining the number of vertices, and we
pay by slightly increasing the degree.

Derandomized Graph Products. Alon, Feige, Wigderson, and Zuckerman [AFWZ]
studied a “derandomization” of a different kind of graph product, where given a
graphG = (V, E), we consider the graphG(k) whose vertex set isV k and whose
edges are((u1, . . . , uk), (v1, . . . , vk)) such that{u1, . . . , uk, v1, . . . , vk} is a clique
in G. A nice property of this product is that the clique number ofG(k) is precisely
thek’th power of the clique number ofG, and thus this allows one to “amplify”
inapproximability results for the Clique problem. A problem, however, is that the
number of vertices grows exponentially withk. Thus, Alon et al. [AFWZ] showed,
using random walks on expanders, how to pick a much smaller “pseudorandom”
subset of vertices ofG(k) such that the clique number behaves in much the same
way. Thus, their “derandomization” is concerned with saving on the number of
vertices, whereas ours is concerned with the degree, and they are interested in
maintaining the clique number and similar parameters, whereas we are interested
in maintaining expansion.

2 Overview of the Paper

In Section 3, we set notation and definitions, and state basic lemmas we will need
later. In Section 4, we define derandomized squares and state the main lemma on
them. In Section 5, we give a log-space algorithm for connectivity via iterated
applications of derandomized squaring, and deduce a pseudorandom generator for
walks in a graph. Section 6 extends the results to a more general notion of la-
belled graphs, where at each vertex, both incoming edges and outgoing edges are
numbered (whereas the earlier sections only consider labellings of outgoing edges,
and require the labelling to satisfy a certain consistency condition). In Section 7,
we give a logspace algorithm to find an expander embedded as paths in a regular
graph, with small dilation and congestion.

3 Preliminaries

Reingold, Trevisan, and Vadhan [RTV] generalized Reingold’s algorithm and the
zig-zag product to (regular)directedgraphs, and working in this more general set-
ting turns out to be useful for us, too (even if we are only interested in solving
st-connectivity for undirected graphs). We present the necessary background on
such graphs in this section.
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Let X be a directed graph (digraph for short) onN vertices. We say thatX
is K-outregular if every node has outdegreeK, K-inregular if every node has
indegreeK, andK-regular if both conditions hold. Graphs may have self-loops
and multiple edges, where a self-loop is counted as both an outgoing and incoming
edge. All graphs in this paper are outregular directed graphs (and most are regular).

For aK-regular graphX onN vertices, we denote byMX the transition matrix
of the random walk onX, i.e. the adjacency matrix divided byK. Let uN =
(1/N, . . . , 1/N) ∈ RN be the uniform distribution on the vertices ofX. Then, by
regularity,MXuN = uN (souN is an eigenvector of eigenvalue 1).

Following [Mih], we consider the following measure of the rate at which the
random walk onX converges to the stationary distributionuN :

λ(X) = max
v⊥uN

‖MX(v)‖
‖v‖ ∈ [0, 1]

wherev ⊥ uN refers to orthogonality with respect to the standard dot product
〈x, y〉 =

∑
i xiyi onRN and‖x‖ =

√
〈x, x〉 is theL2 norm. The smallerλ(X),

the faster the random walk converges to the stationary distribution and the better
“expansion” propertiesX has. Hence, families of graphs withλ(X) ≤ 1 − Ω(1)
are referred to asexpanders.

In caseX is undirected,λ(X) equals the second largest eigenvalue of the sym-
metric matrixMX in absolute value. In directed graphs, it equals the square root
of the second largest eigenvalue ofMT

XMX .
A K-regular directed graphX onN vertices withλ(X) ≤ λ will be called an

(N, K, λ)-graph. We defineg(X) = 1− λ(X) to be thespectral gapof X.
The “best mixing” graph onN vertices is a clique with a loop on each vertex.

The transition matrix isJN , which has all elements equal1/N . A random walk on
this graph reaches uniform distribution after a single step, and the second eigen-
value is0. The next proposition shows that the transition matrix of any graph can
be decomposed into a convex combination ofJN and another matrix with matrix
norm at most1.

Definition 3.1. For anN×N matrixC define the matrix norm‖C‖ = maxv∈Rn ‖Cv‖/‖v‖
The matrix norm satisfies

• ‖AB‖ ≤ ‖A‖ · ‖B‖ for every pair of matricesA,B.

• ‖A⊗B‖ ≤ ‖A‖ · ‖B‖.
• If A is the transition matrix of a graph then‖A‖ = 1.
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Proposition 3.2. LetA be the transition matrix of an(N,D, λ) - graph. LetJN be
theN ×N matrix with all entries equal1/N . ThenA = (1− λ)JN + λC where
‖C‖ ≤ 1.

Intuitively, this proposition says that a random step on the graph can be viewed
as going to the uniform distribution with probability1 − λ and “not getting any
further from uniform” with probabilityλ. This intuition would be precise ifC
were a stochastic matrix, but it need not be.

Proof. Write C = (A− (1− λ)J)/λ. SinceAuN = JNuN = uN it follows that
C(uN ) = uN . Forv ⊥ uN we haveJv ⊥ uN andAv ⊥ uN which implies that
Cv ⊥ uN . It therefore suffices to show that‖Cv‖ ≤ ‖v‖ for everyv ⊥ uN . Since
Jv = 0 and‖Av‖ ≤ λ‖v‖ then‖Cv‖ ≤ ‖v‖, which proves the proposition.

A labellingof aK-outregular graphX is an assignment of a number in[K] to
every edge ofX, such that the edges exiting every vertex haveK distinct labels.
For a vertexv of X and an edge labelx ∈ [K] we denote byv[x] the neighbor ofv
via the outgoing edge labelledx. We say that a labelling isconsistentif for every
vertex all incoming edges have distinct labels. Notice that if a graph has a con-
sistent labelling, then it isK-inregular (and henceK-regular). Conversely, it can
be shown (using matching theory) that everyK-regular digraph has a consistent
labelling.

The notion of consistent labelling described above is the same as in [HW] and
[RTV]. We will work with consistently labelled graphs in this extended abstract
for simplicity and to make the connection between derandomized squaring and
the INW pseudorandom generator [INW] more apparent. But this condition can
be relaxed by allowing each edge(u, v) to have two labels, one as an outgoing
edge fromu and one as an incoming edge tov, as formalized using the “rotation
maps” of [RVW, RTV]. We present generalizations of our results to this setting in
Section 6.

If G is aK-regularundirectedgraph, then we view it as aK-regular directed
graph by replacing each undirected edge{u, v} with two directed edges(u, v) and
(v, u). One can then consider a stronger notion of consistent labelling whereby
(u, v) is required to have the same label as(v, u). We call this anundirected
consistent labelling. Note that such a labelling has the property thatv[i][i] = v,
and can be viewed as decomposing the set of edges into the union ofK perfect
matchings. However, this property has the disadvantages that (a) not all undirected
graphs possess such a labelling (eg graphs with an odd number of vertices), (b) it
is not preserved under the operations we perform (such as the squaring operation
below). Therefore, even for undirected graphs, we will typically work with the
basic notion of consistency given in the previous paragraphs.
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The squareX2 of a graphX is the graph whose edges are paths of length2 in
X. The square of aK-regular graph isK2-regular, and a consistent labelling of
X induces a consistent labelling ofX2 in a natural way. Specifically, for a label
(x, y) ∈ [K]2, we definev[x, y] = v[x][y]. Notice thatλ(X2) ≤ λ(X)2. (This
is always an equality for undirected graphs, but not necessarily so for directed
graphs). We similarly define then-th powerXn using paths of lengthn in X.

Like undirected graphs, the mixing time ofregular connected directed graphs
is bounded by a polynomial. One can give an inverse polynomial bound on the
spectral gap provided the graph has a self-loop on every vertex.5

Lemma 3.3. Let X be a connectedD-regular graph with a loop on every vertex.
Thenλ(X) ≤ 1− 1/(2D2N2).

Proof. We will prove this by reduction to the bound for the undirected case, given
by [AS]. As mentioned above,λ(X)2 = λ(MT M). The matrixMT M is the
adjacency matrix of aD2-regularundirectedgraphY on the vertex set ofX, whose
edges are pairs{v, w} such that there exist edges(v, z) and(w, z) are edges ofX
(counted with multiplicity according to the number of such pairs). In other words,
to obtain a neighbor of a vertex inY , take a step on an edgeX and followed by an
inverse of an edge ofX.

SinceX contains a loop on every vertex, the graphY contains an undirected
edge{v, w} for every directed edge(v, w) ∈ E(X). In particular, inY there
is a loop on every vertex. It follows thatY is connected, non-bipartite, andD2-
regular. From [AS], every such graph satisfiesλ(Y ) ≤ 1 − 1/D2N2. Therefore,
λ(X) ≤

√
1− 1/D2N2 ≤ 1− 1/2D2N2.

The next proposition shows that when the second eigenvalue is very small, the
graph is very well connected - it contains a clique.

Proposition 3.4. Let X be an(N, D, 1/2N1.5)-graph. ThenX contains an edge
between any pair of vertices. Indeed, for a pair of verticesv, w the probability that
a random neighbor ofv is equalw is at least1/N − 1/N2.

Proof. The probability distribution of a random neighbor of vertexv is the vec-
tor MXev whereev is the vector which has1 in coordinatev and0 in the other
coordinates. We need to show that every coordinate ofMXev has value at least
1/N − 1/N2. Let u be the vector with value1/n in all coordinates. Since
MXu = u, it suffices to show thatMX(ev − u) has absolute value at most1/N2

5In the conference version of our paper [RV], instead of assuming that every vertex has a self-
loop, we erroneously used the standard notion of aperiodicity (the gcd of all cycle lengths is 1). In
that case, the the spectral gap can actually be zero, as shown by the following example:G = (V, E)
whereV = {a, b, c, d} andE = {(a, b), (a, c), (b, b), (b, d), (c, c), (c, d), (d, a), (d, a)}.
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in each coordinate. Asev −u has coordinate sum zero and‖ev −u‖ ≤ 2 we know
that‖MX(ev−u)‖2 ≤ 1/N3. Letm be the minimal absolute value of a coordinate
of MX(ev − u). ThenNm2 ≤ ‖MX(ev − u)‖2 ≤ 1/N3 which proves the result.

4 Derandomized Squaring

After giving a formal definition of derandomized squaring, we will show in Theo-
rem 4.4 that it decreases the second eigenvalue of a graph in a way comparable to
squaring it.

Definition 4.1. LetX be a labelledK-regular graph on vertex set[N ], let G be a
labelledD-regular graph on vertex set[K]. Thederandomized square graphX©sG
has vertex set[N ] and isKD-outregular. The edges exiting a vertexv are paths
v[x][y] of length two inX such thaty is a neighbor ofx in G. Equivalently, when
x ∈ [K] is an edge label inX anda ∈ [D] is an edge label inG, the neighbor of
v ∈ [N ] via the edge labelled(x, a) is v[x][x[a]].

The derandomized square may, in general, not produce an in-regular graph.
However, it will do so provided thatX is consistently labelled.

Proposition 4.2. If X is consistently labelled, thenX©s G is KD-regular. If, in
addition,G is consistently labelled, thenX©s G is consistently labelled.

Notice that even ifX andG are consistently labelled and undirected, i.e. for
every edge(u, v) there is a corresponding reverse edge(v, u), then the derandom-
ized squareX©sG need not be undirected.6 In Section 6, we present a more general
formulation that is more amenable to maintaining undirectedness.

A Cayley graphis a graph whose vertices are elements of a groupG and whose
edges are all pairs(g, gu) for all g ∈ G and allu ∈ U whereU is a subset ofG. A
Cayley graph is consistently labelled, by labelling the edge(g, gu) by u. The next
observation states that ifX is a Cayley graph then so isX©s G. We will not use
Cayley graphs in other parts of the paper.

Observation 4.3. LetX be a Cayley graph given by a groupG and subsetU ⊂ G,
and letG be a consistently labelled|U |-regular graph. ThenX©s G is a Cayley
graph given by the same groupG and subset{uiuj |(i, j) ∈ E(G)}.

6If X satisfied the stronger notion of consistent labelling where(u, v) and(v, u) are required to
have the same label, thenX©s G would be undirected. Alas, this stronger notion is not preserved
under the derandomized square (or even the standard squaring).
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Our main result on derandomized squares is that whenG is a good expander,
then the expansion ofX©s G is close to that ofX2.

Theorem 4.4.If X is a consistently labelled(N,K, λ)-graph andG is a(K,D, µ)-
graph, thenX©s G is an(N,KD2, f(λ, µ))-graph, where

f(λ, µ) = 1− (1− λ2) · (1− µ)

The functionf is monotone increasing inλ andµ, and satisfies

• f(λ, µ) ≤ λ2 + µ,

• 1− f(1− γ, 1/100) ≥ (3/2) · γ , when γ < 1/4.

Notice that whenµ → 0 (i.e. G is a good expander), thenf(λ, µ) → λ2

(i.e. X©s G is nearly good an expander as we expectX2 to be.). After proving
the theorem, we show (Proposition 4.5) that the upper boundf(λ, µ) is tight in a
very strong sense. No such tightness result is known for the bounds on the second
eigenvalue of the zig-zag product.

In the conference version of this paper [RV], we analyze the derandomized
square by reduction to the zig-zag product, obtaining a weaker bound than above.
Below, we present a direct proof, which uses some of the ideas from the analysis
of the zig-zag product in [RVW, RTV], but is significantly simpler. Specifically, it
applies Proposition 3.2 to the expanderG. Intuitively, this says that we can view the
random step onG in the derandomized square as going to the uniform distribution
on [K] with probability1 − µ, and otherwise doing no harm. In case the step on
G goes to the uniform distribution, the derandomized square is identical to two
independent, random steps onX. This suggests a bound of(1 − µ) · λ2 + µ · 1,
which equalsf(λ, µ). The proof below makes this intuition formal.

Proof. Let M be the transition matrix of the random walk onX©s G. We must
show that, for every vectorv ∈ RN orthogonal to the uniform distributionuN , Mv
is shorter thanv by a factor off(λ, µ).

In order to relateM to the transition matrices ofX andG, we think of a random
step onX©s G started at a vertexu as consisting of the following steps:

1. Choosea uniformly at random in[K], to go to “state”(u, a) ∈ [N ]× [K].

2. Go to state(u[a], a).

3. Go to state(u[a], b), whereb is a random neighbor ofa in G.

4. Go to state(u[a][b], b).
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5. Outputu[a][b].

Step 1 corresponds to mappingL that “lifts” probability distributions on[N ] to
probability distributions on[N ]× [K] given byL(v) = v ⊗ uK , wherev ∈ RN is
a probability distribution on[N ],⊗ is tensor product anduK is the uniform distri-
bution on[K]. Step 2 corresponds to theNK×NK matrix Ã, whereÃ(u,a),(u′,a′)

is 1 iff a′ = a andu′ = u[a]. SinceX is consistently labelled,̃A is a permutation
matrix. Step 3 corresponds to the matrixB̃ = IN ⊗ B, whereIN is theN × N
identity matrix andB is the transition matrix forG. Step 4 is again given bỹA.
Step 5 is given by the linear mapP that “projects” probability distributions on
[N ]× [K] to probability distributions on[N ] given by(Pz)u =

∑
a zu,a. (This is

inverse to Step 1 in the sense thatPL(v) = v for anyv ∈ RN ). Thus,

M = PÃB̃ÃL.

By Proposition 3.2 we can decomposeB = (1 − µ)J + µC where‖C‖ ≤ 1,
which induces the decompositioñB = IN ⊗B = (1−µ)(IN ⊗J)+µ(IN ⊗C) =
(1− µ)J̃ + µC̃. Therefore

M = (1− µ)PÃJ̃ÃL + µPÃC̃ÃL.

Now, the key observation is that

PÃJ̃ÃL = PÃLPÃL = A2,

becauseJ̃ = LP andPÃL = A. Since‖Ã‖, ‖C̃‖ ≤ 1, ‖L‖ = 1/
√

K, and
‖P‖ =

√
K, we conclude that‖PÃC̃ÃL‖ ≤ 1. Therefore, for some matrixD

with ‖D‖ ≤ 1
M = (1− µ)A2 + µD.

The last equation implies thatλ(M) ≤ (1− µ)λ2 + µ, which is equalf(λ, µ).

The next proposition shows that the bound of Theorem 4.4 is tight in a strong
sense. The proof of the proposition also clarifies the intuition of the proof of The-
orem 4.4.

Proposition 4.5. For everyK ∈ N and rationalµ ∈ [0, 1], there is aD ∈ N,
and an undirected(K,D, µ)-graphG such that for every(N, K, λ)-graphX with
an undirected, consistent labelling, we haveλ(X©s G) ≥ f(λ, µ), for f(λ, µ) =
1 − (1 − µ)(1 − λ2). (Recall that in an undirected labelling we havev[i][i] = v
for all v, i).
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Proof. We chooseG to be the undirected graph whose transition matrix isB =
µIK + (1− µ)JK , whereIK is theK ×K identity matrix andJK is theK ×K
matrix all of whose entries1/K. That is, a random step onG stays in place with
probabilityµ and goes to a uniformly random vertex with probability1−µ. Thus a
random step on the derandomized squareX©sG amounts to taking two steps onX,
using the same random edge label for both steps with probabilityµ and using two
independent edge labels with probability1− µ. The fact thatX has an undirected
consistent labelling implies that using the same edge label twice brings you back to
the same vertex. Thus the transition matrix forX©s G is µIN + (1− µ)A2, where
A is the transition matrix forX, and thus has second eigenvalueµ+(1−µ) ·λ2 =
f(λ, µ).

5 A Log-Space Algorithm for Undirected Connectivity

We describe how to solve undirected st-connectivity on an undirected graphX with
N vertices in logarithmic space.

Overview.

We will assume that the input graphX is 4-regular, consistently labelled and con-
tains a loop on each vertex. Prop. 5.3 shows that this assumption does not lose
generality. By Lemma 3.3, every4-regular connected graph with a loop on each
vertex has second eigenvalue1−Ω(1/N). Our goal is to use derandomized squar-
ing to decrease the second eigenvalue (of each connected component) to less than
1/N3 (we will need to squareO(log N) times). By Prop. 3.4, the resulting graph
must contain a clique on every connected component ofX. We can therefore go
over all the neighbors ofs in the resulting graph and search for vertext.

Starting with (some power of)X, we define a sequence of graphsXm, each of
which is a derandomized square of its predecessor using a suitable auxiliary graph.
The algorithm works in two phases. Phase one works form ≤ 100 log N , and
reduces the second eigenvalue to a constant (3/4), by using as auxiliary graphs a
sequenceGm of fixed-degreeexpanders. We will see that the spectral gapg(Xm)
grows by at least a factor of3/2 at each step. Therefore, afterm0 = O(log N)
steps, we obtain an expanderXm0 with second eigenvalue at most3/4 and degree
polynomial inN .

At this point we cannot use fixed-degree expanders as auxiliary graphs any
more. If we did, the second eigenvalue of the derandomized square would be dom-
inated by the second eigenvalue of the auxiliary graph, which is constant. Thus we
would not be able to decrease the eigenvalue to1/N3. In phase two, we therefore
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use auxiliary graphsGm with non-constant degrees. Specifically, form > m0,
the auxiliary graphGm will have degree doubly-exponential inm −m0. The fast
growth of the degree allows the eigenvalue of the auxiliary graph to remain small
enough to imply thatλ(Xm+1) ≤ c · λ(Xm)2 for somec > 1 quite close to1.
Therefore, after an additionallog log N + O(1) steps we obtain a graphXm1 with
second eigenvalue at most1/N3.

Since the graphXm1 has degree polynomial inN , we can enumerate all the
neighbors ofs in logarithmic space. We will show (in Prop. 5.7) that neighbors in
Xm1 are log-space computable, making the whole algorithm work in logarithmic
space.

The Auxiliary Expanders.

We will need a family of logspace-constructible constant-degree expanders with
the following parameters, (which can be obtained from e.g. [GG] or [RVW]).

Lemma 5.1. For some constantQ = 4q, there exists a sequenceHm of consistently
labelled(Qm, Q, 1/100)-graphs. Neighbors inHm are computable in spaceO(m)
(i.e. given a vertex namev ∈ [Qm] and an edge labelx ∈ [Q], we can compute
v[x] in spaceO(m) and timepoly(m)).

Definition 5.2. LetHm be the graph sequence of Lemma 5.1. For a positive integer
N , we setm0 = d100 log Ne, we define a graph sequenceGm by

Whenm ≤ m0: Gm = (Hm)
Whenm > m0: Gm = (Hm0−1+2m−m0 )2

m−m0 .

Neighbors inGm are computable in spaceO(m + 2m−m0).

The Algorithm.

Let (X, s, t) be an instance of undirected st-connectivity; we want to decide whether
there is a path from vertexs to t in X.

Proposition 5.3. We may assume without loss of generality that the input graph is
4-regular, contains a loop on every vertex, and is consistently labelled.

Proof. The easy proof appears in [Rei2]. We repeat it for completeness. We are
given a (not necessarily regular)undirectedgraphX. SupposeX is described by
a function that, given a vertexv of X, returns the degreedeg(v) of v and an array
of neighborsv[1], . . . , v[deg(v)]. Define a4-regulardirectedgraphXreg whose
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vertices are pairs(v, i) for every vertexv of X and0 ≤ i ≤ deg(v). The neighbors
of (v, i) are

(v, i)[1] = (v, i + 1 mod deg(v))
(v, i)[2] = (v, i− 1 mod deg(v))
(v, i)[3] = (v[i], location ofv in the array of neighbors ofv[i]).
(v, i)[4] = (v, i).

This is equivalent to replacing each vertexv by a cycle of lengthdeg[v], and
connecting each vertex on the cycle ofv to exactly one of the neighbors ofv, and
adding a loop on each vertex. This operation can be done in logarithmic space.
The result is a4-regular directed graphXreg, and the labelling used to define the
graph is consistent.

Let X be a4-regular graph with a loop on each vertex, given by a consistent la-
belling. Given two verticess, t connected inX, we describe a log-space algorithm
that outputs a path betweens andt. For simplicity, assume thatX is connected
(else carry out the analysis below on each connected component ofX).

DefineX1 = Xq, whereQ = 4q is from Lemma 5.1. Define inductively
Xm+1 = Xm©s Gm. It can be verified by induction that the degreeDm of Xm is
equal to the number of vertices ofGm, so the operationXm©s Gm is indeed well-
defined. Specifically, we haveDm = Qm for m ≤ m0, andDm = Qm0+2m−m0−1

for m > m0.

Phase One.

By Lemma 3.3 we haveg(X1) ≥ 1/32N2. We will reduce the second eigenvalue
to 3/4. From Theorem 4.4 it follows that

g(Xm+1) ≥ g(Xm) · (3/2) ≥ g(X1) · (3/2)m

as long asg(Xm−1) ≤ 1/4. Therefore for somem < 100 log N we will get
λ(Xm) ≤ 3/4. The inequalityλ(Xm) ≤ 1/4 holds for all largerm due to the
monotonicity mentioned in Theorem 4.4. We deduce the following corollary.

Corollary 5.4. Let m0 be the smallest integer such thatm0 ≥ 100 log N . Then
λ(Xm0) < 3/4.

Phase Two.

We now decrease the second eigenvalue from3/4 to 1/2N3.

Proposition 5.5. For m ≥ m0 we haveλ(Xm) ≤ (7/8)2
(m−m0)

.
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Proof. Defineλm = (64/65) · (7/8)2
(m−m0)

, µm = (1/100)2
m−m0 . We will show

thatλ(Xm) ≤ λm for m ≥ m0. This is true form = m0, and suppose by induction
that it holds for somem. Sinceλ(Gm) ≤ µm < λ2

m/64 we can use Theorem 4.4
to deduce that

λ(Xm+1) ≤ λ2
m + µm ≤ λ2

m(1 +
1
64

) ≤
(

64
65

)2

·
(

7
8

)2(m+1−m0)

· 65
64
≤ λm+1

which proves the proposition.

Corollary 5.6. Letm1 = m0 + log log N + 10. Thenλ(Xm1) ≤ 1/2N3.

By Proposition 3.4 the graphXm1 contains a clique on theN vertices. More-
over, it has degreeDm1 = Q100 log N+2log log N+10−1 = poly(N). If we could
compute neighbors inXm1 in spaceO(log N) we could find a path froms to t in
logarithmic space.

Proposition 5.7. Neighborhoods inXm1 are computable in spaceO(log N).

Proof. Edge labels inXm are vectorsym = (y1, a1, . . . , am−1) wherey1 is an
edge label inX1 andai is an edge label onGi. Given a vertexv and an edge label
ym in Xm we wish to compute the neighborv[ym] in Xm.

Every edge inXm corresponds to a path of length2m in X. It suffices to give
a (log-space) algorithm that, givenv,y and an integerb in the range[1, 2m], returns
the edge label inX of theb-th edge in this path of length2m. As we will see below,
this edge label is actually independent of the vertexv (and thus can be computed
given onlyy andb).

The path of length2m originating fromv corresponding to the edge labelym

consists of two paths of length2m−1 corresponding to two edges inXm−1. These
two edges inXm−1 have labelsym−1 = (y1, a1, . . . , am−2) and ym−1[am−1],
where the latter is a neighbor computation inGm−1.

From these observations the algorithm is simple. Ifb ≤ 2m−1 then solve the
problem encoded byym−1, b in Xm−1. If b > 2m−1 then instead setym−1 ←
ym−1[am−1], b ← b − 2m−1, and now solve the problem encoded byym−1, b on
Xm−1.

Here is a pseudo code for the algorithm. Writeb−1 as a binary string(bm−1, . . . , b0),
and letyi be the stringy1, a1, . . . , ai−1.

for i = m− 1 to 0 do
if bi = 1 then

setyi = yi[ai] (this is a computation inGi).
end if

end for
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outputy0

Now we argue that this can be computed in spaceO(log N) whenm = m1.
Notice that the input length to the algorithm ism + log Dm1 = O(log N). By
Lemma 5.1, the computation in theGi-computation steps in the loop described in
the code can be performed in spaceO(m+2m−m0) = O(log N), and we are done.

This ends the log-space algorithm for undirected connectivity. We now use
the same construction idea to generate a (log-space computable) pseudorandom
generator for random walks on consistently labelled graphs.

A Pseudorandom Generator for Walks on Consistently Labelled Graphs.

We solved the undirected connectivity problem by using the fact that the graph
Xm1 contains a clique on all the vertices (assumingX was connected). Actually,
by Proposition 3.4, a random neighbor of a vertexv in Xm1 has distribution which
is 1/N2-close to uniform. Every edge exitingv in Xm1 corresponds to a path with
length2m1 (polynomial inN ) in X. As the degree ofXm1 is only polynomial in
N , we deduce thatO(log N) uniformly random input bits (encoding an edge of
Xm1) suffice to generate a “pseudorandom” walk inX of poynomial length, such
that the endpoint is almost uniformly distributed, as it would be for a truly random
walk of polynomial length (which needspoly(N) random bits). Moreover, the
edge labels in the walk do not depend on graphX, but only on the edge label
chosen inXm1 and the number of verticesN . Indeed, the algorithm given in
Proposition 5.7 describes how to compute the labels in the output walk given the
input edge labelym1 in Xm1 . In fact, the map fromym1 to the sequence of edge
labels in the walk is precisely the Impagliazzo–Nisan–Wigderson pseudorandom
generator [INW] constructed using the expandersG1, . . . , Gm−1.

We state the properties of this generator precisely and in a more general form
in the following theorem.

Theorem 5.8.For given parameters(N,D, λ) there is a pseudorandom generator
PRG: {0, 1}r → [D]` with seed lengthO(log(DN)) and walk length

` = O

(
log N

1 + log (1/λ)

)
· poly

(
1

1− λ

)
,

such that for everyconsistently labelled(N,D, λ)-graph X and every vertexv
in X, if we choose a random seeds ← {0, 1}r then following the walk PRG(s)
fromv ends at a distribution that is(1/N2)-close to uniform. GivenN , D, λ, and
1 ≤ i ≤ `, thei’th step of PRG(s) is computable in spaceO(log(DN)) and time
poly(log N log D).
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The above theorem is more general than the one implicit in our undirected con-
nectivity algorithm in that it produces shorter walks when the graphs are known to
have better expansion than the bound ofλ = 1− 1/(2D2N2) from Lemma 3.3. A
pseudorandom walk generator with similar properties was given by Reingold, Tre-
visan, and Vadhan [RTV] based on Reingold’s algorithm (which uses the zig-zag
product). However, the generator does not have as simple a description as above.
In particular, computing thei’th step in the walk seems to require computing all
the previousi − 1 labels of the walk (which may take timepoly(N)), rather than
being computable directly as above (in timepoly(log(ND))). Reingold, Trevisan,
and Vadhan [RTV] also proved that if a similar pseudorandom generator could be
given for walks on regular digraphs with arbitrary labellings (as opposed to con-
sistent labellings), then every problem in solvable in randomized logspace is also
solvable in deterministic logspace (i.e.,RL = L).

Proof. To simplify the proof we will show the proof whenλ ≤ 3/4, and after-
wards mention the approach for largerλ. DefineX1 = X2, which is a consistently
labelled(N, D2, λ2)-graph. DefineXm inductively byXm+1 = Xm©s Gm as
in Section 5. However, we use slightly different auxiliary graphsGm. Similar
to Lemma 5.1 one can show that for some constantQ and everyD there exists a
consistently labelled(D2Qm−1, Q, 1/100)-graphHm such that neighbors inHm

are computable in spaceO(log D + m) and timepoly(log D, m). The auxiliary
graph sequence is defined byG1 = Hk

1 wherek = O(log(1/λ)) is the minimal
integer such thatλ(Hk) ≤ λ4/64 andGm = (H1+k·(2m−1−1))k·2m−1

. Simi-
lar to the analysis of Phase two in Section 5, we obtain graphsXm with degree
D2Qk·(2m−1−1) and second eigenvalueλ(Xm) ≤ (1.1λ)2

m−1
. Let m1 be the

minimal integer satisfyingλ(Xm) ≤ 1/N3. This holds for somem1 satisfying
2m1 = O(log N/ log(1/λ)).

We can now define the generator. The seed is an edge label inXm1 , encoded by
O(log D + k · 2m1) bits. Every edge(v, w) exiting a vertexv of Xm1 corresponds
to a walk fromv to w of length2m1−1 in X1. This walk corresponds to a walk
of length2m1 in X. This walk the is the output of the generator. As in the proof
of Proposition 5.7, the edge labels in the walk do not depend on the graphX (but
only on the auxiliary expandersG1, . . . , Gm).

By Proposition 3.4, walking on a random edge inXm1 results in a distribution
on the vertices that is1/N2-close to uniform. This proves the pseudorandomness
property of our generator. The seed length isO(log D + k · 2m1) = O(log(DN)).
The walk length is2m1−1 = O(log N/ log(1/λ)).

To compute thei-th step in the walk we use the same algorithm used in Propo-
sition 5.7. The algorithm runs inm1 steps, each requiring a computation in some
graphGm for somem ≤ k · 2m1 , and manipulation of strings of lengthO(k2m1).
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Each step requires spaceO(log(DN)) and timepoly(log(ND)), and there are
m1 = O(log log N) steps, so the total required time ispoly(log(ND)).

Forλ > 3/4 we first takem0 derandomized square steps with auxiliary graphs
of constant degreeQ. Each step increases the spectral gap by a factor of3/2, so
when(1−λ)·(3/2)m0 > 1/4 we obtain a graph with spectral gap at least1/4. This
holds for somem0 = O(log(1/1−λ)). We can now proceed as in the proof above.
The walk length increases by a multiplicative factor of2m0 = poly(1/(1−λ)), but
the seed length increases only by an additive factor ofO(m0) = O(log N), since
the degree of the final graph increases by a multipicative factor ofQm0 .

6 Extension to Two-Way Labellings

Until now, we have focused on applying the derandomized square to graphsX that
are consistently labelled. Indeed, if ifX is not consistently labelled, thenX©s G
may not even be inregular (in which case its stationary distribution will not be
uniform). Nevertheless, working with consistently labelled graphs sufficed for our
Undirected s-t Connectivity algorithm (via Proposition 5.3).

In this section, we consider a more general notion of labelling (previously used
for the zig-zag product in [RVW, RTV]), and show how both the derandomized
square and Theorem 4.4 can be extended to this more general notion. This exten-
sion has several benefits, and in particular addresses two deficiencies of the basic
notion of consistent labelling considered in previous sections:

• Even though everyK-regular digraph has a consistent labelling, it may not
be possible to find such a labelling in logspace. Indeed, this problem is
equivalent to decomposing a regular bipartite graph into the union of perfect
matchings, and matching is not known to be in logspace. (Nevertheless,
s − t connectivity on regular digraphs can be reduced tos − t connectivity
on consistently labelled graphs, as in Proposition 5.3.) The more general
labelling notion presented below is easy to achieve in logspace.

• The derandomized square of a consistently labelledundirectedgraph need
not be undirected. One can impose a stronger condition on consistent la-
belling for undirected graphs that does ensure that the derandomized square
is undirected, but alas this condition itself is not preserved under the deran-
domized square. (See Footnote 4.) The labelling notion presented below has
an undirected analogue for which the derandomized square preserves both
undirectedness as well as the labelling notion itself.

If X is aK-regular digraph, atwo-way labellingof X provides, for each vertex
v, a numbering from1, . . . , K of the K edges leavingv as well as a numbering
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from 1, . . . ,K of theK edges enteringv. So each edge(u, v) has two numbers,
one as an outgoing edge fromu and one as an incoming edge tov. Clearly, given a
K-regular digraph, a two-way labelling for it can be found in logarithmic space. A
graph together with a two-way labelling can be specified by the following notion
of a “rotation map,” taken from [RVW, RTV].

Definition 6.1. For a K-regular graphG onN vertices with a two-way labelling,
therotation map RotG : [N ]×[K] → [N ]×[K] is defined as follows: RotG(v, i) =
(w, j) if the i-th outgoing edge from vertexv leads tow, and this edge is thej-th
incoming edge ofw.

Notice that the rotation function of aK-regular directed graph is a permutation
on [N ] × [K], and conversely, every permutation on[N ] × [K] specifies aK-
regular digraph onN vertices together with a two-way labelling. Observe that if a
K-regular graphG has a consistent labelling, then the function Rot(v, i) = (v[i], i)
is a permutation, corresponding to the two-way labelling that takes the incoming
label for each edge to be the same as its outgoing label.

Recall that ifG is aK-regularundirectedgraph, then we view it as aK-regular
directed graph by replacing undirected edge{u, v} with two directed edges(u, v)
and(v, u). Then it is natural to insist that the label of(u, v) as an edge leaving
u is the same as the label of(v, u) as an edge enteringu. Indeed, such a two-
way labelling corresponds to simply numbering theK undirected edges incident
to each vertex; thus we refer to it as atwo-way labelling. Notice that the resulting
rotation map Rot is an involution, i.e. Rot2 is the identity map. Conversely, every
involution on[N ]× [K] corresponds to a regular undirected graph together with an
undirected labelling.

Now, we generalize the definition of the derandomized square to support two-
way labellings, specified by rotation maps.

Definition 6.2. Let X be aK-regular graph on vertex set[N ] with a two-way
labelling, letG be aD-regular graph on vertex set[K] with a two-way labelling.
Thederandomized square graphX©sG has vertex set[N ] and rotation map Rot

X©sG

defined as follows: (v0 ∈ [N ], i0 ∈ [K],j0 ∈ [D]):
Rot

X©sG
(v0, (i0, j0)):

1. Let (v1, i1) = RotX(v0, i0).

2. Let (i2, j1) = RotG(i1, j0).

3. Let (v2, i3) = RotX(v1, i2).

4. Output(v2, (i3, j1)).
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Since the three operations above are permutations on[N ]× [K]× [D], we have
indeed defined a regular directed graph, with a two-way labelling. Moreover, if
X andG are undirected graphs with undirected labellings (i.e. their rotation maps
are involutions), then the rotation map ofX©s G is an involution and in particular,
X©s G is undirected. Finally, we note that when the rotation maps ofX andG are
obtained from a consistent labelling (i.e. Rot(v, i) = (v[i], i)), then Definition 6.2
coincides with Definition 4.1.

Just like the analysis of the zig-zag product [RVW, RTV], the eigenvalue bound
on the derandomized square given by Theorem 4.4 also holds for graphs given by
rotation maps:

Theorem 6.3. If X is an (N,K, λ)-graph with a two-way labelling andG is a
(K, D, µ)-graph with a two-way labelling, thenX©s G is an(N, KD2, f(λ, µ))-
graph, where

f(λ, µ) = 1− (1− λ2) · (1− µ) ≤ λ2 + µ.

Proof. The only change in the proof of Theorem 4.4 is that the matrixÃ should
now be taken to be the permutation matrix corresponding to the permutation RotX .
The only facts used about̃A in the proof were that̃A is of norm at most 1, and that
PÃL = A. Both of these still hold.

7 Embedding expanders in general graphs

Another consequence of our algorithm for undirected connectivity is a logspace
algorithm to find an “embedding” of an expander graph in every regular graph
with congestion and dilation that is polynomially related to the spectral gap.

Theorem 7.1.LetX be an(N,D, 1−γ)-graph. Then there exists an(N, D̂, 1/2)-
graphX̂ on the same vertex set with the following properties:

• D̂/D = poly(1/γ).

• There is an embedding functionf mapping edges of̂X to paths of length at
mostl = poly(1/γ) in X.

• Each edge ofX is contained in exactlyl · D̂/D = poly(1/γ) paths corre-
sponding to edges in̂X underf .

Furthermore, givenX and the valueγ, the graphX̂ and embeddingf can be
computed in spaceO(log N).
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Proof. Add self-loops to each vertex ofX until it has degree that is a powerQb

of Q (whereQ is from Lemma 5.1) to obtain a graphX1, and construct any two-
way labelling ofX1. (We do not use a consistent one-way labelling, because it
may not be feasible to find in logspace.) It is easy to check thatg(X1) ≥ γ/Q.
(Recall thatg(()G) = 1 − λ(G) is the spectral gap of graphG.) Similar to the
construction of the sequenceXm given in Section 5, define inductivelyXm+1 =
Xm©s Hm+b−1 whereHm are defined in Lemma 5.1 and we use the generalization
of the derandomized square to two-way labellings from Section 6.

One can check that the degree ofXm and the size ofHm are bothQb ·Qm−1.
Observe thatg(Xm+1) ≥ (3/2)g(Xm) as long asg(Xm) ≤ 1/4. Takem0 to be the
smallest integer larger than10 log(Q/γ). The graphXm0 has second eigenvalue
at most3/4, and degreêD = Qb ·Qm0−1 = D ·poly(1/γ). We will embedXm0 in
X with the properties claimed in the theorem. Each edge ofXm0 corresponds to a
path of length exactlyl = 2m0−1 = poly(1/γ) in X1. Each such path corresponds
to a path inX by ignoring the steps on the added self-loops ofX1. The path inX
therefore has length at mostl.

We now prove the congestion claim in the theorem. This follows by induction
from the following fact: LetX be an(N, D, λ)-graph and letG be a(D, K, µ)-
graph. The edges ofX©s G correspond to paths of length2 in X, and each edge of
X is covered by exactly2K of these paths of length2. It follows by induction that
if one draws all the paths inX corresponding to edges ofXm0 , every edge ofX is
covered exactly(2Q)m0−1 paths.

Finally, we note that, even though we have used two-way labellings, the con-
struction of the graphXm0 and the embeddingf can be computed in logspace.
This is not as simple to see as for the case of consistent one-way labellings, but can
be shown using a similar recursive algorithm to the one presented in [Rei2].

The embedding above resembles the “expander flow” embedding of [ARV],
where an(N, D, 1/2)-graph is embedded as paths in an input graphX on N ver-
tices. The maximal number of times an edge ofX is covered by these paths de-
pends linearly on the edge expansion ofX up to a multiplicative factor of

√
log N ,

providing a certificate for the edge expansion ofX. In our embedding the number
of times each edge ofX is covered by paths depends polynomially on the spectral
gap ofX, but does not depend on the graph sizeN . Furthermore, we find our
embedding inX in logarithmic space (rather than polynomial time).
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