N

HAL

open science

Verification of qualitative Z constraints

Stéphane Demri, Régis Gascon

» To cite this version:

Stéphane Demri, Régis Gascon. Verification of qualitative Z constraints. CONCUR 2005 - 16th
International Conference on Concurrency Theory, Martin Abadi; Luca de Alfaro, Aug 2005, San
Francisco, United States. pp.518-532, 10.1007/11539452_39 . hal-03203570

HAL Id: hal-03203570
https://hal.science/hal-03203570

Submitted on 20 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-03203570
https://hal.archives-ouvertes.fr

Verification of qualitative Z constraints

Stéphane Demri and Régis Gascon

LSV/CNRS UMR 8643 & INRIA Futurs projet SECSI & ENS Cachan
61, av. Pdt. Wilson, 94235 Cachan Cedex, France
email: {demri,gascon}@lsv.ens-cachan.fr

Abstract. We introduce an LTL-like logic with atomic formulae built
over a constraint language interpreting variables in Z. The constraint
language includes periodicity constraints, comparison constraints of the
form £ = y and = < y, it is closed under Boolean operations and it
admits a restricted form of existential quantification. This is the largest
set of qualitative constraints over Z known so far, shown to admit a
decidable LTL extension. Such constraints are those used for instance
in calendar formalisms or in abstractions of counter automata by using
congruences modulo some power of two. Indeed, various programming
languages perform arithmetic operators modulo some integer. We show
that the satisfiability and model-checking problems (with respect to an
appropriate class of constraint automata) for this logic are decidable in
polynomial space improving significantly known results about its strict
fragments. As a by-product, LTL model-checking over integral relational
automata is proved complete for polynomial space which contrasts with
the known undecidability of its CTL counterpart.

1 Introduction

Model-checking infinite-state systems. The verification of systems with an infi-
nite amount of states has benefited from the numerous decidable model-checking
problems for infinite-state systems, including timed automata [AD94], infinite
transition graphs [Cau03], or subclasses of counter systems (see e.g. [CJ98]).
Even though decidability can be obtained via numerous proof techniques (finite
partition of the infinite domain, well-structured systems, Presburger definable
reachability sets, reduction to the second-order theory of the binary tree), show-
ing undecidability of model-checking for some classes of infinite-state systems
is often easy. After all, the halting problem for Minsky machines is already un-
decidable. Decidability is more difficult to establish and it can be sometimes
regained by naturally restricting the class of models (see e.g. the flatness con-
dition in [CJ98]) or by considering fragments of the specification language (to
consider only reachability or repeated reachability for instance).

Systems with variables interpreted in Z. Structures with a finite set of control
states augmented with a finite set of variables interpreted either in Z or in N
(counters) are operational models of numerous infinite-state systems, includ-
ing broadcast protocols (see e.g. [EFM99,FL02]). The class of counter machines

has numerous undecidable model-checking problems such as the reachability
problem but many classes of counter systems have been shown to be decidable:
reversal-bounded multicounter machines [Iba78], flat counter systems with affine
update functions forming a finite monoid [Boi98,FL02,BFLP03], flat counter sys-
tems [CJ98] (weaker class of Presburger guards but no condition on the monoid)
and constraint automata with qualitative constraints on Z [DDO03].

Our motivation. Constraint automata with qualitative constraints on Z are quite
attractive operational models since they can be viewed as abstractions of counter
automata where incrementations and decrementations are abstracted by oper-
ations modulo some power of two. Common programming languages perform
arithmetic operators for integer types modulo 2¥ [MOS05], typically k is either
32 or 64. For example, x = y+1 can be abstracted by x =9x y+1 A y < x. Such
an abstraction is well-suited to check safety properties about the original counter
system. In the paper, we study a class of constraint automata with a language of
qualitative constraints as rich as possible and a companion LTL-like logic to per-
form model-checking on such operational models. Our framework should be able
to deal both with abstractions modulo (see e.g. [CGL94,LS01]) and with integer
periodicity constraints used in logical formalisms to deal with calendars [LMO01],
i.e. constraints of the form x = y + c¢. By a qualitative constraint, we mean for
instance a constraint that is interpreted as a non-deterministic binary relation,
like z < y and = =5 y + 5 (the relationship between x and y is not sharp).

Our contribution. We introduce a version of constraint LTL over the constraint
language IPC*, whose expressions are Boolean combinations of IPCT" con-
straints from [Dem04] and constraints of the form x < y. The language IPC*"
is already closed under Boolean operators and first-order quantification. No con-
straint of the form = < y occurs in the scope of a quantifier. Otherwise incremen-
tation is definable and it leads to undecidability of the logic. So, as shown in this
paper, adding the single type of constraints x < y leads to many technical com-
plications, but not to undecidability. We call CLTL(IPC*) the specification lan-
guage built over IPC* constraints. We also introduce the class of IPC*-automata
defined as finite-state automata with transitions labelled by CLTL(IPC*) for-
mula & la Wolper [Wol83]. Such structures can be viewed as labelled transition
systems obtained by abstraction of counter automata.

Constraint LTL over IPC*™ is shown to be in PSPACE in [Dem04] whereas
constraint LTL over constraints of the form either x = y or z < y is also
shown to be in PSPACE in [DDO03]. Both proofs use reductions to the emptiness
problem for Biichi automata following the approach in [VW94]. However, the
proofs are of different nature: in [Dem04] the complexity upper bound is ob-
tained by a finite model property argument whereas in [DD03] approximations
of classes of symbolic models are considered because some formulae can generate
non w-regular classes of symbolic models. We show that model-checking and sat-
isfiability problems for the logic CLTL(IPC*) are decidable (which was open so
far) and moreover in PSPACE (PSPACE-hardness is easy). The proof substantially
generalizes what is done for constraint LTL over the domain (Z, <,=) by con-

sidering both new constraints of the form =z < d, d € Z and integer periodicity
constraints. The optimal treatment of constants occurring in such constraints is
our main technical contribution. As a corollary, we establish that LTL model-
checking over integral relational automata [Cer94] is PSPACE-complete. Hence,
even though IPC* is a powerful language of qualitative constraints, the PSPACE
upper bound is preserved in CLTL(IPC*). To our opinion, we provide a definite
complexity characterization of LTL with qualitative constraints over Z.

Related work. Reachability problems for subclasses of counter systems have been
addressed for instance in [Iba78,CJ98, FL02,BFLP03] (see also richer questions
in [BEM97,JKMS04]). In our work, we have a full LTL-like language, not re-
stricted to reachability questions, used as a specification language and no restric-
tion on the structure of the models. However, atomic formulae of the specification
language are qualitative constraints. If we give up the decidability requirement,
LTL over Presburger constraints can be found in [BEH95,CC00].

Constraint LTL over concrete domains (not only restricted to Z) has been
considered in [WZ00,BC02,DD03,GKK™03,Dem04] where often PSPACE-comple-
teness is shown. The idea of building LTL over a language of constraints, al-
though already present in first-order temporal logics, stems from the use of con-
crete domains for description logics, see e.g. [Lut04]. The language CLTL(IPC™)
extends the different LTL-like fragments from [Cer94,LM01,DD03,Dem04] (past-
time operators can be added for free in our formalism thanks to [GK03]). The
class of IPC*-automata introduced in the paper generalizes the class of integral
relational automata from [Cer94] (see details in [DGO5)).

Integer periodicity constraints, a special class of Presburger constraints, have
found applications in many formalisms such as abstractions with congruences
modulo an integer of the form 2% (see e.g. [CGL94,MOS05]), logical formalisms
dealing with calendars (see e.g. [LMO01]), DATALOG with integer periodicity
constraints [TC98] and in real-time logics [AH94].

Omitted proofs can be found in [DGO5].

2 The logic CLTL(IPCY)

2.1 Language of constraints

Let V. = {x0,21,...} be a countably infinite set of variables (in some places
for ease of presentation, V' will denote a particular finite set of variables). The
language of constraints p is defined by the following grammar:

pu=pmod [z <y|pAp]|-p
pmod == x =g [c1,¢) | e =yt e, |z=y|le<d|z=d]|
pmod A pmod | =pmod | x pmod

where 2,y € V, k € N\ {0}, ¢1,¢2 € N and d € Z. This language is denoted by
IPC*. We write IPCT" to denote its restriction to constraints ranged over by

pmod, and Z° its restriction to constraints of the form either z ~ y or x ~ d. The
symbol ~ is used to mean either = or <. The language Z is the restriction of Z¢
to constraints of the form x ~ y. We define a valuation v asamap v:V — Z
and the satisfaction relation v =, p is defined as follows in the standard way:

v~y Ev@) ~oly); vEr~d E v(z)~d;
— v sz =g [a1,) & v(x) is equal to ¢ modulo & for some ¢; < ¢ < ¢g;
— vz =Ry + e, o] E w(@) —v(y) is equal to ¢ modulo k for some

c1 <c< ey
; def

—vE«pADY & viErpand v =, P v):*—\pg not v =, p;
— v, 3z p & thereis 2 € Z such that v[z — 2] =, p
where v[x — z|(2') = v(2') if © # 2/ and v[z — 2](z) = 2.

We recall that x is equal to y modulo k if there is z € Z such that v —y =k x 2.
We write =g, ¢ instead of x =, [¢,], * = y + ¢ instead of z =, y + [¢, ¢] and
v |, X where X is a set of IPC*-constraints, whenever v =, p for every p € X.
A constraint p is satisfiable iff there is a valuation v such that v =, p. Two
constraints are equivalent iff they are satisfied by the same valuations.

Lemma 1. (I) The satisfiability problem for IPC* is PSPACE-complete. (II) Ev-
ery constraint in IPC* admits an equivalent quantifier-free constraint in IPC*.

Hence, IPC” is a quite well understood fragment of Presburger arithmetic.

2.2 Logical language

We consider the linear-time temporal logic CLTL(IPC*) whose atomic formulae
are defined from constraints in IPC*. The atomic formulae are of the form p[z; «—
Xilmjl, e Ty — X“xjr], where p is a constraint of IPC* with free variables
Z71...x,.. We substitute each occurrence of the variable z; with X% x;,, which
corresponds to the variable x;, preceded by ¢; next symbols. Each expression of
the form XPz,, is called a term and represents the value of the variable x,, at the
B next state. Here are examples of atomic formulae: Xy =432 2+ 1 and 2 < Xy.
The set of CLTL(IPC*) formulae ¢ is defined by

¢ = ploy — Xy, ..z = Xz] | 2o [¢ A | X | UG,

where p belongs to IPC*. The operators next (X) and until (U) are the classical
operators used in temporal logics. In the language, all the integers are encoded
with a binary representation (this is important for complexity considerations).
Given a set of constraints X included in IPC*, we write CLTL(X) to denote
the restriction of CLTL(IPC*) in which the atomic constraints are built over
elements of X.

A model 0 : NxV — Z for CLTL(IPC") is an w-sequence of valuations. The
satisfaction relation is defined as follows (we omit the Boolean cases):

—oyi Eplry — X0z, ..z — Xirg | iff (v — o(i+ 41, 25,), ...
y Ty HU(i"'_irvxjrﬂ ':* p;
—o,iEXeiffoi+1E ¢;
— 0,1 = ¢pUg¢' iff there is j > i s.t. 0,j | ¢’ and for every i <1 < j, 0,1 = ¢.

By definition, CLTL(IPC*)-models interpret variables but not propositional
variables. However, it is easy to encode propositional variables by using atomic
formulae of the form x = 0 where x is a new variable introduced for this purpose.

2.3 Satisfiability and model-checking problems

We recall below the problems we are interested in.

Satisfiability problem for CLTL(IPC*):
Given a CLTL(IPC*) formula ¢, is there a model o such that o,0 = ¢7?

If we extend IPC* to allow constraints of the form z < y in the scope of 3,
then the satisfiability problem for the corresponding constraint LTL-like logic is
undecidable since the successor relation is then definable and the halting problem
for Minsky machines can be easily encoded.

The model-checking problem rests on IPC*-automata which are constraint
automata. An IPC*-automaton A is defined as a Biichi automaton over the
infinite alphabet composed of CLTL(IPC*) formulae. In an IPC*-automaton,
letters on transitions may induce constraints between the variables of the cur-
rent state and the variables of the next state as done in [CC00]. Hence, guards
and update functions are expressed in the same formalism. We are however a bit
more general since we allow formulae on transitions as done in [Wol83]. As an
illustration, we present an IPC*-automaton in Fig. 1 which is an abstraction of
the pay-phone controller from [CC00, Example 1] (z is the number of quarters
which have been inserted and y measures the total communication time). Incre-
mentation of a variable z is abstracted by Xz =932 2z + 1 A Xz > z. The formula
¢— denotes Xx = x A Xy = y. Messages are omitted because they are irrelevant
here (simplifications are then possible).

Xz =gz ¢+ 1AXz >z AXy =y Yy<zAXy=,32y+1AXy>yAXz=z

Xz =p32x+1AXe >z AXy=1y

Xy <z, Xy =32y +1AXy >yAXe ==z
Fig. 1. An IPC*-automaton

Model-checking problem for CLTL(IPC*):

Given an IPC*-automaton A and a CLTL(IPC*) formula ¢, are there a symbolic
w-word v = ¢g - ¢1 - ... accepted by A and a model o (a realization of v) such
that 0,0 = ¢ and for every i > 0, 0,i = ¢;?

The satisfiability problem and the model-checking problem are reducible to
each other in logspace following techniques from [SC85], by possibly introducing
a new variable. In the following sections, we prove results for the satisfiability
problem but they also extend to the model-checking problem.

The equivalence problem for Extended Single-String automata [LMO01] can be
encoded as a model-checking problem for CLTL(IPC*) [Dem04]. Furthermore,
the model-checking problem for integral relational automata restricted to the
LTL fragment of CCTL* introduced in [Cer94] is a subproblem of the model-
checking problem for CLTL(IPC*) (see details in [DGO05]). The model-checking
problem for CLTL(IPC*™) (resp. CLTL(Z)) is shown to be PSPACE-complete
in [Dem04] (resp. in [DDO03]). However, the proof for IPCT" uses an w-regular
property of the set of models that does not hold when we introduce constraints
of the form =z < y. The problem for CLTL(Z®) is shown to be in EXPSPACE
in [DDO03] by a translation into CLTL(Z) that increases exponentially the size of
formulae (with a binary encoding of the natural numbers).

A restricted IPC*-automaton is defined as an IPC*-automaton such that the
labels on transitions are Boolean combinations of atomic formulae with terms
of the form x and Xz (see Fig. 1). The logic CCTL*(IPC*) (constraint CTL*
over IPC* constraints) is defined as the extension of CLTL(IPC*) with the path
quantifiers 9 and V but restricted to atomic formulae with no variables in V'
preceded by X. The models of CCTL*(IPC*) are the configuration graphs of
restricted IPC*-automata. The satisfaction relation A, (¢, T) = ¢ is defined in
the usual way. The model-checking problem for CCTL*(IPC*) takes as inputs
a restricted TPC*-automaton A, an initial configuration (g,0) (¢ is a control
state and 0 is the initial valuation with null values for the variables) and a
CCTL*(IPC*) formula ¢ and checks whether A, (q,0) = ¢. Full CCTL*(IPC*)
model-checking can be shown to be undecidable by using developments in [DGO05)
and [Cer94] (even its CTL-like fragment) and one can show that its LTL fragment
is decidable in polynomial space, a new result not captured by [Cer94].

3 Properties of the constraint language

In this section, we establish results about the constraint language underlying
the logic CLTL(IPC*). In order to define automata that recognize symbolic
representations of CLTL(IPC*)-models, the valuations v of the form V' — Z are
represented by symbolic valuations. Given a finite set X of IPC* constraints,
typically the set of constraints occurring in a given CLTL(IPC*) formula, we
introduce the following notations:

— K is the lem of k4, ..., k, where periodicity constraints with relations =, ,
..y =g, occur in X. Observe that | K| is in O(Jk1| + -+ - + |kn])-
— C is the set of constants d occurring in constraints of the form x ~ d.
— m is the minimal element of C' and M is its maximal element.
— (' denotes the set of constants {m,m — 1,..., M}. The cardinality of C’
is in O(2I™+IMI) and each element of C’ can be binary encoded in binary
representation with O(|m| + |M]|) bits.

— V is the finite set of variables occurring in X.

In the remaining, we assume that the above objects are always defined (possibly
by adding dummy valid constraints in order to make the sets non-empty).

A maximally consistent set Y of Z¢ constraints with respect to V and C' is
a set of Z° constraints using only the variables from V' and the constants from
C' such that there is a valuation v : V — Z verifying v =, Y and for any
proper extension Z of Y, there is no valuation v’ : V' — Z verifying v’ =, Z.
A valuation is abstracted by three disjoint finite sets of IPC* constraints like
regions for timed automata.

Definition 1. Given a finite set X of IPC* constraints, a symbolic valuation
sv is a triple (Y1,Y,Y3) such that

— Y1 is a maximally consistent set of Z¢ constraints wrt V and C'.

— Y5 is a set of constraints of the form x = d withx € V and d € C'\ C. Each
x € V occurs at most in one constraint of the form x = d in Yo. Moreover,
for every x € V, (x = d) € Yy for some unique d € C'\ C iff for every
deC,(z=d)¢Yr and{m<z,z <M} CY].

— Y3 is a set of constraints of the form x =k c withx € V and 0 <c < K —1.
Each x € V occurs exactly in one constraint of the form x =k ¢ in Ys.

A consequence of Definition 1 is that in a symbolic valuation sv = (Y7, Y, Y3),
no constraint occurs in more than one set. That is why, given an IPC* constraint
p, we write p € sv instead of p € Y1 UY;UY3. A symbolic valuation is satisfiable
iff there is a valuation v : V' — Z such that v =, Y1 UYa U Ys.

Lemma 2. Let X be a finite set of IPC* constraints and sv = (Y1,Y3,Y3) be a
triple composed of IPC* constraints such that Yy is a set of Z¢ constraints built
over V and C, Ys is a set of Z¢ constraints of cardinality at most |V| built over
V and C'\ C, Y3 is a set of constraints of the form x =k ¢ of cardinality |V|.
Checking whether sv is a satisfiable symbolic valuation can be done in polynomial-
time in the sum of the respective size of X and sv.

Maximal consistency of Y7 can be checked in polynomial-time by using devel-
opments from [Cer94, Lemma 5.5]. Indeed, given a set Y of Z¢ constraints built
over V and C, a graph Gy can be built such that Y is maximally consistent wrt
V and C iff Gy satisfies the conditions below. Gy is a structure (V U C, =, i>>
such that n = n’ & n ~ n’ belongs to Y. Following [Cer94, Lemma 5.5, Y is
maximally consistent iff Gy satisfies the conditions below:

(MC1) For all n,n/, either n = n’ or n’ = n for some ~€ {<,=}.

(MC2) = is a congruence relation compatible with 5.

(MC3) There is no path ng =% n; — ... Z27h pe with ng = ng, and < occurs
in {No, Ny ey Nafl}.

(MC4) For all dl, dy € C, dy ~ da implies d; A ds.

(MC5) For all dy,dy with d; < ds, there is no path ng o B Ted N,
with ng = dy and n, = ds such that the cardinality of {i :~; equals <, 1 <
i < a— 1} is strictly more than dy — dj.

The symbolic representations of valuations contain the relevant information
to evaluate constraints.

Lemma 3. Let X be a finite set of IPC* constraints. (I) For every valuation
v : V — Z there is a unique symbolic valuation sv(v) = (Y1,Ys,Y3) such that
vy Y1 UYo UYs. (1D) For all valuations v, v’ such that sv(v) = sv(v') and for
every p € X, v |, p iff v Es .

The proof of (I) is by an easy verification whereas (II) is shown by structural
induction on p similarly to the proof of [Dem04, Lemma 1]. By Lemma 3, a
symbolic valuation is an equivalence class of valuations.

Given a symbolic valuation sv and p a constraint, we write sv Fgymb P &
for every valuation v such that sv(v) = sv, v =4 p.

Lemma 4. The problem of checking whether sv F=eqymp P is PSPACE-complete
(given that the syntactic resources used in p are included in those used for the
symbolic valuation sv).

4 Satisfiable w-sequences of symbolic valuations

Given a CLTL(IPC*) formula ¢, we write IPC*(¢) to denote the set of IPC*
constraints p such that some atomic formula of the form p[zy « X"xzj,,..., 2, «—
Xirz;] occurs in ¢. To IPC* () we associate the objects relative to any finite set
of IPC* constraints. The set V' denotes the set of variables occurring in ¢. We
write |¢|x to denote the maximal natural number i such that X'z occurs in ¢ for
some variable x. |@|x is called the X-length of ¢. Without any loss of generality,
we can assume that |¢|x > 1. In the following, we assume that V = {z1,..., 2}
and |¢|x = I. We write Terms(¢) to denote the set of terms of the form X%z,
with 3 € {0,...,1} and a € {1,...,s}.

Let V' be a set of variables of cardinality |Terms(¢)| and f : Terms(¢) — V'
be an unspecified bijection such that f and f~' can be computed in polynomial
time. By extension, for every atomic subformula p of ¢, f(p) is obtained from
p by replacing each occurrence of X%z, by f(XPz,). The map f~! is used in a
similar fashion. A symbolic valuation wrt ¢ is a symbolic valuation built over
the set of variables V', C and K.

We say that a pair ((Y1,Y2,Ys), (Y{,Y3,Ys)) of symbolic valuations wrt ¢ is
one-step consistent &

L f(Xz) ~ f(X7'wy) € Y1 and 4,5' > 1 imply f(XI~ ;) ~ f(XI"1zy) € Y,
2. fXax;) ~deY1UYy and j > 1imply f(X/ ;) ~d € Y] UY3,
3. fX9x;) =k c€ Yz and j > 1 imply f(X/"la;) =k c € V4.

An w-sequence p of satisfiable symbolic valuations wrt ¢ is one-step consistent
& forevery j € N, (p(j), p(j+1)) is one-step consistent. A model for p is defined
as a CLTL(IPC*)-model o such that for all j € N and p € p(j), 0,5 = f~(p). In
order to simplify the future developments, we write p; to denote the w-sequence
obtained from p by substituting each occurrence of some variable z by f~!(z).

One-step consistent w-sequences of symbolic valuations wrt ¢ define abstrac-
tions of models for ¢. We represent a one-step consistent sequence p as an infinite
labeled structure G, = (VUC’) x N, =, = mod) where mod : (VUC’) x N —
{0,...,K —1}:
= (y, 5) iff either ¢ < j and z ~ X~y € ps(i)

ori>jand X" Iz ~y € pr(j),
) iffa=d € ps(i),
) iff e =d € ps(y),
)
)

&
=
l

(d,j
(z,j
(d,j iff there is d’ ~ d such that « ~' d’ € py(i) and <€ {~,~'},
(x,] iff there is d ~ d’ such that d' ~" x € ps(j) and <€ {~,~'},
= (da, g) iff di ~ dy,

mod((m,i}) =c iff x =k c€pyr(i) and mod((d,3)) = ciff d =k c.

for all z,y € V, di,ds € C and 4,j € N such that |i — j| < l. By construction
of G,, the variables and constants are treated in a similar fashion. It is worth
observing that G, is well-defined because p is one-step consistent. The construc-
tion ensures that the “local” representation of every p(i) verifies the conditions
(MC1) to (MC5) of Sect. 3.

In the following, we say that a vertex represents the constant d if it is of the
form (d,) for some i. The level of a node n = (a,t) in G, is t, and is denoted by
lev(n). There is some redundancy in G, for the nodes of the form (d, 7). However,
this is useful to establish strict relationships between p and G,,.

Ezample 1. Assuming that C = {2,4}, K = 2, V' = {z,2'} (f(z) = and
f(Xz) = 2') and | = 1, let us define the sequence p = sv° - (sv! - sv2)* where
500 = (Y2, V2, YY) such that Y = {z = 2,2’ = 2’2 < 2/,2 < x,2 < 4,2 =
4,2' > 2}, VY = {z =3} and Y? = {x =5 1,2/ =5 0}. The symbolic valuation
L= (Y} Yo YV)l) satisfies: Vi = (Y2 \ {2 <m,2 < 4,2/ =42 >2})u{d<
r,4 < 7'}, Y3 = 0 and Yy = {z = 0,2/ = 1}. The symbolic valuation
= (Y2, Y2, Y3) verifies Y2 = Y{', Y7 = Y and Y7 = Y. The graph G,, is
presented in Fig. 2. In order to simplify the representation, closure by transitivity
for = and the fact that = is a congruence are omitted. The function mod is

directly encoded in the node label.

A path in G, is a sequence (possible infinite) of the form ng B B2
For any finite path w = ng =3 ny =5 ngy =3 ... =25 n,, its strict length slen(w)
is the cardinality of {i : 0 < i < a—1, ~; equals <}. When w has a strict length
greater than 1, we say that w is strict. A finite path w such that ng = n,, is called
a cycle. The strict length between two nodes n; and ng, written slen(nq,ng), is
the least upper bound of the strict lengths of finite paths between n; and nsy. By
convention, if there is no path between ny and ns, slen(ni,ns) takes the value
—oo. In Fig. 2, slen((2,2), (z,3)) =4

In Lemma 5 below, the one-step consistency of p implies global constraints on
its graph representation that already hold true locally. By a global constraint, we
mean a constraint on the whole graph and not only on the local representation of
a single symbolic valuation or on two successive satisfiable symbolic valuations.

Fig. 2. A graph G,

Lemma 5. Let p be a one-step consistent sequence.

(I) G, has no strict cycle.

(II) If there is a finite path w starting at (d,i) and ending at the node n of level
. then: if w is strict then (d,) = n, otherwise (d,j) = n.

(III) If there is a finite path w starting at the node n of level j and ending at
(d, i), then: if w is strict then n 5 (d,7), otherwise n = (d, 7).

Corollary 1. Let p be a one-step consistent sequence and G, its graph repre-
sentation. Then, for all nodes (dy,i) and (dz,j) in G, representing constants
such that di < da, slen({dy,1),{d2,j)) = do2 — d;.

So far, we have stated properties about the graph G,. Below, we establish
simple conditions on G, equivalent to the existence of a model for p. An edge-
respecting labeling for G, is a map lab : (V U C’) x N — Z such that for
all nodes n1,n2, n1 — ng implies lab(ny) ~ lab(ny) and for every node n,
lab(n) =k mod(n). Additionally, lab is said to be strict if for every (d,) in G,,
lab({d, 1)) = d.

Lemma 6. A one-step consistent sequence p has a model iff G, has a strict
edge-respecting labeling.

The proof is quite direct by unfolding the definitions. A refinement is possible.

Lemma 7. A one-step consistent sequence p has a model iff G, has an edge-
respecting labeling (not necessarily strict).

Lemmas 6 and 7 state correspondences between p and its graphical represen-
tation G,. However, we need a more abstract characterization of the one-step
consistent sequences admitting a model (see Lemma 8 below).

Lemma 8. Let p be a one-step consistent sequence. The graph G, has an edge-
respecting labeling iff for all nodes ny,ng in G,, slen(ni,ng) < w.

By construction of G, for all nodes (di,%) and (ds,j) representing constants
such that dy < da, slen({dy,1),(ds,j)) = da — d; (see Corollary 1). That is why,
in Lemma 8, there is no additional constraint for nodes of the graph representing
constants.

Lemma 8 characterizes the set of sequences having a model but what we
really need is to recognize them with automata. The main difficulty rests on
the fact that the set of satisfiable one-step consistent w-sequences of satisfiable
symbolic valuations is not w-regular, a consequence of [DD03] for the fragment
CLTL(Z). In order to approximate this class of sequences, we define below a
condition (C) shown to be w-regular such that for every one-step consistent w-
sequence p of satisfiable symbolic valuations that is ultimately periodic, p has a
model iff G, satisfies (C).

An infinite forward (resp. backward) path in G, is defined as a sequence
w: N — (VUC’) x N such that: for every i € N, there is an edge w(i) = w(i+1)
(resp. w(i + 1) = w(i)) in G, and if lev(w(i)) = j, then lev(w(i + 1)) > j + 1.
The path w is infinitely often strict & for every i > 0, there is j > i such that
w(j) S w(j+1) (resp. w(j+1) = w(j)). The condition (C) on the graph G, is:
there do not exist vertices ny and ny in G, with [lev(n;) —lev(ns)| < satisfying
(AP1) there is an infinite forward path wio, from nq,

(AP2) there is an infinite backward path wpack from na,

(AP3) either weoy Or Whack is infinitely often strict, and

(AP4) for all i,j € N, whenever |lev(wg(i)) — lev(wpack (7)) < 1, wior (i) =
wback(j) in Gp'

We say an infinite word is ultimately periodic if it is of the form 7 - §“ for some

finite words 7 and 4.

Lemma 9. Let p be one-step consistent w-sequence of satisfiable symbolic valu-
ations that is ultimately periodic. Then p admits a model iff G, satisfies (C).

Thanks to the way G, is built from p, (C) does not explicitly mention the
constants in C’ and the constraints of the form x =k c. Hence, Lemma 9 can
be proved as [DD03, Lemma 6.2]: the map mod in G, is ignored and a uniform
treatment for all nodes in (V U C’) x N is provided. In [DD03, Lemma 6.2],
there are no nodes of the form C’ x N but we take into account their specificity
in our construction of G,. If p admits a model then by Lemma 8 it satisfies
the condition (C). Conversely, let p = 7 - §* be an ultimately periodic one-step
consistent w-sequence. We can show that if p has no model then it does not
satisfy (C). By Lemma 8, if p has no model, then there exist two vertices n;
and ng such that slen(ni,n2) = w. One can construct a finite path w between
n1 and no long enough so that paths ws,, and wpaek satisfying the conditions
(AP1)-(AP4) can be constructed, witnessing that G, does not satisfy (C). The
construction of wgy, and wpaek from w uses the fact that p is ultimately periodic
by repeating infinitely finite subpaths. The construction of such infinite paths
can be done smoothly by using the properties established in this section (see
e.g. Lemma 5). As the proof is not essentially different from [DD03, Lemma 6.2]
modulo slight changes mentioned above, we omit it here.

5 Biichi automata and PSPACE upper bound

Based on the previous results and following the approach in [VW94], we show
that given a CLTL(IPC*) formula ¢, one can build a standard Biichi automaton
Ay such that ¢ is CLTL(IPC*) satisfiable iff L(.A,) is non-empty. Moreover, we
establish that emptiness of L(A,;) can be checked in polynomial space in |@].
From the technical viewpoint, the construction of A4 as the intersection of three
Biichi automata can be done quite smoothly thanks to the previous results. In
the following, V', V/, C' and C” are the sets of variables and constants associated
to ¢ as defined in Sect. 4. Moreover, K, m and M are constants with their usual
meaning and we use the map f : Terms(¢) — V' as previously.

Unlike LTL, the language recognized by the Biichi automaton 44 is not a set
of models but rather a set of symbolic models. We write X' to denote the set of
satisfiable symbolic valuations wrt ¢. A symbolic model for ¢ is an w-sequence
p: N — X We write p ' ¢ where the symbolic satisfaction relation =’ is
defined as = except at the atomic level: p,i =’ p £ p(i) FEsymb f(p) where
|:symb is the satisfaction relation between symbolic valuations and constraints.

By Lemma 4 and by using standard techniques for LTL [VW94], checking
whether there is a symbolic model p satisfying p ' ¢ can be done in PSPACE
(see more details below). Since every model for ¢ generates a unique symbolic
model for ¢, we obtain the result below.

Lemma 10. A CLTL(IPC*) formula ¢ is satisfiable iff there is a one-step con-
sistent symbolic valuation p such that p =" ¢ and p has a model.

All the following automata are built over the alphabet X which is of expo-
nential size in |¢|. The automaton Ay is formally defined as the intersection
Arrr N Ajcons N Ace of Biichi automata where L(Apry) is the set of symbolic
models satisfying ¢, L(Ajcons) is the set of one-step consistent sequences of sat-
isfiable symbolic valuations, L(.A¢) is the set of sequences of symbolic valuations
verifying (C). We briefly explain below how these automata are built. The au-
tomaton Arry, is obtained from [VW94] with a difference for atomic formulae.
We define cl(¢) the closure of ¢ as usual, and an atom of ¢ is a maximally
consistent subset of cl(¢). We define Aprr, = (Q, Qo, —, F) as the generalized
Biichi automaton below:

— (is the set of atoms of ¢ and Qy ={X € Q: ¢ € X},

- X3yiff
(atomic constraints) for every atomic formula p in X, sv Egymb f(p),
(one step) for every Xy € cl(¢), Xy € X iff p € Y,

— let {¢1Up1,...,¢.Up,} be the set of until formulas in cl(¢). We pose F
equal to {F1,..., F.} with for every i € {1,...,r}, F; ={X € Q : ¥;Up,; ¢
Xor ¢; € X}

By Lemma 4, the condition about atomic formulae can be checked in PSPACE.
Hence, the transition relation can be computed in PSPACE.

We define Ajcons = (@, Qo, —, F') as a Biichi automaton such that Q = Qo =

F = @ = ¥ and the transition relation satisfies: sv W s (sv, sv') is one-
step consistent and sv’ = sv”. Since checking whether a symbolic valuation is
satisfiable can be done in P (Lemma 2) and checking whether a pair of symbolic
valuations is one-step consistent can be also done in P, the transition relation
of Aicons can be computed in P.

It remains to define A¢ that recognizes w-sequences of symbolic valuations
satisfying (C). As done in [DD03], instead of building A, it is easier to construct
the Biichi automaton A; that recognizes the complement language of L(A¢). The
automaton Ag is essentially the automaton B defined in [DD03, page 20] except
that we work with a different type of alphabet. We need to consider vertices in
the graph that represent constants in C' and equality between constants does not
need to be explicitly present in the symbolic valuations (see details in [DGO05]).

Lemma 11. A CLTL(IPC*) formula ¢ is satisfiable iff L(Ay) is non-empty.

The proof of this lemma is similar to [DD03, Lemma 6.3]. The main trick is
to observe that if L(A,) is non-empty then A, accepts an ultimately periodic
w-sequence so that Lemma 9 can be applied. Since given a formula ¢ we can
effectively construct A, and check whether L(Ay) is empty, the model-checking
and satisfiability problems for CLTL(IPC*) are decidable. We also have all the
arguments to establish the PSPACE upper bound by using subtle arguments from
complexity theory and [Saf89].

Theorem 1. The satisfiability problem for CLTL(IPC*) is PSPACE-complete.

All the temporal operators in CLTL(IPC*) are definable in monadic second
order logic (MSO) and by using [GKO03], it is immediate that any extension of
CLTL(IPC*) obtained by adding a finite amount of MSO-definable temporal
operators remains in PSPACE. Only the automaton Ay 1, needs to be updated.

Corollary 2. The model-checking problem for integral relational automata re-
stricted to the LTL fragment of CCTL* introduced in [Cer94] is in PSPACE.

6 Conclusion

In the paper, we have introduced the logic CLTL(IPC*) extending formalisms
in [Cer94,LM()1,DD03,DemO4] and we have shown that both model-checking over
IPC*-automata and satisfiability are decidable in polynomial space. The proof
heavily relies on a translation into the emptiness problem for standard Biichi
automata and on the approximation of non w-regular sets of symbolic models. As
a by-product, the model checking problem over the integral relational automata
defined in [Cer94] is also PSPACE-complete when restricted to its LTL fragment.
The logic CLTL(IPC*) supports a rich class of constraints including those of
the form x < y unlike periodicity constraints from [Dem04] (which are quite
useful to compare absolute dates) and comparison with constants unlike logics

shown in PSPACE in [DDO03]. Abstraction of counter automata by performing
reasoning modulo can be encoded in CLTL(IPC*) thanks to the presence of
integer periodicity constraints.

To conclude, we mention a few open problems that are worth investigating.

— CTL* for integral relational automata is undecidable [Cer94] whereas we
have shown that its LTL fragment is PSPACE-complete. It is interesting
to design other decidable fragments of CTL* strictly more expressive than
Boolean combinations of LTL formulae.

— The decidability status of constraint LTL over the domain ({0,1}*,C) is
open either with the subword relation or with the prefix relation. Constraint
LTL over the domain ({0}*, C) is already equivalent to constraint LTL over
(N, <, =) that is a strict fragment of CLTL(IPC").

— The decidability status of CLTL(IPC*) extended with constraints of the form
3z + 2Xy =5 3 is open. They are considered in [MOS05] but not integrated
in any LTL-like language.

References

[AD94] R. Alur and D. Dill. A theory of timed automata. T'CS, 126:183-235, 1994.

[AH94] R. Alur and Th. Henzinger. A really temporal logic. JACM, 41(1):181-204,
1994.

[BCO2] Ph. Balbiani and J.F. Condotta. Computational complexity of propositional
linear temporal logics based on qualitative spatial or temporal reasoning.
In FroCoS’02, volume 2309 of LNAI pages 162-173. Springer, 2002.

[BEH95] A. Bouajjani, R. Echahed, and P. Habermehl. On the verification problem of
nonregular properties for nonregular processes. In LICS’95, pages 123-133,
1995.

[BEM97] A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown
automata: application to model-checking. In CONCUR’97, volume 1243 of
LNCS, pages 135-150. Springer, 1997.

[BFLPO3] S. Bardin, A. Finkel, J. Leroux, and L. Petrucci. FAST: Fast Acceleration
of Symbolic Transition systems. In CAV’03, volume 2725 of LNCS, pages
118-121. Springer, 2003.

[Boi98] B. Boigelot. Symbolic methods for exploring infinite state spaces. PhD
thesis, Université de Liege, 1998.

[Cau03] D. Caucal. On infinite transition graphs having a decidable monadic theory.
TCS, 290:79-115, 2003.

[CCO0] H. Comon and V. Cortier. Flatness is not a weakness. In CSL’00, volume
1862 of LNCS, pages 262-276. Springer, 2000.

[Cer94] K. Cerans. Deciding properties of integral relational automata. In ICALP,
volume 820 of LNCS, pages 35—46. Springer, 1994.

[CGLY94] E. Clarke, O. Grumberg, and D. Long. Model checking and abstraction.
ACM Transactions on Programming Languages and Systems, 16(5):1512—
1542, 1994.

[CJ98] H. Comon and Y. Jurski. Multiple counters automata, safety analysis and

Presburger arithmetic. In CAV’98, volume 1427 of LNCS, pages 268-279.
Springer, 1998.

[DDO3]

[DemO04]

[DGO5]
[EFM99]

[FL02]

[GKO3]

S. Demri and D. D’Souza. An automata-theoretic approach to constraint
LTL. Technical Report LSV-03-11, LSV, August 2003. 40 pages. An ex-
tended abstract appeared in Proc. of FSTTCS’02.

S. Demri. LTL over integer periodicity constraints. Technical Report LSV-
04-6, LSV, February 2004. 35 pages. An extended abstract appeared in
Proc. of FOSSACS’04.

S. Demri and R. Gascon. Verification of qualitative Z-constraints. Technical
Report LSV-05-07, LSV, June 2005.

J. Esparza, A. Finkel, and R. Mayr. On the verification of broadcast pro-
tocols. In LICS’99, pages 352-359, 1999.

A. Finkel and J. Leroux. How to compose Presburger accelerations: Ap-
plications to broadcast protocols. In FSTéTCS 02, volume 2256 of LNCS,
pages 145-156. Springer, 2002.

P. Gastin and D. Kuske. Satisfiability and model checking for MSO-definable
temporal logics are in PSPACE. In CONCUR’03, volume 2761 of LNCS,
pages 222-236. Springer, 2003.

[GKK™'03] D. Gabelaia, R. Kontchakov, A. Kurucz, F. Wolter, and M. Zakharyaschev.

[Tba78]

[TKMS04]

[LMO1]

[LS01]
[Lut04]
[MOS05]
[Safs9]
[SC85]
[TC98]
[VW94]

[Wol83]
[WZ00]

On the computational complexity of spatio-temporal logics. In FLAIRS’03,
pages 460-464, 2003.

O. Ibarra. Reversal-bounded multicounter machines and their decision prob-
lems. JACM, 25(1):116-133, 1978.

P. Jancar, A. Kucera, F. Moller, and Z. Sawa. DP lower bounds for
equivalence-checking and model-checking of one-counter automata. I & C,
(188):1-19, 2004.

U. Dal Lago and A. Montanari. Calendars, time granularities, and au-
tomata. In Int. Symposium on Spatial and Temporal Databases, volume
2121 of LNCS, pages 279-298. Springer, Berlin, 2001.

G. Logothetis and K. Schneider. Abstraction from counters: an application
on real-time systems. In TIME’01, pages 214-223. IEEE, 2001.

C. Lutz. NEXPTIME-complete description logics with concrete domains.
ACM Transactions on Computational Logic, 5(4):669-705, 2004.

M. Miiller-Olm and H. Seidl. Analysis of modular arithmetic. In ESOP’05,
LNCS. Springer, 2005.

S. Safra. Complezity of Automata on Infinite Objects. PhD thesis, The
Weizmann Institute of Science, 1989.

A. Sistla and E. Clarke. The complexity of propositional linear temporal
logic. JACM, 32(3):733-749, 1985.

D. Toman and J. Chomicki. Datalog with integer periodicity constraints.
Journal of Logic Programming, 35(3):263-290, 1998.

M. Vardi and P. Wolper. Reasoning about infinite computations. I & C,
115:1-37, 1994.

P. Wolper. Temporal logic can be more expressive. I & C, 56:72-99, 1983.
F. Wolter and M. Zakharyaschev. Spatio-temporal representation and rea-
soning based on RCC-8. In KR’00, pages 3—14, 2000.

