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Abstract. Kernel self-organizing map has been recently studied by Fyfe and his 
colleagues [1]. This paper investigates the use of a novel bio-kernel function for 
the kernel self-organizing map. For verification, the application of the proposed 
new kernel self-organizing map to HIV drug resistance classification using mu-
tation patterns in protease sequences is presented. The original self-organizing 
map together with the distributed encoding method was compared. It has been 
found that the use of the kernel self-organizing map with the novel bio-kernel 
function leads to better classification and faster convergence rate… 

1   Introduction 

In analysing molecular sequences, we need to select a proper feature extraction which 
can convert the non-numerical attributes in sequences to numerical features prior to 
using a machine learning algorithm. Suppose we denote by x a sequence and )(xφ  a 
feature extraction function, the mapping using a feature extraction function is 

dR∈→ ):( φSFF . Finding an appropriate feature extraction approach is a non-
trivial task. 

It is known that each protein sequence is an ordered list of 20 amino acids while a 
DNA sequence is an ordered list of four nucleic acids. Both amino acids and nucleic 
acids are non-numerical attributes. In order to analyze molecular sequences, these 
non-numerical attributes must be converted to numerical attributes through a feature 
extraction process for using a machine learning algorithm. The distributed encoding 
method [2] was proposed in 1988 for extracting features for molecular sequences. The 
principle is to find orthogonal binary vectors to represent amino (nucleic) acids. With 
this method, amino acid Alanine is represented by 0000000000 0000000001 while 
Cystine 0000000000 0000000010, etc. With the introduction of this feature extraction 
method, the application of machine learning algorithms to bioinformatics has been 
very successful. For instance, this method has been applied to the prediction of prote-
ase cleavage sites [3], signal peptide cleavage sites [4], linkage sites in glycoproteins 
[5], enzyme active sites [6], phosphorylation sites [7] and water active sites [8]. 

However, as indicated in the earlier work [9], [10], [11] such a method has its in-
herent limit in two aspects. First, the dimension of an input space has been enlarged 
20 times weakening the significance of a set of training data. Second, the biological 
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content in a molecule sequence may not be efficiently coded. This is because the 
similarity between any pair of different amino (nucleic) acids varies while the dis-
tance between such encoded orthogonal vectors of two different amino (nucleic) acids 
is fixed. 

The second method for extracting features from protein sequences is to calculate 
the frequency. It has been used for the prediction of membrane protein types [12], the 
prediction of protein structural classes [13], subcellular location prediction [14] and 
the prediction of secondary structures [15]. However, the method ignores the coupling 
effects among the neighbouring residues in sequences leading to potential bias in 
modelling. Therefore, di-peptides method was proposed where the frequency of each 
pair of amino acids occurred as neighbouring residues is counted and is regarded as a 
feature. Dipeptides, gapped (up to two gaps) transitions and the occurrence of some 
motifs as additive numerical attributes were used for the prediction of subcellular 
locations [16] and gene identification [17]. Descriptors were also used, for instance, to 
predict multi-class protein folds [18], to classify proteins [19] and to recognise rRNA-
, RNA-, and DNA-binding proteins [20], [21]. Taking into account the high order 
interaction among the residues, multi-peptides can also be used. It can be seen that 
there are 400 di-peptides, 8,000 tri-peptides and 16,000 tetra-peptides. Such a feature 
space can be therefore computational impractical for modelling. 

The third class of methods is using profile measurement. A profile of a sequence 
can be generated by subjecting it to a homology alignment method or Hidden Markov 
Models (HMMs) [22], [23], [24], [25]. 

It can be seen that either finding an appropriate approach to define )(xφ  is difficult 

or the defined approach may lead to a very large dimension, i.e., ∞→d . If an ap-
proach which can quantify the distance or similarity between two molecular se-
quences is available, an alternative learning method can be proposed to avoid the 
difficulty in searching for a proper and efficient feature extraction method. This 
means that we can define a reference system to quantify the distance among the mo-
lecular sequences. With such a reference system, all the sequences are quantitatively 
featured by measuring the distance or similarity with the reference sequences. 

One of the important issues in using machine learning algorithms for analysing 
molecular sequences is investigating sequence distribution or visualising sequence 
space. Self-organizing map [26] has been one of the most important machine learning 
algorithms for this purpose. For instance, SOM has been employed to identify motifs 
and families in the context of unsupervised learning [27], [28], [29], [30], [31]. SOM 
has also been used for partitioning gene data [32]. In these applications, feature ex-
traction methods like the distributed encoding method were used. 

In order to enable SOM to deal with complicated applications where feature extrac-
tion is difficult, kernel method has been introduced recently by Fyfe and his col-
leagues [1]. Kernel methods were firstly used in cluster analysis for K-means algo-
rithms [33], where the Euclidean distance between an input vector x and a mean vec-
tor m is minimized in a feature space spanned by kernels. In the kernel feature space, 
both x and m were the expansion on the training data. Fyfe and his colleagues devel-
oped so-called kernel self-organizing maps [34], [35]. This paper aims to introduce a 
bio-kernel function for kernel SOM. The method is verified on HIV drug resistance 
classification. A stochastic learning process is used with a regularization term. 
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2   Methods 

A training data set { }h
1== nnsD , where D

n S∈s  (S  is a set of possible values and || S  

can be either definite or indefinite) and a mapping function which can map a sequence 

to a numerical feature vector is defined as dR∈→ ):( FSF φ , )( nn sφx = . In most 

situations, T
21 ))(,),(),(()( ndnnnn ssssφx φφφ==  is unknown and possibly, ∞→d . 

This then causes the difficulty in modelling. In using self-organizing map for unsuper-
vised learning of protein sequences, the error function in the feature space F  can be 

defined as 2|| mn wx −=L , where d
m R∈w  is the weight vector connecting the mth 

output neuron. Suppose mw  can be expanded on the training sequences ( mm αw Φ= ).  

Note that hR∈mα  is an expansion vector and h≤≤≤≤=Φ jdiji 1,1)}({ sφ . The error func-

tion can re-written as mmmnnn Kαααk T2 +−= KL . Note that ),( jiij ssKK =  is the 

kernel, ),,,( 21 hh nnnn KKK=k  is a row kernel vector and h≤≤= jiij ,1}{KK  a ker-

nel matrix. The error function can be as follows if we use L2 norm regarded as a regu-
larization term 

)2(
2

1 TT
mmmmmnnn ααKαααk λ++−= KL , 

where  λ  is the regularization factor. The update rule is then defined as 
))()(( mnm t αIKkα λη +−=∆ . In designing the bio-kernel machine, a key issue is 

the design of an appropriate kernel function for analysing protein or DNA sequences. 
Similar as in [9], [10], [11], we use the bio-basis function as the bio-kernel function 
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where x is a training sequence and ib  is a basis sequence, both have D residues. Note 

that ∑ == D
d iddi bx1 ),(),( MM bx  with dx  and idb  and the dth residue in sequences. 

The value of ),( idd bxM  can be found in a mutation matrix [36], [37]. The bio-basis 

function has been successfully used for the prediction of Trypsin cleavage sites [8], 
HIV cleavage sites [9], signal peptide cleavage site prediction [10], Hepatitis C virus 
protease cleavage sites [38], disordered protein prediction [39], [40], phosphorylation 
site prediction [41], the prediction of the O-linkage sites in glycoproteins [42], the 
prediction of Caspase cleavage sites [43], the prediction of SARS-CoV protease 
cleavage sites [44] and the prediction of signal peptides [45]. 

3   Results 

Drug resistance modeling is a wide phenomenon and drug resistance modeling is a 
very important issue in medicine. In computer aided drug design, it is desired to study 



182 Z.R. Yang and N. Young 

 

how the genomic information is related with therapy effect [46]. To predict if HIV 
drug may fail in therapy using the information contained in viral protease sequences is 
regarded as genotype-phenotype correlation. In order to discover such relationship, 
many researchers have done a lot of work in this area. For instance, the original self-
organizing map was used on two types of data, i.e., structural information and se-
quence information [46]. In using sequence information, frequency features were used 
as the inputs to SOM. The prediction accuracy was between 68% and 85%. Instead of 
neural networks, statistical methods and decision trees were also used [47], [48], [49]. 

Data (46 mutation patterns) were obtained from [50]. Based on this data set, bio-
kernel SOM was running using different value for the regularization factor. The origi-
nal SOM was also used for comparison. Both SOMs used the same structure (36 out-
put neurons) and the same learning parameters, i.e. the initial learning rate 
( 01.0=hη ). Both algorithms were terminated when the mean square error was less 

than 0.001 or 1000 learning iterations. 
Fig. 1 shows the error curves for two SOMs. It can be seen that the bio-kernel 

SOM (bkSOM) converged much faster with very small errors. 
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Fig. 1. The error curves for two SOMs. The horizontal axis is the learning iterations and the 
vertical one (logarithm scale) the errors. The numbers within the brackets of bkSOM mean the 
regularization factor values.  

Fig. 2 shows a map of bkSOM, where “n.a.” means that there is no patterns 
mapped onto the corresponding output neuron, “5:5” means that all the five patterns 
mapped onto the corresponding neuron are corresponding to the mutation patterns 
which are resistant to the drug and “0:9” means that all the nine patterns mapped onto 
the corresponding neuron are corresponding to the mutation patterns which are not 
resistant to the drug. 
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Fig. 2. The feature map of bkSOM. 

Table 1 shows the comparison in terms of the classification accuracy, where “NR” 
means non-resistance and “R” resistance. It can be seen that bkSOM performed better 
than SOM in terms of classification accuracy. The non-resistance prediction power 
indicates the likelihood that a predicted non-resistance pattern is a true non-resistance 
pattern. The resistance prediction power therefore indicates the likelihood that a pre-
dicted resistance pattern is a true non-resistance pattern. For instance, the non-
resistance prediction power using SOM is 90%. It means that for every 100 predicted 
non-resistance patterns, 10 would be actually resistance patterns. 

Table 1. The classification accuracy of two SOMs 

SOM bkSOM 
 NR R Precision  NR R Precision 

NR 28 0 100% NR 28 0 100% 
R 3 15 83% R 0 18 100% 
Power 90% 100% 93% Power 100% 100% 100% 

4   Summary 

This paper has presented a novel method referred to as bio-kernel self-organizing map 
(bkSOM) for embedding the bio-kernel function into the kernel self-organizing map 
for the purpose of modeling protein sequences. The basic principle of the method is 
using the “kernel trick” to avoid tedious feature extraction work for protein se-
quences, which has been proven a non-trivial task. The computational simulation on 
the HIV drug resistance classification task has shown that bkSOM outperformed 
SOM in two aspects, convergence rate and classification accuracy. 
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