Skip to main content

An Approximation of Action Theories of \(\mathcal{AL}\) and Its Application to Conformant Planning

  • Conference paper
Book cover Logic Programming and Nonmonotonic Reasoning (LPNMR 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3662))

Abstract

In this paper we generalize the notion of approximation of action theories introduced in [13,26]. We introduce a logic programming based method for constructing approximation of action theories of \(\mathcal{AL}\) and prove its soundness. We describe an approximation based conformant planner and compare its performance with other state-of-the-art conformant planners.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bacchus, F.: The AIPS’00 Planning Competition. AI Magazine 22(3) (2001)

    Google Scholar 

  2. Baral, C.: Reasoning about Actions: Non-deterministic effects, Constraints and Qualification. In: IJCAI 1995, pp. 2017–2023 (1995)

    Google Scholar 

  3. Baral, C., Kreinovich, V., Trejo, R.: Computational complexity of planning and approximate planning in the presence of incompleteness. Artificial Intelligence 122, 241–267 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  4. Baral, C., Gelfond, M.: Reasoning agents in dynamic domains. In: Minker, J. (ed.) Logic-Based Artificial Intelligence, pp. 257–279. Kluwer Academic Publishers, Dordrecht (2000)

    Google Scholar 

  5. Bonet, B., Geffner, H.: GPT: a tool for planning with uncertainty and partial information. In: IJCAI 2001 Workshop on Planning with Uncertainty and Partial Information, pp. 82–87 (2001)

    Google Scholar 

  6. Brafman, R., Hoffmann, J.: Conformant planning via heuristic forward search: A new approach. In: ICAPS 2004, pp. 355–364 (2004)

    Google Scholar 

  7. Bryce, D., Kambhampati, S.: Heuristic Guidance Measures for Conformant Planning. In: ICAPS 2004, pp. 365–375 (2004)

    Google Scholar 

  8. Castellini, C., Giunchiglia, E., Tacchella, A.: SAT-based Planning in Complex Domains: Concurrency, Constraints and Nondeterminism. Artificial Intelligence 147, 85–117 (2003)

    MATH  MathSciNet  Google Scholar 

  9. Cimatti, A., Roveri, M.: Conformant Planning via Symbolic Model Checking. Journal of Artificial Intelligence Research 13, 305–338 (2000)

    MATH  Google Scholar 

  10. Cimatti, A., Roveri, M., Bertoli, P.: Conformant Planning via Symbolic Model Checking and Heuristic Search. Artificial Intelligence Journal 159, 127–206 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  11. Edelkamp, S., Hoffmann, J., Littman, M., Younes, H.: The IPC-2004 Planning Competition (2004), http://ls5-www.cs.uni-dortmund.de/~edelkamp/ipc-4/

  12. Eiter, T., Faber, W., Leone, N., Pfeifer, G., Polleres, A.: A Logic Programming Approach to Knowledge State Planning, II: The DLV\(^{\cal K}\) System. AIJ 144(1-2), 157–211 (2003)

    MATH  MathSciNet  Google Scholar 

  13. Gelfond, M., Morales, R.: Encoding conformant planning in a-prolog. In: DRT 2004 (2004)

    Google Scholar 

  14. Ghallab, M., et al.: PDDL — the Planning Domain Definition Language. Version 1.2. Technical Report CVC TR98003/DCS TR1165, Yale Center for Comp., Vis. and Ctrl. (1998)

    Google Scholar 

  15. Giunchiglia, E., Kartha, G., Lifschitz, V.: Representing action: indeterminacy and ramifications. Artificial Intelligence 95, 409–443 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  16. Lierler, Y., Maratea, M.: Cmodels-2: SAT-based Answer Set Solver Enhanced to Non-tight Programs. In: Lifschitz, V., Niemelä, I. (eds.) LPNMR 2004. LNCS (LNAI), vol. 2923, pp. 346–350. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  17. Lifschitz, V.: On the Logic of Causal Explanation (Research Note). AIJ 96(2), 451–465

    Google Scholar 

  18. Lin, F.: Embracing causality in specifying the indirect effects of actions. In: IJCAI 1995, pp. 1985–1993 (1985)

    Google Scholar 

  19. Long, D., Fox, M.: The 3rd International Planning Competition: Results and Analysis. JAIR 20, 1–59 (2003)

    MATH  Google Scholar 

  20. McCain, N., Turner, H.: A causal theory of ramifications and qualifications. In: IJCAI 1995, pp. 1978–1984 (1995)

    Google Scholar 

  21. McCain, N., Turner, M.: Causal theories of action and change. In: AAAI 1997, pp. 460–467 (1997)

    Google Scholar 

  22. McIlraith, S.: Intergrating actions and state constraints: A closed-form solution to the ramification problem (sometimes). Artificial Intelligence 116, 87–121 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  23. Shanahan, M.: The ramification problem in the event calculus. In: IJCAI 1999, pp. 140–146 (1999)

    Google Scholar 

  24. Simons, P., Niemelä, N., Soininen, T.: Extending and Implementing the Stable Model Semantics. Artificial Intelligence 138(1–2), 181–234 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  25. Smith, D., Weld, D.: Conformant graphplan. In: Proceedings of AAAI 1998 (1998)

    Google Scholar 

  26. Son, T.C., Baral, C.: Formalizing sensing actions - a transition function based approach. Artificial Intelligence 125(1-2), 19–91 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  27. Son, T.C., Baral, C., Tran, N., McIlraith, S.: Domain-Dependent Knowledge in Answer Set Planning. To appear in TOCL

    Google Scholar 

  28. Son, T.C., Tu, P.H., Gelfond, M., Morales, R.: Conformant Planning for Domains with Constraints — A New Approach. To Appear in AAAI 2005 (2005)

    Google Scholar 

  29. Thiebaux, S., Hoffmann, J., Nebel, B. In: Defense of PDDL Axioms. In: IJCAI 2003 (2003)

    Google Scholar 

  30. Turner, H.: Polynomial-length planning spans the polynomial hierarchy. In: Flesca, S., Greco, S., Leone, N., Ianni, G. (eds.) JELIA 2002. LNCS (LNAI), vol. 2424, pp. 111–124. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Son, T.C., Tu, P.H., Gelfond, M., Morales, A.R. (2005). An Approximation of Action Theories of \(\mathcal{AL}\) and Its Application to Conformant Planning. In: Baral, C., Greco, G., Leone, N., Terracina, G. (eds) Logic Programming and Nonmonotonic Reasoning. LPNMR 2005. Lecture Notes in Computer Science(), vol 3662. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11546207_14

Download citation

  • DOI: https://doi.org/10.1007/11546207_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28538-0

  • Online ISBN: 978-3-540-31827-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics