Skip to main content

Probabilistic Based Recursive Model for Face Recognition

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3614))

Abstract

We present a facial recognition system based on a probabilistic approach to adaptive processing of Human Face Tree Structures. Human Face Tree Structures are made up of holistic and localized Gabor Features. We propose extending the recursive neural network model by Frasconi et. al. [1] in which its learning algorithm was carried out by the conventional supervised back propagation learning through the tree structures, by making use of probabilistic estimates to acquire discrimination and obtain smooth discriminant boundaries at the structural pattern recognition. Our proposed learning framework of this probabilistic structured model is hybrid learning in locally unsupervised for parameters in mixture models and in globally supervised for weights in feed-forward models. The capabilities of the model in a facial recognition system are evaluated. The experimental results demonstrate that the proposed model significantly improved the recognition rate in terms of generalization.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Frasconi, P., Gori, M., Sperduti, A.: A General Framework for Adaptive Processing of Data Structures. IEEE Trans. Neural Networks 9, 768–785 (1998)

    Article  Google Scholar 

  2. Turk, M., Pentland, A.: Eigenfaces for Recognition. Journal of Cognitive Neuroscience 3, 71–86 (1991)

    Article  Google Scholar 

  3. Belhumeur, P.N., et al.: EigenFaces vs. FisherFaces: Recognition Using Class Specific Linear Projection. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 711–720 (1996)

    Article  Google Scholar 

  4. Lades, M., et al.: Distortion Invariant Object Recognition in the Dynamic Link Architecture. IEEE Transactions on Computers 42(2), 300–311 (1993)

    Article  Google Scholar 

  5. Penev, P.S., Atick, J.J.: Local Feature Analysis: A general statistical theory for object representation. Network: Computation in Neural Systems (7), 477–500 (1996)

    Google Scholar 

  6. Fang, Y., Tan, T., Wang, Y.: Fusion of Global and Local Features for Face Verification. In: Proceedings of International Conf. for Pattern Recognition, pp. 382–385 (2002)

    Google Scholar 

  7. Liu, C., Wechsler, H.: Independent Component Analysis of Gabor Features for Face Recognition. IEEE Transactions on neural networks 14(4), 919–928 (2003)

    Article  Google Scholar 

  8. Wiskott, L., et al.: Face Recognition by Elastic Bunch Graph Matching. IEEE. Trans on Pattern Analysis and Machine Intelligence 19(7), 775–779 (1997)

    Article  Google Scholar 

  9. Cho, S.-Y., Wong, J.-J.: Robust Facial Recognition by Localised Gabor Features. In: Proceedings of Int. Workshop for Ad. Image Tech., Jeju Island, Korea, January 11 (2005)

    Google Scholar 

  10. Sperduti, A., Starita, A.: Supervised neural networks for classification of structures. IEEE Trans. Neural Networks 8, 714–735 (1997)

    Article  Google Scholar 

  11. Hagan, M.T., Tsoi, A.C.: A Self-Organizing Map for Adaptive Processing of Structured Data. IEEE Trans. Neural Networks 14(3), 491–505 (2003)

    Article  Google Scholar 

  12. Hammer, B., Sperschneider, V.: Neural networks can approximate mappings on structured objects. In: Proceedings of 2nd Int. Conf. Comp.l Intelligence Neuroscience (1997)

    Google Scholar 

  13. Platt, J.: Fast Training of Support Vector Machines using Sequential Minimal Optimization. In: Scholkopf, B., Burges, C., Smola, A. (eds.) Advances in Kernel Methods - Support Vector Learning, MIT Press, Cambridge (1998)

    Google Scholar 

  14. Aha, D., Kibler, D.: Instance-based learning algorithms. Mach. Learn. 6, 37–66 (1991)

    Google Scholar 

  15. John, G.H., Langley, P.: Estimating Continuous Distributions in Bayesian Classifiers. In: Proceedings of The Eleventh Conference on Uncertainty in Artificial Intelligence, pp. 338–345. Morgan Kaufmann, San Mateo (1995)

    Google Scholar 

  16. Samaria, F., Harter, A.C.: Parameterisation of a Stochastic Model for Human Face Identification. In: 2nd IEEE Workshop Applications of Computer Vision (1994)

    Google Scholar 

  17. Daugman, J.G.: Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional cortical filters. J. Opt.Soc.Amer. 2(7), 1160–1167 (1985)

    Article  Google Scholar 

  18. Manjunath, B.S., Ma, W.Y.: Texture Features for Browsing and Retrieval of Image Data. IEEE Trans. on Patt. Ana. and Machine Intellig. 18(8), 837–842 (1996)

    Article  Google Scholar 

  19. Siu-Yeung Cho, et al., An Improved Algorithm for learning long-term dependency problems in adaptive processing of data structures, IEEE Trans. on NN, 14(4), pp. 781-93.

    Google Scholar 

  20. Streit, D.F., Luginhuhl, T.E.: Maximum likelihood training of probabilistic neural networks. IEEE Trans. on Neural Networks 5(5), 764–783 (1994)

    Article  Google Scholar 

  21. Roberts, S., Tarassenko, L.: A probabilistic resource allocating network for novelty detection. Neural Computation 6, 270–284 (1994)

    Article  Google Scholar 

  22. Hagan, M.T., Menhaj, M.B.: Training feedforward networks with Marquardt algorithm. IEEE Trans. on Neural Networks 5(6), 989–993 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cho, SY., Wong, JJ. (2005). Probabilistic Based Recursive Model for Face Recognition. In: Wang, L., Jin, Y. (eds) Fuzzy Systems and Knowledge Discovery. FSKD 2005. Lecture Notes in Computer Science(), vol 3614. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11540007_164

Download citation

  • DOI: https://doi.org/10.1007/11540007_164

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28331-7

  • Online ISBN: 978-3-540-31828-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics