Skip to main content

Loops: Relevant or Redundant?

  • Conference paper
Logic Programming and Nonmonotonic Reasoning (LPNMR 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3662))

Abstract

Loops and the corresponding loop formulas play an important role in answer set programming. On the one hand, they are used for guaranteeing correctness and completeness in SAT-based answer set solvers. On the other hand, they can be used by conventional answer set solvers for finding unfounded sets of atoms. Unfortunately, the number of loops is exponential in the worst case. We demonstrate that not all loops are actually needed for answer set computation. Rather, we characterize the subclass of elementary loops and show that they are sufficient and necessary for selecting answer sets among the models of a program’s completion. Given that elementary loops cannot be distinguished from general ones in atom dependency graphs, we show how the richer graph structure provided by body-head dependency graphs can be exploited for this purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model semantics. Artificial Intelligence 138, 181–234 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Leone, N., Faber, W., Pfeifer, G., Eiter, T., Gottlob, G., Koch, C., Mateis, C., Perri, S., Scarcello, F.: The DLV system for knowledge representation and reasoning. ACM Transactions on Computational Logic (2005) (to appear)

    Google Scholar 

  3. Babovich, Y., Lifschitz, V.: Computing answer sets using program completion. Unpublished draft (2003)

    Google Scholar 

  4. Lin, F., Zhao, Y.: Assat: computing answer sets of a logic program by sat solvers. Artificial Intelligence 157, 115–137 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  5. Lierler, Y., Maratea, M.: Cmodels-2: Sat-based answer sets solver enhanced to non-tight programs. In: Lifschitz, V., Niemelä, I. (eds.) LPNMR 2004. LNCS (LNAI), vol. 2923, pp. 346–350. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  6. Clark, K.: Negation as failure. In: Gallaire, H., Minker, J. (eds.) Logic and Data Bases, pp. 293–322. Plenum Press, New York (1978)

    Google Scholar 

  7. Fages, F.: Consistency of clark’s completion and the existence of stable models. Journal of Methods of Logic in Computer Science 1, 51–60 (1994)

    Google Scholar 

  8. Lifschitz, V., Razborov, A.: Why are there so many loop formulas? ACM Transactions on Computational Logic (to appear)

    Google Scholar 

  9. Linke, T.: Suitable graphs for answer set programming. In: Vos, M.D., Provetti, A. (eds.) Proceedings of the Second International Workshop on Answer Set Programming. CEUR Workshop Proceedings, pp. 15–28 (2003)

    Google Scholar 

  10. Apt, K., Blair, H., Walker, A.: Towards a theory of declarative knowledge. In: Minker, J. (ed.) Foundations of Deductive Databases and Logic Programming, pp. 89–148. Morgan Kaufmann Publishers, San Francisco (1987)

    Google Scholar 

  11. Przymusinski, T.: On the declarative semantics of deductive databases and logic programs. In: Minker, J. (ed.) Foundations of Deductive Databases and Logic Programming, pp. 193–216. Morgan Kaufmann Publishers, San Francisco (1988)

    Google Scholar 

  12. http://www.cs.uni-potsdam.de/~linke/nomore

  13. Papadimitriou, C., Sideri, M.: Default theories that always have extensions. Artificial Intelligence 69, 347–357 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  14. Janhunen, T.: Comparing the expressive powers of some syntactically restricted classes of logic programs. In: Lloyd, J., Dahl, V., Furbach, U., Kerber, M., Lau, K., Palamidessi, C., Pereira, L., Sagiv, Y., Stuckey, P. (eds.) Proceedings of the First International Conference on Computational Logic, pp. 852–866. Springer, Heidelberg (2000)

    Google Scholar 

  15. Dix, J., Furbach, U., Niemelä, I.: Nonmonotonic reasoning: Towards efficient calculi and implementations. In: Robinson, J., Voronkov, A. (eds.) Handbook of Automated Reasoning, pp. 1241–1354. Elsevier/MIT Press (2001)

    Google Scholar 

  16. van Gelder, A., Ross, K., Schlipf, J.: The well-founded semantics for general logic programs. Journal of the ACM 38, 620–650 (1991)

    MATH  Google Scholar 

  17. Lee, J., Lifschitz, V.: Loop formulas for disjunctive logic programs. In: Palamidessi, C. (ed.) ICLP 2003. LNCS, vol. 2916, pp. 451–465. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gebser, M., Schaub, T. (2005). Loops: Relevant or Redundant?. In: Baral, C., Greco, G., Leone, N., Terracina, G. (eds) Logic Programming and Nonmonotonic Reasoning. LPNMR 2005. Lecture Notes in Computer Science(), vol 3662. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11546207_5

Download citation

  • DOI: https://doi.org/10.1007/11546207_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28538-0

  • Online ISBN: 978-3-540-31827-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics