Skip to main content

Adaptive Co-ordinate Transformation Based on a Spike Timing-Dependent Plasticity Learning Paradigm

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3610))

Abstract

A spiking neural network (SNN) model trained with spiking-timing-dependent-plasticity (STDP) is proposed to perform a 2D co-ordinate transformation of the polar representation of an arm position to a Cartesian representation in order to create a virtual image map of a haptic input. The position of the haptic input is used to train the SNN using STDP such that after learning the SNN can perform the co-ordinate transformation to generate a representation of the haptic input with the same co-ordinates as a visual image. This principle can be applied to complex co-ordinate transformations in artificial intelligent systems to process biological stimuli.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Taylor-Clarke, M., Kennett, S., Haggard, P.: Persistence of visual-tactile enhancement in humans. Neuroscience Letters 354(1), 22–25 (2004)

    Article  Google Scholar 

  2. Spence, C., Pavani, F., Driver, J.: Crossmodal links between vision and touch in covert en-dogenous spatial attention. J. Exp. Psychol. Hum. Percept. Perform. 26, 1298–1319 (2000)

    Article  Google Scholar 

  3. Eimer, M., Driver, J.: An event-related brain potential study of crossmodal links in spatial attention between vision and touch. Psychophysiology 37, 697–705 (2000)

    Article  Google Scholar 

  4. Graziano, M.S.A., Gross, C.G.: The representation of extrapersonal space: A possible role for bimodal, visual–tactile neurons. In: Gazzaniga, M.S. (ed.) The Cognitive Neurosciences, pp. 1021–1034. MIT Press, Cambridge (1994)

    Google Scholar 

  5. Zhou, Y.D., Fuster, J.M.: Visuo-tactile cross-modal associations in cortical somatosensory cells. Proc. Natl. Acad. Sci. USA 97, 9777–9782 (2000)

    Article  Google Scholar 

  6. Meftah, E.M., Shenasa, J., Chapman, C.E.: Effects of a cross-modal manipulation of attention on somatosensory cortical neuronal responses to tactile stimuli in the monkey. J. Neurophysiol. 88, 3133–3149 (2002)

    Article  Google Scholar 

  7. Kennett, S., Taylor-Clarke, M., Haggard, P.: Noninformative vision improves the spatial resolution of touch in humans. Curr. Biol. 11, 1188–1191 (2001)

    Article  Google Scholar 

  8. Johansson, R.S., Westling, G.: Signals in tactile afferents from the fingers eliciting adaptive motor-responses during precision grip. Exp. Brain. Res. 66, 141–154 (1987)

    Article  Google Scholar 

  9. Galati, G.-C., Giorgia, S., Jerome, N., Pizzamiglio, L.: Spatial coding of visual and somatic sensory information in body-centred coordinates. European Journal of Neuroscience 14(4), 737–748 (2001)

    Article  Google Scholar 

  10. Colby, C.L., Goldberg, M.E.: Space and attention in parietal cortex. Annu. Rev. Neurosci. 22, 319–349 (1999)

    Article  Google Scholar 

  11. Gross, C.G., Graziano, M.S.A.: Multiple representations of space in the brain. Neuroscientist 1, 43–50 (1995)

    Article  Google Scholar 

  12. Rizzolatti, G., Fogassi, L., Gallese, V.: Parietal cortex: from sight to action. Curr. Opin. Neurobiol. 7, 562–567 (1997)

    Article  Google Scholar 

  13. Deneve, S., Latham, P.E., Pouget, A.: Efficient computation and cue integration with noisy population codes. Nature Neuroscience 4, 826–831 (2001)

    Article  Google Scholar 

  14. Taylor-Clarke, M., Kennett, S., Haggard, P.: Vision modulates somatosensory cortical processing. Curr. Biol. 12, 233–236 (2002)

    Article  Google Scholar 

  15. Iriki, A., Tanaka, M., Iwamura, Y.: Attention-induced neuronal activity in the monkey somatosensory cortex revealed by pupillometrics. Neurosci. Res. 25, 173–181 (1996)

    Google Scholar 

  16. Koch, C.: Biophysics of Computation: Information Processing in Single Neurons. Oxford University Press, Oxford (1999)

    Google Scholar 

  17. Dayan, P., Abbott, L.F.: Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems. The MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  18. Gerstner, W., Kistler, W.: Spiking Neuron Models: Single Neurons, pulations, Plasticity. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  19. Müller, E.: Simulation of High-Conductance States in Cortical Neural Networks, Masters thesis, University of Heidelberg, HD-KIP-03-22 (2003)

    Google Scholar 

  20. Song, S., Miller, K.D., Abbott, L.F.: Competitive Hebbian learning though spike-timing dependent synaptic plasticity. Nature Neuroscince 3, 919–926 (2000)

    Article  Google Scholar 

  21. Song, S., Abbott, L.F.: Column and Map Development and Cortical Re-Mapping Through Spike-Timing Dependent Plasticity. Neuron 32, 339–350 (2001)

    Article  Google Scholar 

  22. Atkins, J.E., Jacobs, R.A., Knill, D.C.: Experience-dependent visual cue recalibration based on discrepancies between visual and haptic percepts. Vision Research 43(25), 2603–2613 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wu, Q., McGinnity, T.M., Maguire, L.P., Belatreche, A., Glackin, B. (2005). Adaptive Co-ordinate Transformation Based on a Spike Timing-Dependent Plasticity Learning Paradigm. In: Wang, L., Chen, K., Ong, Y.S. (eds) Advances in Natural Computation. ICNC 2005. Lecture Notes in Computer Science, vol 3610. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11539087_54

Download citation

  • DOI: https://doi.org/10.1007/11539087_54

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28323-2

  • Online ISBN: 978-3-540-31853-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics