
Reihe Informatik
007 / 2005

Main Memory Implementations for
Binary Grouping

Norman May Guido Moerkotte

University of Mannheim

norman|moer@pi3.informatik.uni-mannheim.de

Main Memory Implementations for Binary Grouping

Norman May and Guido Moerkotte

University of Mannheim
B6, 29

68131 Mannheim, Germany
norman|moer@pi3.informatik.uni-mannheim.de

Abstract. An increasing number of applications depend on efficient storage and
analysis features for XML data. Hence, query optimization and efficient evaluation
techniques for the emerging XQuery standard become more and more important.
Many XQuery queries require nested expressions. Unnesting them often introduces
binary grouping.
We introduce several algorithms implementing binary grouping and analyze their time
and space complexity. Experiments demonstrate their performance.

1 Motivation

Optimization and efficient evaluation of queries over XML data becomes more and more
important because an increasing number of applications work with XML data. In XQuery
– the emerging standard query language for XML – queries including restructuring or ag-
gregation often require nested queries. For example, the following query returns for each of
the fifty richest persons of the world the number of countries with smaller gross domestic
product (GDP) than the person’s total capital.

for $p in document("richest-fifty.xml")//person

return

<result>

<person> { $p/name } </person>

<count-richer> {

count(for $c in document("countries.xml")//country

where $p/capital gt $c/gdp

return $c) }

</count-richer>

</result>

This query combines data of two different documents and performs grouping and aggre-
gation over the XML data. Note that each country can contribute to the count of multiple
persons, and that a non-equality predicate is used to relate items from both documents.

Direct nested evaluation of this query is highly inefficient because for each person the
nested FLWR expression is evaluated, demanding a scan of the countries document. Fortu-
nately, the query can be unnested introducing binary grouping [19]. Moreover, optimizers
can then apply algebraic equivalences to further improve performance. However, efficient
implementations for binary grouping are not available yet. If they were, the optimizer could
choose among them, ensuring an efficient query evaluation. We fill this gap and present sev-
eral main-memory algorithms for implementing binary grouping. Further, we analyze their
time and space complexity. The different algorithms will require different conditions to hold.
Enumerating them then enables the query optimizer to select the most efficient implemen-
tation of binary grouping for a given situation. Experiments demonstrate that performance
can be improved by orders of magnitude. Due to space constraints, we restrict ourselves
to the formulation of algorithms working on sets of tuples. However, an extension to bags
or sequences is not difficult (see Section 5). Let us stress that binary grouping is useful

not only in the context of XQuery. It has also been successfully applied to unnest nested
OQL-queries [21, 5] and to evaluate complex OLAP queries [2].

The paper is structured as follows. Section 2 presents the definition of binary grouping
and surveys properties of predicates and aggregate functions. They form the basis for the
selection of an efficient implementation for the binary grouping operator. The main contri-
bution of this paper – Section 3 – introduces several algorithms for binary grouping and
analyzes their time and space complexity. Section 4 gives some performance results. Sec-
tion 5 discusses how to extend our algorithms to bags or sequences and its implications. In
Section ?? we outline how the binary grouping operator can be integrated into query opti-
mizers. We summarize algebraic equivalences which ensure that query optimizers can find
efficient query evaluation plans containing the binary grouping operator. Before concluding
this paper, Section 6 reviews related work.

2 Preliminaries

Before we can describe the implementations of the binary grouping operator, we need to
introduce some notation and definitions. Most of the material is well known.

Based on the properties we define shortly, we can choose the most efficient implementa-
tion of the binary grouping operator.

2.1 The Algebra

We will only present the operators needed for our exposition. For an extensive treatment of
our algebra we refer to [5]. Our framework is extendible to sequences as required in XQuery
(cf. [19] for this algebra and related work).

The algebra works on sets of unordered tuples. Each tuple contains a set of variable
bindings representing the attributes of the tuple. Single tuples are constructed by using the
standard [·] brackets. The concatenation of tuples and functions is denoted by ◦. The set
of attributes defined for an expression e is defined as A(e). The set of free variables of an
expression e is defined as F(e).

For an expression e1 possibly containing free variables and a tuple t, e1(t) denotes the
result of evaluating e1 where bindings of free variables are taken from variable bindings
provided by t – this requires F(e1) ⊆ A(t). Note that this can also be used for function
application. We denote NULL values by .

The semantics of the binary grouping operator is defined by the map operator (χ) and
the selection (σ). If their input is the empty set (∅), their output is also empty.

Let us briefly recall selection with predicate p defined as σp(e) := {x|x ∈ e, p(x)} and
map defined as χa:e2

(e1) := {y ◦ [a : e2(y)]|y ∈ e1}. The latter extends a given input tuple
y ∈ e1 by a new attribute a whose value is computed by evaluating e2(y).

Definition 1. We define the binary grouping operator as:

e1Γg;A1θA2;fe2 := χg:f(σA1θA2
(e2))(e1)

In this definition we call e1 grouping input and e2 aggregation input.

Note that the result of the binary grouping operator is empty if and only if the grouping
input evaluates to an empty set. When the aggregation input is empty we assume that f(∅)
is well-defined, and f(∅) is returned as the result. In many cases f will be an aggregation
function such as sum. Figure 1 presents an example of the evaluation of the map operator
and the binary grouping operator. We will reuse this example in the remainder of the paper.
By id we denote the identity function.

2

R1

A1

1
2
3

R2

A2 B

1 2
1 3
2 4
2 5

(R1)Γa;A1=A2;id(R2) ≡
χa:id(σA1=A2

(R2))(R1)

A1 a

1 〈[1, 2], [1, 3]〉
2 〈[2, 4], [2, 5]〉
3 〈[3,]〉

(R1)Γa;A1=A2;count(R2) ≡
χa:count(σA1=A2

(R2))(R1)

A1 a

1 2
2 2
3 0

Fig. 1. Example for map operator and binary grouping operator

2.2 Properties of Predicates

To find the most efficient implementation for binary grouping, we take a closer look at
the properties of predicates. Therefore, we distinguish, for example, symmetric, irreflexive

predicates (6=) from antisymmetric, transitive predicates (<,≤, >,≥).

2.3 Properties of Aggregate Functions

Aggregate functions can be decomposable and reversible [4]. These properties help us to find
the most efficient implementation for binary grouping. To make the paper self-contained, we
recall the definitions of these properties.

The definitions are given in terms of sets, but extensions to bags and sequences are valid.
Only the definition of disjoint set union and the empty set need to be adjusted to the bulk
type as follows:

bulk type ∅
.
∪

set empty set disjoint set union
bag empty bag bag union

sequence empty sequence append sequence

Let N be the codomain of a scalar aggregate function f : X → N over some set X of
tuples. In the definitions below, we will make use of (sub-) sets X , Y , and Z, with X = Y

.
∪ Z

and Y ∩ Z = ∅.

Definition 2. We say f : X → N is decomposable if there exist functions

α : X → N ′

β : N ′,N ′ → N ′

γ : N ′ → N

with f(X) = γ(β(α(Y), α(Z)))

Decomposable aggregate functions allow us to aggregate on subsets of the whole data and
combine the results of these computations to the aggregate over the whole data. Obviously,
the common aggregate functions are decomposable.

Definition 3. A decomposable scalar function f : X → N is called reversible if for β
there exists a function β−1 : N ′,N ′ → N ′ with

f(Z) = γ(β−1(α(X), α(Y)))

for all X, Y , and Z with X = Y
.
∪ Z and Y ∩ Z = ∅.

Reversible scalar aggregates allow us to compute the value of an aggregate function over
some subset by computing the aggregate function over some superset. Using this result, we
can use the inverse function β−1 to compute the desired value for the subset. As examples
sum, count, and avg are reversible, min and max are not.

3

α

A1 s c

1 5 2
2 9 2
3 0 0

14 4
(a) after matching

β−1

A2 s c

1 9 2
2 5 2
3 14 4

γ

A2 a

1 4.5
2 2.5
3 3.5

(b) 6=-table

β

A2 a

1 14 4
2 9 2
3 0 0

γ

A2 a

1 3.5
2 4.5
3

(c) ≤-table

Fig. 2. Example of the reversible aggregate function avg

For function avg, we define α(X) = [s : sum(X), c : |X |] computing the sum and
cardinality of each group, β([s : s1, c : c1], [s : s2, c : c2]) = [s : s1 + s2, c : c1 + c2],
β−1([s : s1, c : c1], [s : s2, c : c2]) = [s : s1 − s2, c : c1 − c2] combining the sums and counts of
two groups, and γ([s : s1, c : c1]) = [a : s1/c1] yielding the average for each group.

The θ-table proposed in [4] exploits the properties of decomposable and reversible aggre-
gate functions. Conceptually, the θ-table is an array with an entry for each group that stores
data collected during aggregation. First, partial aggregation for some subset of the match-
ing data is done. Then the results of the first step are combined to the final result for each
group. The first step avoids duplicate work and is the source of improved efficiency, while
the second step benefits from the properties of the predicate and the aggregation function.

To make this more concrete, let us assume that after matching the grouping input and
aggregation input the θ-table contains the data shown in Figure 2(a). In case of the 6=-table,
aggregation is done with data matched with = instead of 6=. In addition, the values for sum
and count over the whole data set are collected in an auxiliary entry shown in the last row
of the table (c.f. Fig. 2(b)). This auxiliary entry is used to obtain the sum and count values
of each group using function β−1. The final result is computed using function γ. For the first
row in Figure 2(b) we have β−1([14, 4], [5, 2]) = [14 − 5, 4 − 2] = [9, 2] and γ([9, 2]) = 4.5.

With a ≤-table aggregation is only done on the closest matching group. The final result of
each group is computed in a walk backwards through the table, incrementally combining the
aggregated values of each group using function β. Applying function γ to each group yields
the final result for each group. For the second row in Figure 2(c), we have β([0, 0], [9, 2]) =
[9, 2] and γ([9, 2]) = 4.5.

3 Algorithms

Before we present the algorithms for the binary grouping operator, let us enumerate desirable
characteristics of these implementations. First, these implementations must be correct. For
each algorithm, we will clearly state assumptions that must be met to apply this algorithm.
Second, these implementations should be flexible enough to support duplicate-preserving or
order-preserving variations. Hence, they should support different bulk types for both the
grouping input and the aggregation input, particularly the ones mentioned in Section 2. In
Section 5 we describe how our implementations must be accommodated to these require-
ments.

3.1 Notation

The following notation will be used in the complexity formulas to describe the time and
space complexity of the various algorithms:

f := duplication factor

g := storage space per group

α := load factor of the hash table

l := Θ(1 + α)

n := max(|e1|, |e2|)

4

The duplication factor as defined in [1] is the ratio of the number of tuples before duplicate
elimination to the number of tuples after duplicate elimination. Note that α, the load factor
of the hash table, changes while values are inserted into the hash table. We will ignore this
fact and use the load factor as an upper bound after all values have been inserted into
the hash table. Therefore, all complexity formulas will represent upper bounds. For brevity
reasons, we denote l = Θ(1 + α) as the time for a lookup in the hash table [6], and n as the
maximum cardinality of both inputs.

In the exposition of each alternative algorithm we will follow the same basic structure:
First, we state the assumptions on the predicate and the aggregate function as introduced
in Section 2. Then, we present the algorithm in pseudo code and deduce the time and
space complexity from the code. Finally, we explain implementation details. All operators
are implemented as iterators [10] consisting of an open function for initialization, a next

function which returns one result tuple of the operator for each call, and a close function
that does some deinitialization. The implementations in our experiments are set-based. The
pseudo code uses the following notations:

p(x, y) – returns the result of evaluating the predicate A1θA2, where
A1 ∈ A(e1), A2 ∈ A(e2), and θ a comparison as described in
Section 2

T – a tuple of either input
G – a tuple representing a group

GT – an auxiliary grouping tuple
ζα(G) – initializes a tuple G appropriately for α,

α(G, T) – returns the result of evaluating function α on a group G with
tuple T from the aggregation input

β(G1, G2),
β−1(G1, G2)

– return the result of evaluating β and β−1 on groups G1 and G2

γ(G) – returns the result of γ on a group G

Figure 3 summarizes the algorithms we present in this paper. The left part of the table
contains the algorithms with their time and space complexity derived from their code. The
right part of the table surveys the assumptions for each algorithm. Thus, this table can be
used as a guide to the most efficient implementation. The assumptions are related to the
inputs e1 and e2, the predicate A1θA2, and the function f as used in Definition 1.

The last column indicates the ratio of improvement in execution time over the direct
nested evaluation of the nested query. For simplicity, we restrict ourselves only to sorted
input for both the grouping and aggregation input for an input size that all algorithms were
capable to evaluate. We use the algorithm NestedSort as the basis defining it as ∆ = 1.0.
For some algorithms ranges for ∆ are given because they are applicable for different types of
predicates. Values of ∆ > 1.0 indicate an improvement by a factor ∆. Obviously, algorithms
with more assumptions evaluate up to three orders of magnitude faster than the nested-
loops-based algorithms with fewer assumptions. The algorithms at the bottom of the table
perform in linear time compared to quadratic time in the general case of nested evaluation.
In general algorithms that require sorted input demand constant space while hash-based
algorithms use linear space in the size of the grouping input.

3.2 Direct Evaluation of Nested Query

Nested evaluation is most generally applicable and the basis of comparison for implementa-
tions of the binary grouping operator.

Assumptions There are no assumptions on the structure of the nested query.

Implementation In general, nested queries are implemented by calling the nested query for
each tuple given to the map operator. However, more efficient techniques were proposed to
evaluate nested queries [12]. The general idea is to memoize the result of the nested query

5

Algorithm Assumptions
Name Time Space e1 e2 A1θA2 f ∆

Nested l
f
|e1||e2|

g

f
|e1| - - - - 0.95-1.2

NLBinGroup l
f
|e1||e2|+ (l + 1

f
)|e1|

g

f
|e1| - - - - 0.65-0.75

HashBinGroup (l + 1
f
)|e1|+

O((|e1|
f

+ |e2|) lg |e1|
f

)

(1+g)|e1|
f

- - ¬SY, T D 1300

TreeBinGroup
|e1|
f

+ O((|e1|+ |e2|) lg |e1|
f

) g

f
|e1| - - ¬SY, T D 1300

EQBinGroup l(|e1|+ |e2|) + |e1|
f

g

f
|e1| - - SY RE 1850

NestedSort 1
f
|e1||e2| O(1) S - - - 1.0

SortBinGroup 1
f
|e1||e2| O(1) S - - - 1.1-1.2

LTSortBinGroup |e1|+ |e2| O(1) S S ¬SY, T - 2100

S sorted SY symmetric
T transitive

D decomposable
RE reversible

Fig. 3. Assumptions and complexity for the implementations of the binary grouping operator

for each binding of the nested query’s free variables. When the same combination of free
variables is encountered, the result of the previous computation is returned. In general, a
hash table would be employed for memoizing which demands linear space in the size of the
grouping input. For sorted grouping input, only the last result needs to be stored resulting
in constant space.

We have implemented both strategies, and we will refer to these strategies by Nested

and NestedSort. Because of its simplicity we omit the pseudo code for the nested strate-
gies and restrict ourselves to the analysis of the complexity (cf. Fig. 3). Both strategies
expose quadratic time complexity because the nested query must be executed for each value
combination of free variables generated by the outer query. In absence of duplicates, this is
also true when memoization is used.

3.3 Nested-Loop-Implementation of Binary Grouping

NLBinGroup

Assumptions There are no assumptions on the predicate, the aggregate function, or the
sortedness of any input.

Implementation We call the naive nested-loops-based implementation proposed in [2, 10]
NLBinGroup. The pseudo code for this algorithm is shown in Figure 4(a). Most work is
done in function open. First, the grouping input is scanned, and all groups are detected
and stored in a hash table (l|e1| time). Most of the following algorithms will follow this
pattern. Next, the aggregation input is scanned once for each group in the hash table. The
tuples from the aggregation input are matched with the tuple of the current group using
the predicate. This matching phase is similar to a nested-loop join and requires O(l

f
|e1||e2|)

time. When a match is found, function α is used for aggregation. After this matching phase
a traversal through all groups in the hash table is done to execute function γ to finalize the

groups (|e1|
f

time). The complete complexity formulas can be found in Figure 3.
From the complexity equations we see that this algorithm introduces some overhead

compared to the hash-based case of Nested because several passes through the hash table
are needed. Hence, the time complexity is slightly higher then the direct nested evaluation.
The following sections discuss more efficient algorithms for restricted cases.

3.4 Implementation of Binary Grouping with = or 6=-Predicate

EQBinGroup

6

Open

1 open e1

� detect groups
2 while T ← next e1

3 do G ← HT.Lookup(T)
4 if G does not exist
5 then G ← HT.Insert(T)

� initialize group
6 ζα(G)
7 close e1

� match aggregation input to groups
8 open e2

9 while T ← next e2

10 do for each group G
in the HT

11 do if p(G,T)
12 then G← α(G, T)
13 close e2

14 htIter ← HT.Iterator

Next

� next group in the hash table
1 if G ← htIter .Next

2 then return γ(G)
3 else return

Close

1 HT.CleanUp

(a) NLBinGroup

Open

1 open e1

2 ζα(GT) � initialize group tuple
3 while T ← next e1

4 do G ← HT.Lookup(T)
5 if G does not exist
6 then G ← HT.Insert(T)

� initialize group
7 ζα(G)
8 close e1

9 open e2

10 while T ← next e2

11 do G ← HT.Lookup(T)
12 if G exists
13 then G← α(G ,T)
14 if predicate is 6=
15 then GT ← α(GT,T)
16 close e2

17 htIter ← HT.Iterator

Next

1 if G ← htIter .Next

2 then if predicate is 6=
3 then G← β−1(G ,GT)
4 return γ(G)
5 else return

Close

1 HT.CleanUp

(b) EQBinGroup

Fig. 4. Pseudo code of NLBinGroup and EQBinGroup

Assumptions For the predicate, we assume a conjunction of symmetric predicates (e.g. =
or 6=). All clauses need to be of the same type. That is, all clauses either can be equality or
inequality. In Section 5 we explain how to relax this constraint. If the predicate is not an
equivalence relation, the aggregate function must be decomposable and reversible.

Implementation We generalize the 6=-Table defined in [4] for predicate 6=. Instead of an
array, we use a hash table to store an arbitrary number of groups. When collision lists do
not degrade, the asymptotic runtime will not change, however. The algorithm in Figure 4(b)
extends NLBinGroup.

In function Open detecting all groups requires l|e1| time. In line 11 we do matching with
equality for both kinds of predicates. But in line 15 all tuples are aggregated in a separate
tuple GT using function α if the predicate is 6=. Alltogether matching requires l|e2| time.

When we return the result in a final sweep through the hash table (|e1|
f

time) we have

to apply the reverse function β−1 when the predicate is 6= (cf. line 3 in Next). For that,
we use the auxiliary grouping tuple GT and the group G matched with = and compute the
aggregation result for 6=. For scalar aggregate functions, this computation can be done in
constant time and space. For both types of predicates, groups are finalized using function γ.

Compared to the directly nested evaluation and hash-based grouping, the time complex-
ity can be improved to linear time and linear space complexity (cf. Fig. 3).

Figure 5 shows how EQBinGroup implements the idea of the 6=-table introduced in
Section 2. Figure 5(b) shows the content of the hash table after function open. For each

7

R1

A1

1
2
3

R2

A2 B

1 2
1 3
2 4
2 5

(a) Input data

(R1)Γa;A1 6=A2;avg(B)(R2)

A1 a

1 〈[1, 5, 2]〉
2 〈[2, 9, 2]〉
3 〈[3, 0, 0]〉

GT 〈[, 14, 4]〉
(b) After open

(R1)Γa;A1 6=A2;avg(B)(R2)

A1 a

1 〈[1, 4.5]〉
2 〈[2, 2.5]〉
3 〈[3, 3.5]〉

GT 〈[, 14, 4]〉
(c) Final result

Fig. 5. Example of the evaluation of EQBinGroup

detected group, the tuple for attribute a stores the value of attribute A1, the sum, and the
count of all matching tuples of the group. The additional tuple GT is added at the bottom of
the table. Note that the group with value 3 did not find any match, but a properly initialized
tuple for it exists in the hash table. Applying function β−1 to each group and GT and then
function γ as described in Section 2 produces the final result (cf. Fig. 5(c)).

3.5 Implementation of Binary Grouping with ≤-Predicate

Assumptions These algorithms are applicable if the predicate is antisymmetric, transitive,
and the aggregate function is decomposable; no assumptions are made on the sortedness of
any inputs.

However, the predicate may only contain exactly one clause. Similar to the EQBinGroup

operator, we can relax this constraint. We will come back to this point in Section 5.
In [4] an implementation of θ-Tables based on an array containing the groups is proposed.

The authors already mentioned the idea of using a balanced search tree instead of an array.
However, they missed to give the precise conditions for applicability we listed above.

In this paper we investigate a hash table and a balanced binary search tree to implement
the ≤-table proposed in [4]. The advantage of this approach compared to using an array is
that no upper bound for the number of groups needs to be known. Since the assumptions
are the same for both alternatives, we will only discuss implementation details.

HashBinGroup

Implementation This algorithm, outlined in Figure 6(a), extends the NLBinGroup opera-
tor. It is formulated in terms of predicate <.

First, all groups are identified using a hash table (l|e1| time). Before matching the tuples

from the aggregation input, these groups are sorted according to the predicate (O(|e1|
f

lg |e1|
f

)

time). This can be done in a separate array in which the items in the hash table are ref-
erenced. In the matching phase binary search is employed to find the closest group that

still matches with the predicate (O(|e2| lg
|e1|
f

) time). Aggregation is done using function α.

To compute the final result, one walk backwards through the array visits each group (|e1|
f

time). First, the aggregated values of distinct groups are combined using function β. Then,
function γ computes the final result of the group. One must be careful not to destroy the
aggregated result of the previous group when applying function γ. The overall complexity
can be found in Fig. 3.

TreeBinGroup

Implementation In an alternative implementation shown in Figure 6(b), we use a balanced

search tree (e.g. a Red-Black-Tree) to identify all groups (O(|e1| lg
|e1|
f

) time). The search
tree structure implies the inclusion of groups. Thus, no sorting is needed after this step.

Matching of tuples is done by a lookup in the search tree (O(|e2| lg
|e1|
f

) time). When a

8

Open

1 open e1

2 for T ← next e1

3 do G ← HT.Lookup(T)
4 if G does not exist
5 then G ← HT.Insert(T)

� initialize group
6 ζα(G)
7 close e1

8 sort groups by matching
predicate of e1

9 open e2

10 for T ← next e2

11 do G ← minimal group in
≤-Table ≥ T

12 G ← α(G , T)
13 close e2

14 htIter ← ≤-Table.Iterator

Next

� next group in the ≤-table
1 if G ← htIter .Next

2 then G← β(G, successor(G))
3 return γ(G)
4 else return

Close

1 HT.Cleanup

2 ≤-Table.CleanUp
(a) HashBinGroup

Open

1 open e1

2 for T ← next e1

3 do if == RB-Tree.Lookup(T)
4 then G← RB-Tree.Insert(T)

� initialize group G

5 ζα(G)
6 close e1

7 open e2

8 while T ← next e2

9 do G ← minimal group in
RB-Tree ≥ T

10 G← α(G, T)
11 close e2

12 G ← RB-Tree.Maximum

Next

1 if G 6= RB-Tree.Minimum

2 then G← β(G,RB-Tree.Succ(G))
3 G′ ← γ(G)
4 G ← RB-Tree.Pred(G)
5 return G ′

6 else return

Close

1 RB-Tree.CleanUp

(b) TreeBinGroup

Fig. 6. Pseudo code of HashBinGroup and TreeBinGroup

group cannot be found, matching and aggregation is done on the last node in the tree
that was visited. As with the previous algorithm, a backward traversal through the tree is

done to aggregate the final result for each group using function γ (|e1|
f

time). The resulting
complexity is summarized in Fig. 3.

Comparison of the Implementations Figure 7 resumes with the example in Section 2 to trace
the evaluation of HashBinGroup and TreeBinGroup showing the state after open. Note
that the groups must be sorted to find the closest matching group for aggregation with
function α. This is achieved either by sorting the groups in the hash table or implicitly
during insertion into the binary search tree. Each tuple stores the value of the grouping
attribute and the aggregated result for the group. The result of the final walk backwards
through the ≤-table computes the final result using function β and γ.

When we compare the complexity formulas we observe that sorting is dominant in Hash-

BinGroup, and insertion is dominant in TreeBinGroup. Note that in both cases, we can
remove duplicates during insertion. The hash-based implementation removes duplicates be-
fore sorting. In contrast, lookup of all items in e1 in the balanced search tree demands

O(|e1| lg
|e1|
f

) time. This gives the hash-based implementation a potential advantage. On the
other hand, the hash-based implementation does not degrade nicely when the collision lists
on the hash table are not bounded by a constant any more. This can lead to linear search
time in the collision lists (l ∈ O(|e1|), where l is the size of the collision list). Thus, the
hash-based implementation depends on a good hash function.

9

R1

A1

1
2
3

R2

A2 B

1 2
1 3
2 4
2 5

(a) Input data

(R1)Γa;A1≤A2;sum(B)(R2)

A1 a

1 〈[1, 5]〉
2 〈[2, 9]〉
3 〈[3, 0]〉

(R1)Γa;A1≤A2;sum(B)(R2)

A1 a

1 〈[1, 14]〉
2 〈[2, 9]〉
3 〈[3, 0]〉

(b) HashBinGroup

(R1)Γa;A1≤A2;sum(B)(R2)

〈[2, 9]〉

〈[1, 5]〉 〈[3, 0]〉

(R1)Γa;A1≤A2;sum(B)(R2)

〈[2, 9]〉

〈[1, 14]〉 〈[3, 0]〉
(c) TreeBinGroup

Fig. 7. Example for the evaluation of HashBinGroup and TreeBinGroup

Open

1 open e1

2 open e2

Next

1 if G ← next group in e1

2 then while T ← next e2

3 do if p(G, T)
4 then G← α(G, T)
5 close e2

6 open e2

7 return γ(G)
8 else return

Close

1 close e1

2 close e2

(a) SortBinGroup

Open

1 open e1

2 open e2

3 ζα(GT) � initialize group tuple

Next

1 if G ← next group in e1

2 then copy group attributes of

G into GT

3 while (T ← next e2) ∧
p(GT ,T)

4 do GT ← α(GT, T)
� keep aggregated result in GT

5 G← γ(GT)
6 return G
7 else return

Close

1 close e1

2 close e2

(b) LTSortBinGroup

Fig. 8. Pseudo code of SortBinGroup and LTSortBinGroup

3.6 Implementations of Binary Grouping on Sorted Input

When the grouping input or the aggregation input is sorted, we can improve the algorithm
NLBinGroup.

SortBinGroup

Assumptions First, we assume that only the grouping input is sorted.

Implementation Figure 8(a) presents the pseudo code for this algorithm. With sorted group-
ing input, groups can be detected efficiently because only subsequent tuples need to be
compared (line 1 in Next). This can be done in constant space.

Matching the tuples of the aggregation input can be done with an algorithm similar to a
1:N sort-merge join, i.e. a sort-merge join algorithm that assumes that no duplicates occur
on the left input. In the general case of an arbitrary predicate, the aggregation input needs

10

to be scanned once for each group. This is done in O(1
f
|e1||e2|) time. It is also the reason

for having no assumptions on the sortedness of the aggregation input.
Since the algorithm iterates through each group and matches all tuples from the aggre-

gation input, groups does not have to be combined. Thus, the aggregation function need not
be decomposable.

LTSortBinGroup

Assumptions In addition to the assumptions of the previous algorithm, we now assume a
antisymmetric and transitive predicate (e.g. <, or ≥). Both inputs need to be sorted. The
direction of sorting depends on the predicate used. For example, for predicates < and ≤
both inputs need to be sorted in descending order, for > and ≥ in ascending order. No
restrictions apply to the aggregation function.

Implementation These assumptions allow us to scan both inputs only once resulting in a
time complexity of |e1| + |e2|. Each group resumes aggregation on the aggregated result of
the previous group. For aggregation, we always use function α. The result of finalizing a
group using function γ is stored in a separate tuple, so that the current value of aggregation
is not destroyed (cf. line 5 in Next). The algorithm stated in Figure 8(b) is formulated in
terms of < or ≤ as predicates.

4 Experiments

To compare the different implementations of the binary grouping operator, we vary the
parameters of the expression e1Γg;A1θA2;fe2, i.e. function f , predicate θ and both input
expressions e1 and e2.

From the universe of possible predicates, we investigated the predicates < and 6= to
measure the possible improvements by using more efficient algorithms.

Since different aggregate functions will not fundamentally change the results of our exper-
iments, we restricted ourselves to the aggregate function sum. This function is decomposable
and reversible, which is a prerequisite for some of the efficient algorithms.

We implemented all algorithms in a prototype run-time system using GCC C++ version
3.3.4. For hash tables we used the STL hash map. All queries were executed five times on
an Intel Pentium M with 1.4 GHz and 512MB RAM running Linux with 2.6.8 Kernel. The
average time of all executions was plotted. Query execution was aborted when the query
demanded more than 10 minutes of elapsed time.

4.1 Data Set

The cardinality of the input sequences e1 and e2 ranged between 128 and 8388608. The
largest data set contained 63MB of data. The input for a query was loaded into main memory
before executing the queries. The time consumed for this was subtracted from all measured
times. Each input tuple consumed approx. 30 bytes of main memory – including overhead
by the memory manager of the operating system. Hence, the largest dataset consumed all
physical memory for the input data. In each query both the grouping input e1 and the
aggregation input e2 were of equal size. We used different types of distributions for the
input to investigate their impact on the performance of the different algorithms. The input
data consisted of random numbers.

uniform distribution which might contain duplicates
normal distribution for input of size x, we used µ = x/2 and σ = x/4, and the values in

the input were constrained to the range [1, x]
Zipf distribution with parameter z in the range [0.2, 2.0] in steps of 0.2. Again the range

of values is constrained to the range [1, x]
sorted input in ascending order without any duplicates

11

4.2 Measurements

Since hash-based algorithms do not require sorted input on the grouping attributes, we start
with discussing these algorithms. In our comparisons of the sort-based algorithms we use
the hash-based algorithms to benchmark the sort-based algorithms again.

The left column of most figures in this section contains the elapsed time, and the right
column contains the CPU time. Each row in a figure shows the execution times for one
distribution of the aggregation input.

Hash-Based Algorithms In the first experiment we investigate the performance of the algo-
rithm EQBinGroup compared to the naive evaluation using Nested and NLBinGroup.
Figure 9 summarizes these results. All experiments used uniformly distributed grouping
input.

The measurements consistently reveal the following characteristics: NLBinGroupNested

is surprisingly slow – up to 10 times slower than nested evaluation using Nested. This is due
to high overhead of the iterator implementation of the hash table we used which demanded
almost 1/3 of CPU cycles. In addition, twice the number of L1 cache misses (read and write)
were counted. When we loop over all groups in the hash table and execute the nested query
for each group, the execution time decreases almost to the level of Nested. We think this
is counter intuitive because traversing the main-memory hash table should be substantially
faster than executing a possibly complex query expression.

As expected, the execution time of EQBinGroup is less by orders of magnitude. The
drastic improvement is caused by the linear runtime developed in the complexity formula:
both inputs need to be evaluated only one time.

Because NLBinGroup and EGBinGroup materialize the groups in main memory, their
advantage in performance melts when they run out of physical main memory. Swapping
memory pages consumes additional CPU time, and elapsed time increases steeper for more
than 4 million groups.

Figure 10 compares the execution times with predicate > of the algorithms Nested,
NLBinGroup, HashBinGroup, and TreeBinGroup. Again, these algorithms were exe-
cuted with uniformly distributed grouping input of different size. Both the grouping input
and the aggregation input contained the same number of tuples.

The nested-loop-based algorithms perform orders of magnitude slower than both Hash-

BinGroup and TreeBinGroup. For the same reasons as before, Nested performs better
than NLBinGroup.

Both HashBinGroup and TreeBinGroup perform faster than the naive algorithms by
orders of magnitude. Since they materialize the groups in the hash table, their performance
degrades when main memory gets scarce — in our experiments this happens for input sizes
larger than 4 million items. While the CPU time degrades only slightly, elapsed time is
affected more because of swapping memory in and out.

In our experiments HashBinGroup executes faster than TreeBinGroup. Profiling re-
vealed that insertion into the hash table and sorting together turns out to be cheaper than
insertion into the red-black-tree. On the other hand, binary search during lookup is more
expensive with the hash-based implementation. But in total, an advantage for HashBin-

Group remains.
As already mentioned in Section 3, this advantage depends on the length of the collision

lists, the quality of the hash function, and the data distribution.
To investigate the sensitivity of skewed input, we executed both algorithms with skewed

aggregation input. Figure 11 gives the results of these experiments, showing that the nar-
rower the distribution gets, the shorter the algorithms take for execution. The plots show
that TreeBinGroup performs more robust for this range of different distributions. Only
for larger input or for skewed data HashBinGroup performs better.

This observation suggests that lookup in the hash table in the presence of many dupli-
cates is cheaper. Thus, preaggregation might be beneficial to shrink the input to the binary
grouping operator.

12

elapsed time CPU time

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100 1000 10000 100000 1e+06 1e+07

T
im

e
(s

)

Input (Tuple)

Nested
NLBinGroup
EQBinGroup

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100 1000 10000 100000 1e+06 1e+07

T
im

e
(s

)

Input (Tuple)

Nested
NLBinGroup
EQBinGroup

(a) uniform distribution

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100 1000 10000 100000 1e+06 1e+07

T
im

e
(s

)

Input (Tuple)

Nested
NLBinGroup
EQBinGroup

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100 1000 10000 100000 1e+06 1e+07

T
im

e
(s

)

Input (Tuple)

Nested
NLBinGroup
EQBinGroup

(b) normal distribution

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100 1000 10000 100000 1e+06 1e+07

T
im

e
(s

)

Input (Tuple)

Nested
NLBinGroup
EQBinGroup

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100 1000 10000 100000 1e+06 1e+07

T
im

e
(s

)

Input (Tuple)

Nested
NLBinGroup
EQBinGroup

(c) sorted distribution

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100 1000 10000 100000 1e+06 1e+07

T
im

e
(s

)

Input (Tuple)

Nested
NLBinGroup
EQBinGroup

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100 1000 10000 100000 1e+06 1e+07

T
im

e
(s

)

Input (Tuple)

Nested
NLBinGroup
EQBinGroup

(d) zipf z = 1.0
Fig. 9. Predicate 6=, group input uniform

13

elapsed time CPU time

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100 1000 10000 100000 1e+06 1e+07

T
im

e
(s

)

Input (Tuple)

Nested
NLBinGroup

HashBinGroup
TreeBinGroup

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100 1000 10000 100000 1e+06 1e+07

T
im

e
(s

)

Input (Tuple)

Nested
NLBinGroup

HashBinGroup
TreeBinGroup

(a) uniform distribution

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100 1000 10000 100000 1e+06 1e+07

T
im

e
(s

)

Input (Tuple)

Nested
NLBinGroup

HashBinGroup
TreeBinGroup

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100 1000 10000 100000 1e+06 1e+07

T
im

e
(s

)

Input (Tuple)

Nested
NLBinGroup

HashBinGroup
TreeBinGroup

(b) normal distribution

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100 1000 10000 100000 1e+06 1e+07

T
im

e
(s

)

Input (Tuple)

Nested
NLBinGroup

HashBinGroup
TreeBinGroup

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100 1000 10000 100000 1e+06 1e+07

T
im

e
(s

)

Input (Tuple)

Nested
NLBinGroup

HashBinGroup
TreeBinGroup

(c) sorted distribution

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100 1000 10000 100000 1e+06 1e+07

T
im

e
(s

)

Input (Tuple)

Nested
NLBinGroup

HashBinGroup
TreeBinGroup

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100 1000 10000 100000 1e+06 1e+07

T
im

e
(s

)

Input (Tuple)

Nested
NLBinGroup

HashBinGroup
TreeBinGroup

(d) zipf z = 1.0
Fig. 10. Predicate >, group input uniform

14

 1.5

 2

 2.5

 3

 3.5

 4

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
(s

)

Zipf-Distribution, Parameter z

HashBinGroup
TreeBinGroup

(a) 500k tuples

 25

 30

 35

 40

 45

 50

 55

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
(s

)

Zipf-Distribution, Parameter z

HashBinGroup
TreeBinGroup

(b) 4M tuples

Fig. 11. Sensitivity to Zipf distribution

15

Sort-Based Algorithms For predicate 6= and sorted grouping input, we compare Nested,
NestedSort, NLBinGroup, and EQBinGroup with SortBinGroup. The results from
the experiments are summarized in Figure 12.

Similar to uniformly distributed grouping input nested-loop-based algorithms – includ-
ing SortBinGroup and NestedSort – perform poorly. The sort-based algorithms exploit
the sortedness of the grouping input, making it superior to the hash-based alternative NL-

BinGroup. However, the weakness of NLBinGroup is not as prominent here as in the
previous algorithms. In this scenario EQBinGroup is still the most efficient algorithm be-
cause of its linear run time. SortBinGroup is only a choice for arbitrary predicates.

For sorted grouping input, sorted aggregation input and predicate >, we can employ
all algorithms but EQBinGroup. Figure 13 shows again that nested-loop-based algorithms
perform poorly compared to the improved algorithms.

Among those, only LTSortBinGroup exhibits the sorted input, and thus performs
fastest. HashBinGroup and TreeBinGroup are about one order of magnitude slower than
LTSortBinGroup. This comes at no surprise when we compare the runtime complexities
we have deduced from the algorithms in Section 3. LTSortBinGroup is more efficient in
recognizing the groups. In addition, matching the aggregate input to these groups is more
efficient by exploiting the sortedness on both inputs. However, in our experimental setup
LTSortBinGroup also suffers from swapping memory pages.

Validation of the Complexity Formulas To verify our complexity formulas we employed
regression analysis. We based our analysis on the measured CPU time because the time
complexity we want to verify is a model for the computational effort of an algorithm. In our
analysis we restricted ourselves to sorted input on both inputs because all algorithms are
applicable in this setting.

We used linear regression on the observed CPU times for the algorithms with linear time
complexity. For HashBinGroup and TreeBinGroup we also applied linear regression
on the logarithmic values for the size and time values. For quadratic complexity functions
we utilized curve fitting for quadratic polynomials. In the regression models, the size x is
the independent variable, and the observed execution time is the dependent variable. We
simplified the regression models to use only one independent variable x = |e1| = |e2| which
conforms with our experimental setup.

The table below summarizes our results. For each algorithm we repeat the theoretical
time complexity as deduced in Section 3. The third column contains the results from the
regression analysis. With R2 we refer to the coefficient of determination, with −1 ≤ R2 ≤ 1.
Values of |R2| close to 1 mean a close fit of the function computed during regression analysis
and the measured data.

Algorithm Complexity Regression R2

Nested l
f
|e1||e2| 5.27 · 10−8 · x2−

7, 03 · 10−5 · x + 0.13
0.99999871

NLBinGroup l
f
|e1||e2| + (l + 1

f
)|e1| 9, 28 · 10−8 · x2−

9.30 · 10−5x + 0.10
0.99999961

HashBinGroup (l + 1
f
)|e1|+

O((|e1|
f

+ |e2|) lg |e1|
f

) x1.10 · 106.34 0.98061024

TreeBinGroup
|e1|
f

+ O((|e1| + |e2|) lg |e1|
f

) x1.10 · 106.34 0.98046729

EQBinGroup l(|e1| + |e2|) + |e1|
f

4.81 · 10−6 · x − 1.35 0.94482793

NestedSort 1
f
|e1||e2| 5.39 · 10−8 · x2−

0.001 · x + 0.21
0.99999682

SortBinGroup 1
f
|e1||e2| 5.36 · 10−8 · x2−

7.28 · 10−5 · x + 0.13
0.99999879

LTSortBinGroup |e1| + |e2| 9.97 · 10−7 · x − 0.72 0.80008

16

elapsed time CPU time

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100 1000 10000 100000 1e+06 1e+07

T
im

e
(s

)

Input (Tuple)

NestedSort
Nested

NLBinGroup
EQBinGroup

SortGroup

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 100 1000 10000 100000 1e+06 1e+07

T
im

e
(s

)

Input (Tuple)

NestedSort
Nested

NLBinGroup
EQBinGroup

SortGroup

(a) uniform distribution, elapsed time

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100 1000 10000 100000 1e+06 1e+07

T
im

e
(s

)

Input (Tuple)

NestedSort
Nested

NLBinGroup
EQBinGroup

SortGroup

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 100 1000 10000 100000 1e+06 1e+07

T
im

e
(s

)

Input (Tuple)

NestedSort
Nested

NLBinGroup
EQBinGroup

SortGroup

(b) normal distribution

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100 1000 10000 100000 1e+06 1e+07

T
im

e
(s

)

Input (Tuple)

NestedSort
Nested

NLBinGroup
EQBinGroup

SortGroup

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 100 1000 10000 100000 1e+06 1e+07

T
im

e
(s

)

Input (Tuple)

NestedSort
Nested

NLBinGroup
EQBinGroup

SortGroup

(c) sorted distribution

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100 1000 10000 100000 1e+06 1e+07

T
im

e
(s

)

Input (Tuple)

NestedSort
Nested

NLBinGroup
EQBinGroup

SortGroup

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 100 1000 10000 100000 1e+06 1e+07

T
im

e
(s

)

Input (Tuple)

NestedSort
Nested

NLBinGroup
EQBinGroup

SortGroup

(d) zipf z = 1.0
Fig. 12. Predicate 6=, group input sorted

17

elapsed time CPU time

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100 1000 10000 100000 1e+06 1e+07

T
im

e
(s

)

Input (# Tuple)

NestedSort
Nested

NLBinGroup
HashBinGroup
TreeBinGroup
SortBinGroup

LTSortBinGroup

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 100 1000 10000 100000 1e+06 1e+07

T
im

e
(s

)

Input (# Tuple)

NestedSort
Nested

NLBinGroup
HashBinGroup
TreeBinGroup
SortBinGroup

LTSortBinGroup

Fig. 13. Predicate >, group input and aggregation input sorted

As the main result we observe that all regression formulas yield a coefficient of deter-
mination close to 1. The lower coefficient of determination for LTSortBinGroup can be
explained by the last data point which is caused by the overhead of page swapping. Thus,
regression analysis strongly supports the validity of our time complexity formulas. However,
the regression formulas for HashBinGroup and TreeBinGroup need further explaination.

As mentioned above, each measured time was transformed into double logarithmic space
with basis 10, i.e. for a time t measured for size x we get a tuple (log(x), log(t)). Let f(x) =
a·x+b be the linear function computed in the linear regression. Then the transformation back
gives 10a·log(x)+b = xa · 10b. These results are given in the table above. Since the dominant
term in the complexity formulas of HashBinGroup and TreeBinGroup is x log x. we
need to validate that our findings are a good approximation for this complexity formula.
Hence, we compute upper and lower bounds for x log x: We know that x

x+1 ≤ log(x+1) ≤ x
(cf. [6]). For the lower bound, we use x

x+1 ≤ log(x + 1), thus x < x log x for x > 1. For the

upper bound we use logb x = o(xa) for some constant a > 0 – we choose b = 1. Thus, we can
deduce x log x = o(x1+a). A change into basis 2 for the logarithm only changes the constants
involved. Summarizing, our results validate the complexity formulas deduced in Section 3.

5 Extensions

In this section we show how our implementations can be extended to support other bulk
types. Also, we explain how the restrictive conditions on the predicates for the algorithms
EQBinGroup, HashBinGroup, TreeBinGroup, and LTSortBinGroup can be re-
laxed.

5.1 Supporting Different Bulk Types

The implementations and the experiments are based on totally ordered sets as bulk types.
In this section, we review how other bulk types can be supported.

The hash tables used in the binary grouping operators remove duplicate values on groups.
For bags and sequences, it is necessary to keep duplicate values, which can be done by keeping
a list of duplicates for each group or appending duplicates to the collision list of the bucket
in the hash table. While the first alternative results in faster lookups, the data structures
need to be modified to handle these lists of duplicates. In the second alternative f in the
complexity formulas becomes 1.

In both cases the insert and lookup functions of the hash tables can be modified to
accommodate this change. Function insert must ignore duplicate groups. A series of calls to
function lookup must successively return the matching groups. E.g. an iterator can be applied

18

Open

1 open e1

2 ζα(GT)
3 while T ← next e1

4 do

5 G ← HT.Insert(T)
6 ζα(G)
7 close e1

8 open e2

9 while T ← next e2

10 do while G ← HT.Lookup(T)
11 do

12 G← α(G ,T)
13 if predicate is 6=
14 then GT ← α(GT,T)
15 close e2

16 htIter ← HT.Iterator

Fig. 14. EQBinGroup with bag or sequence semantics

R
A B

1 a
1 b
2 b

S
C D

1 b
1 c
2 b
2 c

Fig. 15. Example data

for this purpose. The algorithms we presented must be adjusted such that aggregation is
done on each member of the group. Fig. 14 shows how, e.g. EQBinGroup needs to be
changed. In line 5 all groups are inserted regardles of duplicates and in line 10 all those need
to be retrieved from the hash table. The functions Next and Close remain unchanged.

Order-preserving implementations can be supported by recording the insertion order of
groups into the hash table or the search tree. This can either be achieved by keeping a linked
list with pointers to the inserted tuples or by directly linking the groups in the hash table.
When the aggregated result is returned, this linked structure is traversed.

5.2 Multiple Conjunctive Clauses

We have already mentioned that the algorithm for EQBinGroup assumes that all clauses
in the conjunctive predicate are of the same type. To see the necessity for this restriction,
consider the two tables R and S in Figure 15.

Let us first investigate the effect of conjunctive predicates on EQBinGroup. Consider
the nested expression

R1 := χct:count(σA=C∧B 6=D(S))(R)

The result of this expression is given in Figure 16(a). According to the definition of the
binary grouping operator the equivalent expression using this operator is

R2 := (R)Γct;A=C∧B 6=D;count(S)

To see why we cannot apply the algorithm EQBinGroup blindly we show in Figure 16(b)
the intermediate result after matching all tuples but before computing the final result for

19

R1

A B ct

1 a 〈[1, a, 2]〉
1 b 〈[1, b, 1]〉
2 b 〈[s, b, 1]〉

(a) Nested

R2

A B ct

1 a 〈[1, a, 0]〉
1 b 〈[1, b, 1]〉
2 b 〈[2, b, 1]〉

〈[, , 4]〉

(b) Wrong: after open

R2

A B ct

1 a 〈[1, a, 4]〉
1 b 〈[1, b, 3]〉
2 b 〈[2, b, 3]〉

(c) Wrong: final result

R2

A B ct

1 a 〈[1, a, (2) 2]〉
1 b 〈[1, b, (2) 1]〉
2 b 〈[2, b, (2) 1]〉

〈[, , 4]〉

(d) Correct: final result

Fig. 16. Conjunctive symmetric predicates

each group using function β−1. The last row in the table is the auxiliary tuple that aggregates
all tuples. As you can see in Figure 16(c) this leads to the wrong final result because we
cannot subtract the aggregated result of a subgroup (e.g. with attribute value of A = 1)
from the aggregated result over all groups.

We propose the following solution: When any clause in the conjunctive predicate is an
equivalence relation, we match groups only using the attributes involved in all conjuncts
containing equivalence relations. Only for matching individual subgroups, we use the com-
plete predicate. In this sense the clauses that are not an equivalence relation form a residual

predicate. In this case, we need not combine results of individual groups with the auxiliary
aggregation tuple. Note that this solution works for arbitrary residual predicates.

Resuming with the example, Figure 16(d) shows the content of the hash table after
matching all tuples. In the column ct the numbers in the parenthesis are the number of
tuples that matched the subgroup (e.g. 2 for A = 1 and 2 for A = 2). The last value in
the last column is the final result of aggregation. It is computed by matching within the
subgroup using the residual predicate. We need not apply function β−1 because matching
the groups was done with an equality predicate.

T1

A B ct

1 a 2
1 b 1
2 b 0

(a) Nested

T2

A B ct

1 a 〈[1, a, 0]〉
1 b 〈[1, b, 2]〉
2 b 〈[2, b, 0]〉

(b) Wrong: after open

T2

A B ct

1 a 〈[1, a, 2]〉
1 b 〈[1, b, 2]〉
2 b 〈[2, b, 0]〉

(c) Wrong: final result

T2

A B ct

1 a 〈[1, a, 1]〉
1 b 〈[1, b, 1]〉
2 b 〈[2, b, 0]〉

(d) Correct: after open

T2

A B ct

1 a 〈[1, a, 2]〉
1 b 〈[1, b, 1]〉
2 b 〈[2, b, 0]〉

(e) Correct: final result

Fig. 17. Conjunction of antisymmetric predicates

A similar problem and solution must be used for antisymmetric predicates. For Tree-

BinGroup, HashBinGroup, and LTSortBinGroup, we restricted the predicate only to
one clause. To see why multiple conjunctive clauses must be handled carefully, we use the

20

data in Figure 15 again. Consider the following example expression:

T1 := χct:count(σA<C∧B<D(S))(R)

The correct result for this expression is shown in Figure 17(a). Using the binary grouping op-
erator, we would expect that either TreeBinGroup, HashBinGroup, or LTSortGroup

should produce the correct result.

T2 := (R)Γct;A<C∧B<D;count(S)

Restricting ourselves to the evaluation of HashBinGroup, Figure 17(b) shows the inter-
mediate result after matching all tuples, and Figure 17(c) contains the final result. Naive
application of either algorithm stumbles over the same obstacle that we have identified for
EQBinGroup: Both algorithms will not find the closest match that satisfies the predicate.
In the example the third tuple of S does not match with the first tuple of R, but with the
second.

The solution is the same as for conjunctive predicates containing clauses with equiva-
lence relations: For matching groups we may only use one pair of attributes. The remaining
attributes must be applied as residual predicates in the same way as it is done in a B-Tree
index. Figure 17(d) and 17(e) trace the steps of the algorithms to the correct solution. In
the example A < C is used to find the closest group. Only within the group the residual
predicates are applied. This modification results in the closest possible match and to the
correct result.

Note that these extensions can be incorporated into the hash tables discussed before.
Finding the correct hash bucket is done with the same hash function. But we employ a
compare function for identifying groups and a compare function for matching individual
tuples. The latter extends the first by the residual predicate. In addition to that, the hash
table then needs to support duplicates.

6 Related Work

To the best of our knowledge, this paper is the first to investigate efficient implementations
for binary grouping. Only one implementation corresponding to the NLBinGroup was
presented so far [2].

However, previous work justifies the importance of binary grouping. Slightly different
definitions of it can be found in [2, 21, 4]. Only [4] describes possible implementations. These
papers enumerate use cases for binary grouping. In this paper we propose efficient imple-
mentations of binary grouping and evaluate their efficiency.

In addition, implementation techniques known for other operators apply for the binary
grouping operator as well. The idea of merging the functionality of different algebraic oper-
ators to gain efficiency is well known. In [23] query patterns for OLAP queries are identified.
One of these patterns — a sequence of grouping and equi-join — is similar to the implemen-
tation of the binary grouping operator. Sharing hash tables among algebraic operators was
proposed in [13].

Our work also relates to work comparing sort-based and hash-based implementations
of algebraic operators [8, 10, 11, 14, 15, 20]. However, they concentrate on implementations
of equijoins. Non-Equality joins have been studied first in [9]. A generic framework for
Non-Equality joins is described in [7] where an appropriate index structure is employed for
partioning and matching. Using e.g. a B+-tree for partitioning and probing is similar to the
idea of the algorithm TreeBinGamma.

We presented main-memory implementations of the binary grouping operator. Implemen-
tation techniques that materialize data that does not fit into main memory can be applied
to the binary grouping operator. We refer to [1, 7, 10, 16, 17] for such proposals.

Our implementations are orthogonal to the optimization techniques for queries containing
grouping [22, 3, 24]. When pushing grouping before a join is not possible, our algorithms can
be used to improve query execution.

21

Full support of binary grouping in query optimizers requires algebraic equivalences that
hold for this operator. [2, 5] present algebraic equivalences in an unordered context. Which
of these equivalences hold on sequences is not yet investigated. Binary grouping can also
benefit from preagregation as proposed by Larson [18].

7 Conclusion and Future Work

Binary grouping is a powerful operator to evaluate analytic queries [2] or to unnest nested
queries [5, 19]. We have introduced, analyzed, and experimentally evaluated main memory
implementations for binary grouping. Further, we have identified the conditions under which
each algorithm is applicable.

We summarize algebraic equivalences that can be incorporated into query optimizers for
deriving efficient query evaluation plans. Possible extensions of our algorithms to bags or
sequences have been presented. The results show that query processing time can be improved
by orders of magnitude, compared to nested evaluation of the query. Hence, binary grouping
is a valuable building block for database systems that support grouping and aggregation
efficiently.

References

1. D. Bitton and D. J. DeWitt. Duplicate record elimination in large data files. ACM TODS,
8(2):255–265, June 1983.

2. D. Chatziantoniou, M. Akinde, T. Johnson, and S. Kim. The MD-Join: An Operator for
Complex OLAP. In Proc. ICDE, pages 524–533, 2001.

3. S. Chaudhuri and K. Shim. Including group-by in query optimization. Proc. VLDB, pages
354–366, 1994.

4. S. Cluet and G. Moerkotte. Efficient evaluation of aggregates on bulk types. Proc. of 5-th

DBPL, 1995.
5. S. Cluet and G. Moerkotte. Nested queries in object bases. Technical Report RWTH-95-06,

GemoReport64, RWTH Aachen/INRIA, 1995.
6. T. Corman, C. Leiserson, R. Rivest, and C. Stein. Introduction to Algorithms. MIT Press, 2nd

edition, 2001.
7. J. V. d. Bercken, M. Schneider, and B. Seeger. Plug&join: An easy-to-use generic algorithm

for efficiently processing equi and non-equi joins. In EDBT ’00, pages 495–509, 2000.
8. D. J. DeWitt, R. Katz, F. Olken, L. Shapiro, M. Stonebraker, and D. Wood. Implementation

techniques for main memory database systems. In Proc. of the ACM SIGMOD, pages 1–8,
June 1984.

9. D. J. DeWitt, J. F. Naughton, and D. A. Schneider. An evaluation of non-equijoin algorithms.
In Proc. VLDB, pages 443–452, 1991.

10. G. Graefe. Query evaluation techniques for large databases. ACM Computing Surveys,
25(2):73–170, June 1993.

11. G. Graefe. Sort-merge-join: An idea whose time has(h) passed? In Proc. ICDE, pages 406–417,
1994.

12. G. Graefe. Executing nested queries. In BTW, pages 58–77, 2003.
13. G. Graefe, R. Bunker, and S. Cooper. Hash joins and hash teams in Microsoft SQL server. In

Proc. VLDB, pages 86–97, 1998.
14. G. Graefe, A. Linville, and L. D. Shapiro. Sort vs. hash revisited. IEEE TKDE, 6(6):934–944,

December 1994.
15. L. M. Haas, M. J. Carey, M. Livny, and A. Shukla. Seeking the truth about ad hoc join costs.

VLDB Journal, 6(3):241–256, May 1997.
16. S. Helmer, T. Neumann, and G. Moerkotte. Early grouping gets the skew. Technical Report

TR-02-009, University of Mannheim, 2002.
17. S. Helmer, T. Neumann, and G. Moerkotte. A robust scheme for multilevel extendible hashing.

Proc. 18th ISCIS, pages 218–225, 2003.
18. P.-Å. Larson. Data reduction by partial preaggregation. In Proc. ICDE, pages 706–715. IEEE

Computer Society, 2002.

22

19. N. May, S. Helmer, and G. Moerkotte. Nested queries and quantifiers in an ordered context.
Proc. ICDE, pages 239–250, 2004.

20. D. E. Simmen, E. J. Shekita, and T. Malkemus. Fundamental techniques for order optimization.
SIGMOD Record, 25(2):57–67, 1996.

21. H. J. Steenhagen, P. M. G. Apers, H. M. Blanken, and R. A. de By. From nested-loop to join
queries in OODB. Proc. VLDB, pages 618–629, 1994.

22. X. Wang and M. Cherniack. Avoiding sorting and grouping in processing queries. Proc. VLDB,
pages 826–837, 2003.

23. T. Westmann and G. Moerkotte. Variations on grouping and aggregation. Technical report,
University of Mannheim, 1999.

24. W. P. Yan and P.-Å. Larson. Performing group-by before join. Proc. ICDE, pages 89–100,
1994.

23

