
Emilia Oikarinen and Tomi Janhunen. 2005. CIRC2DLP – translating circumscription
into disjunctive logic programming. In: Chitta Baral, Gianluigi Greco, Nicola Leone,
and Giorgio Terracina (editors). Proceedings of the 8th International Conference on
Logic Programming and Nonmonotonic Reasoning (LPNMR 2005). Diamante, Italy.
5­8 September 2005. Springer. Lecture Notes in Artificial Intelligence, volume 3662,
pages 405­409.

© 2005 Springer Science+Business Media

Reprinted with permission.

circ2dlp — Translating Circumscription into

Disjunctive Logic Programming�

Emilia Oikarinen�� and Tomi Janhunen

Helsinki University of Technology,
Department of Computer Science and Engineering,

Laboratory for Theoretical Computer Science,
P.O.Box 5400, FI-02015 TKK, Finland

{Emilia.Oikarinen, Tomi.Janhunen}@tkk.fi

1 Introduction

The stable model semantics of disjunctive logic programs (DLPs) is based on
minimal models [5,12] which makes atoms appearing in a disjunctive program
false by default. This is often desirable from the knowledge representation point
of view, but certain domains become awkward to formalize if all atoms are blindly
subject to minimization. In contrast to this, parallel circumscription [11] provides
a refined notion of minimal models as it distinguishes varying and fixed atoms in
addition to those being falsified. This eases the task of knowledge presentation in
many cases. For example, it is straightforward to formalize Reiter-style minimal
diagnoses [13] for digital circuits using parallel circumscription.

There have been several attempts to embed parallel circumscription into dis-
junctive logic programming. Although fixed atoms are easy in this respect [1,6],
varying atoms are not fully covered. Earlier approaches either deal with syntactic
subclasses of logic programs [4] or have exponential worst-case space complex-
ities [9,14]. To the contrary, the system circ2dlp described in this article is
based on a new linear but non-modular transformation [8] which enables the use
of existing implementations of disjunctive logic programming such as dlv [10]
and GnT [7] for the actual search of minimal models.

The rest of this system description is organized as follows. Section 2 con-
centrates on specifying the output produced by circ2dlp, i.e. the translation
presented in [8], on a high level of abstraction. In Section 3, we provide the
reader with some instructions how to use the tool in practice. The last section
(Section 3) comprises of some preliminary experimental results obtained using
circ2dlp together with dlv and GnT. As a benchmark, we use the problem
of finding Reiter-style minimal diagnoses [13] for digital circuits. Moreover, we
briefly compare the performance of our translation-based approach with another:
circum [15] is a system developed for computing prioritized circumscription
(a generalization of parallel circumscription) using a generate and test method.
� The research reported in this paper is partially funded by the Academy of Finland

(project #211025) and the European Commission (contract IST-FET-2001-37004).
�� The support from Helsinki Graduate School in Computer Science and Engineering,

Nokia Foundation, and Finnish Cultural Foundation is gratefully acknowledged.

C. Baral et al. (Eds.): LPNMR 2005, LNAI 3662, pp. 405–409, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

406 E. Oikarinen and T. Janhunen

2 Translation-Based Approach

The aim in the following is to briefly describe the translation computed by
circ2dlp. For that purpose, we give a definition for parallel circumscription
in the propositional case. Following the presentation in [8], we formulate the
definition in the case of a positive DLP Π possessing a Herbrand base Hb(Π).
Given a set of varying atoms V ⊆ Hb(Π) and a set of fixed atoms F ⊆ Hb(Π), the
parallel circumscription of Π is characterized by 〈V, F 〉-minimal models M |= Π
each of which is minimal in the following sense: there is no model N |= Π such
that N \ (V ∪ F) ⊂M \ (V ∪ F) and N ∩ F = M ∩ F .

The basic idea in the translation-based approach [8] is that the 〈V, F 〉-
minimal models of a positive DLP Π can be captured by projecting the stable
models of the translation

Trcirc2dlp(Π) = TrGEN(TrKK(Π)) ∪ TrEG(TrMIN(TrKK(Π))) (1)

with respect to Hb(Π). The translation given in (1) is based on the following
primitives: (i) TrKK(·) removes fixed atoms using a technique proposed in [1],
(ii) TrGEN(·) produces a model generator for Π as a DLP, (iii) TrMIN(·) encodes
a test for 〈V, ∅〉-minimality as a propositional unsatisfiability problem, and (iv)
TrEG(·) implements the required unsatisfiability check using the primitives of
DLPs [3]. To summarize the properties of Trcirc2dlp(Π), the translation is linear
in the length of the program ||Π || and a bijective correspondence between sta-
ble models of the translation and the 〈V, F 〉-minimal models of Π is obtained.
Further details and the correctness proof of Trcirc2dlp(Π) can be found in [8].

The model generator TrGEN(TrKK(Π)) can be enhanced by taking the set of
varying atoms V properly into account. Actually, an improved model generator
TrGEN2(TrKK(Π)) is already used in the implementation. The idea is to replace
the rules in items 1 and 2 in [8, Definition 6] by the following:

1′. a← ∼a for each a ∈ V and a← ∼a for each a ∈ Hb(Π),
2′. (A \ V)← (B \ V),∼(A ∩ V),∼B ∩ V for each rule A← B in Π .

The translation Trcirc2dlp(Π) optimized in this way is a DLP and thus a valid
input for disjunctive solvers implementing the search for stable models [7,10].

Prioritized circumscription [11] can be translated into parallel circumscrip-
tion using a scheme proposed by Lifschitz [11]:

Circ(Π, P1 > . . . > Pk, V) =
k∧

i=1

Circ(Π, Pi, Pi+1 ∪ · · · ∪ Pk ∪ V) (2)

where P1, . . . , Pk are sets of minimized atoms with decreasing priority, V is
the set of varying atoms, and the sets of fixed atoms remain implicit. In our
translation-based approach, the equation (2) is understood as a join of k parallel
circumscriptions. The respective subtranslations can be concatenated so that
Hb(Π) is shared and the new atoms produced by Trcirc2dlp remain distinct for
each part. It follows that the time complexity is O(k × ||Π ||) in general.

circ2dlp — Translating Circumscription into DLP 407

3 Some Instructions for Use

The translator circ2dlp has been implemented in C under Linux operating
system and is available at http://www.tcs.hut.fi/Software/circ2dlp/. The
translator takes a DLP Π combined with sets of varying and fixed atoms as
input and produces translation Trcirc2dlp(Π) as output. The input format is the
internal format of GnT produced by the front-end lparse. Rules with variables
can be used, although lparse performs an instantiation for the rules. circ2dlp
produces output compatible with both GnT (default) and dlv.

All atoms are minimized by default, unless explicitly stated to be varying
or fixed. Default behaviour can be altered using option --vary. Notice that
lparse might produce invisible atoms that have no name in the symbol ta-
ble. Option --vary cannot be applied to programs containing invisible atoms,
as the semantics of invisible atoms becomes unclear. circ2dlp can also han-
dle programs containing negation. For such programs the translation yields the
〈V, F 〉-minimal models of the Gelfond-Lifschitz reduct of the original program
which can be understood as the 〈V, F 〉-stable models of the program.

Command line options for circ2dlp are the following:

• -h or --help – Print a help message.
• -t – Print human readable output.
• --dlv – Print the output in dlv syntax.
• --vary – Vary all atoms by default.
• --all – Generate all classical model candidates, using the model generator

TrGEN(TrKK(Π)). Otherwise, TrGEN2(TrKK(Π)) is used.
• --version – Print version information.

For example, all 〈{a}, ∅〉-minimal models of a program stored in a file
example.lp can be computed as follows:

lparse --dlp example.lp > example.sm
circ2dlp example.sm -v a | gnt 0

or, with dlv,

circ2dlp --dlv example.sm -v a | dlv -n=0 --

For more examples, see http://www.tcs.hut.fi/Software/circ2dlp/.
The translator circ2dlp is accompanied by a Perl implementation of Lifs-

chitz’s scheme for computing prioritized circumscription called prio circ2dlp.
For example, the script is used to compute prioritized circumscription Circ(Π,
{a} > {b}, ∅) for program Π given in file example.sm as follows:

prio_circ2dlp example.sm a:b | gnt 0

4 Experiments

As a benchmark, we use the problem of finding Reiter-style minimal diagnoses
[13] for digital circuits encoded as parallel circumscription. We generate circuits

408 E. Oikarinen and T. Janhunen

 0.01

 0.1

 1

 10

 100

 1000

 10000

 16 18 20 22 24 26 28

S
ec

on
ds

Number of nodes in the circuit

GnT max
GnT ave
GnT min
DLV max
DLV ave
DLV min

 0.01

 0.1

 1

 10

 100

 1000

 10000

 16 18 20 22 24 26 28

S
ec

on
ds

Number of nodes in the circuit

GnT max
GnT ave
GnT min
DLV max
DLV ave
DLV min

Fig. 1. Computing minimal diagnoses for faulty digital circuits. On the left all diag-
noses are computed, whereas only one diagnosis on the right.

as follows. First, a random tree is generated using the inverse Pruefer algorithm.
The leaves of the tree corresponding to the inputs of the digital circuit are as-
signed random Boolean values. The intermediate nodes are assigned random
logical operations corresponding to the intermediate gates of the circuit. The
gate at the root node of the tree produces the output of the circuit. The value of
the output is calculated and flipped in order to obtain faulty behaviour for the
circuit. The number of nodes N in the tree forming the digital circuit varies from
16 to 28. For each number of nodes we generate 100 random instances. These
instances are available at http://www.tcs.hut.fi/Software/circ2dlp/. Typ-
ically an instance has less than ten minimal diagnoses when N = 28.

The measured running time is the translation time of circ2dlp plus the
duration of the search for stable models using GnT or dlv. The actual transla-
tion times are negligible, however. We use user+system time of /usr/bin/time
command in UNIX. All the tests were run under the Debian GNU/Linux 2.4.26
operating system on a AMD Athlon XP 2000+ computer with 1 GB memory.

Results are illustrated in Fig. 1. In the case of finding all minimal diagnoses,
GnT outperforms dlv, but in the case of finding a single minimal diagnosis
dlv is superior to GnT in most of the cases. One obvious advantage of our
translation-based approach is that it is rather easy to use different solvers and
thus gain from their development in the future.

We also compared briefly the performance of our approach with that of the
circum system [15] using some instances of our diagnosis benchmark. Our ex-
periments suggest that in the case of parallel circumscription the running times
for the circum system are one or two orders of magnitude higher than running
times for circ2dlp+GnT. To compare the systems in the case of prioritized
circumscription we used our diagnosis benchmarks and added random priorities
for the minimized atoms varying the number of priority classes k. These exper-
iments suggest that our approach is able to compete with circum when k is
small, but as k grows, the quadratic blowup implied by (2) becomes apparent.

There is also a diagnosis front-end in dlv [2], but there are restrictions in
the case of minimal diagnoses: the theory has to be non-disjunctive and the

circ2dlp — Translating Circumscription into DLP 409

abnormality atoms may only appear negatively. This limits the applicability of
the front-end so that our diagnosis benchmark cannot be represented naturally.

References

1. J. de Kleer and K. Konolige. Eliminating the fixed predicates from a circumscrip-
tion. Artificial Intelligence, 39(3):391–398, July 1989.

2. T. Eiter, W. Faber, N. Leone, and G. Pfeifer. The diagnosis frontend of the DLV
system. AI Communications, 12(1-2):99–111, 1999.

3. T. Eiter and G. Gottlob. On the computational cost of disjunctive logic program-
ming: Propositional case. Annals of Math. and AI, 15:289–323, 1995.

4. M. Gelfond and V. Lifschitz. Compiling circumscriptive theories into logic pro-
grams. In Proceedings of the 7th National Conference on Artificial Intelligence,
pages 455–449, St. Paul, MN, August 1988. AAAI Press.

5. M. Gelfond and V. Lifschitz. Classical negation in logic programs and disjunctive
databases. New Generation Computing, 9:365–385, 1991.

6. K. Inoue and C. Sakama. Negation as failure in the head. Journal of Logic Pro-
gramming, 35(1):39–78, 1998.

7. T. Janhunen, I. Niemelä, D. Seipel, P. Simons, and J.-H. You. Unfolding partiality
and disjunctions in stable model semantics. ACM Transactions on Computational
Logic, 2005. To appear, see http://www.acm.org/tocl/accepted.html.

8. T. Janhunen and E. Oikarinen. Capturing parallel circumscription with disjunctive
logic programs. In Proceedings of the 9th European Conference on Logics in Ar-
tificial Intelligence, JELIA’04, pages 134–146, Lisbon, Portugal, September 2004.
Springer-Verlag. LNAI 3229.

9. J. Lee and F. Lin. Loop formulas for circumscription. In Proceedings of 19th
National Conference on Artificial Intelligence, pages 281–286, San Jose, California,
USA, July 2004. The MIT Press.

10. N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, and F. Scarcello. The DLV
system for knowledge representation and reasoning. ACM Transactions on Com-
putational Logic, 2005. To appear, see http://www.acm.org/tocl/accepted.html.

11. V. Lifschitz. Computing circumscription. In Proceedings of the 9th International
Joint Conference on Artificial Intelligence, pages 121–127, Los Angeles, California,
USA, August 1985. Morgan Kaufmann.

12. T.C. Przymusinski. Stable semantics for disjunctive programs. New Generation
Computing, 9:401–424, 1991.

13. R. Reiter. A theory of diagnosis from first principles. Artificial Intelligence, 32:57–
95, 1987.

14. C. Sakama and K. Inoue. Embedding circumscriptive theories in general disjunctive
programs. In Proceedings of the 3rd International Conference on Logic Program-
ming and Nonmonotonic Reasoning, pages 344–357. Springer-Verlag, 1995.

15. T. Wakaki and K. Inoue. Compiling prioritized circumscription into answer set
programming. In Proceedings of the 20th International Conference on Logic Pro-
gramming, pages 356–370, Saint-Malo, France, September 2004. Springer-Verlag.

	Introduction
	Translation-Based Approach
	Some Instructions for Use
	Experiments

