
An Extended Preorder Index for Optimising
XPath Expressions

Martin F O’Connor1, Zohra Bellahsène2, and Mark Roantree1

1 Interoperable Systems Group, Dublin City University, Ireland. Email:
{moconnor,mark.roantree}@computing.dcu.ie

2 LIRMM, UMR 5506 CNRS Université Montpellier II, France. Email:
bella@lirmm.fr

Abstract. Many of the problems with native XML databases relate to
query performance and subsequently, it can be difficult to convince tra-
ditional database users of the benefits of using semi- or unstructured
databases. Presently, there still lacks an index structure providing effi-
cient support for structural queries and the traditional data-centric and
content queries. This paper presents an extended index structure based
on the preorder traversal rank and the level (or depth) rank of each node
in a document tree. The extended index fully supports the navigation of
all XPath axes while efficiently supporting data-centric queries. The abil-
ity to start path traversals from arbitrary nodes in a document tree also
enables the extended index to support the evaluation of path traversals
embedded in XQuery expressions. Furthermore, an encoding technique
is presented where properties of the level ranking may be exploited to
provide efficient and optimised level-based XPath evaluations.

1 Introduction

XML has been adopted as the new standard for data exchange on the World
Wide Web and increasingly so in industry as the standard data interchange for-
mat. The key ingredient to its successful adoption is the expressive and extensible
nature of XML. The basic structure underlying XML is the tree, which repre-
sents semi-structured data. Semi-structured data consists of an irregular and
non-uniform organisation; it may have data with missing attributes and some
attributes may be of different types within different data items. All of these
variations are acceptable in XML documents. Thus, it may be seen that XML
provides for an unlimited number for tree dialects, some of which have been
formally described by Document Type Descriptors (DTDs) or XML Schemas,
while others are employed in an ad-hoc schema-less manner. The database com-
munity is well advanced in adapting its technology to host large XML collections
and to query these collections efficiently. It will be essential, though, that these
new technologies support the XML query language specifications such as XPath
[13] and XQuery [12]. These specifications are key enablers in maintaining the
interoperability among XML repositories.

1.1 Motivation

The operations and path traversals required in the querying of tree structured
data present difficult challenges. There has been much activity on the specifica-
tion and provision of extensions to existing indexing mechanisms and processing
models to enable the efficient exploitation of the structural properties of XML.
The goal of this activity is to support, not only rapid navigational or structural
queries but efficient content-based queries as well [1] [15]. There have also been
several proposals [5] [7] for new index structures to deal with these problems.
However, virtually all of the proposals focus on support for step evaluation along
the child and descendant-or-self axes, to the detriment of the remaining XPath
axes. Moreover, these proposals often rely on query processing algorithms which
call for implementation techniques that lie outside their natural domain. An ex-
ample is the relational domain where such proposals incur associated drawbacks
such as additional software layers and transactional and performance issues. In-
deed, as trees in their abstract form may be queried using path expressions, the
XPath language was defined to model and query an XML document as a tree
of nodes. The XQuery specification moreover facilitates embedded path traver-
sals that may commence from any arbitrary node. Presently, there still lacks
an index structure facilitating embedded XPath traversals from arbitrary nodes
while providing at the same time, efficient and optimised XPath traversal evalu-
ations incorporating both structural and navigational queries and the traditional
content and data-centric queries. Our PreLevel Index structure fills this gap.

1.2 Contribution

In this paper, we present a new tree encoding mechanism based solely on the pre-
order traversal rank and the level (or depth) rank of each node in the document
tree. We define new conjunctive range predicates based on our tree encoding
to support the evaluation of location steps along the principle XPath axes and
provide proofs to validate them. We then present an Extended Index structure
(hereafter, referred to as the PreLevel Structure) based on our tree encoding
that fully supports all XPath axes. Both the preorder traversal rank and level
rank values may be determined during the initial parsing of the XML document
and thus, the PreLevel Structure has minimal computational overhead associ-
ated with its construction. The ability to start traversals from arbitrary context
nodes in an XML tree also enables the PreLevel Structure to support the evalua-
tion of path traversals embedded in XQuery expressions. Furthermore, using our
PreLevel Structure, the properties of the level rank of a node may be exploited
to provide efficient and optimised level-based XPath evaluations.

The paper is organised as follows: Section 2 reviews the partition property of
the XPath language and presents our PreLevel encoding and the newly derived
conjunctive range predicates that facilitate XPath axis navigation, together with
formal proofs of their derivation. Section 3 presents the tabular representation of
the PreLevel Structure, explaining its construction and illustrating an evaluation
of a step location along the descendant axis. Section 4 highlights various features

of the PreLevel Structure and outlines some of the optimised XPath queries
possible. Section 5 reviews related work and we conclude in Section 6.

2 Presenting the PreLevel Structure Encoding

In this section, the XPath partition property is reviewed and the PreLevel en-
coding mechanism is introduced. For each of the primary XPath axes, the new
conjunctive range predicates for performing a location step along the axis are
presented and the corresponding proofs provided. The conjunctive range pred-
icates have been derived from the intrinsic properties of the preorder traversal
ranks and level ranks alone.

2.1 XPath Partition Property

The basic data type underlying XML is the tree. Thus, the XPath language
was defined to model and query an XML document as a tree of nodes. The
XPath 2.0 working draft [13] also specifies the following partitioning property:
the ancestor, descendant, preceding, following and self axes partition an
XML document (ignoring attribute and namespace nodes), partitions are disjoint
and together they contain all nodes in the XML document. Thus, as a given
context node resides in the self axis, all other nodes in the XML document fall
into one of four partitions, as identified by the axes specified above (hereafter
referred to as the primary axes).

2.2 The PreLevel Encoding

The PreLevel structural index is an extension to the XPath Accelerator presented
in [2]. The PreLevel encoding is based solely on the preorder traversal rank
encoding and a level rank encoding. The size information is not recorded as in the
encoding mechanism in [3]. The level (or depth) function takes one parameter, a
node, and returns the level rank value of the node. Figure 1(a) depicts a sample
XML document and Figure 1(b) depicts the corresponding XML tree with a
preorder and level rank encoding.

Thus, level(v) = m if the path from the root of the tree to the node v
has length m; for example, level(a) = 0 and level(f) = 2. The XPath Parti-
tion property introduced in Section 2.1 is preserved by the combined preorder
traversal and level rank encoding. The remaining XPath axes (parent, child,
descendant-or-self, ancestor-or-self, following-sibling and preceding-
sibling) determine either supersets or subsets of one of the primary axes and
may be evaluated from them.

2.3 Navigating the Descendant Axis

The descendant axis selects all children of the given context node, and their
children recursively, with the resulting nodes in document order [13]. The new

<a>
</c>
<d></d>
<e>

<f></g></h></f>
<i></j></i>

</e>

(a) Sample XML
document

a
b e

c

d
f

g h

i

j

L0
L1

L2

L3

0
1

2

3
4

5

6 7

8

9
(b) PreLevel encoded XML
tree.

Fig. 1. Sample XML document and associated PreLevel encoded tree.

conjunctive range predicate defining a location step along the descendant axis,
based on the PreLevel encoding, is as follows:

Lemma 1.

v ∈ c/descendant ⇔ pre(v) > pre(c) (i)
∧ level(v) > level(c) (ii)
∧ ∀x : pre(x) ∈ (pre(c) , pre(v)) (iii)
⇒ level(x) 6= level(c)

Lemma 1 states that an arbitrary node v is a descendant of a given context
node c if and only if:

(i) the preorder rank of v is greater than the preorder rank of c, and
(ii) the level rank of v is greater than the level rank of c, and
(iii) for all nodes (let us label them x) having a preorder rank greater

than pre(c) and less than pre(v), that none of those nodes have a
level rank the same as level(c).

Proof: Condition (i) ensures that the preorder rank of node v is greater than the
preorder rank of the context node c. In essence, the first condition exploits the
properties of preorder traversal to ensure that the arbitrary node v appears, in
document order after the given context node c. Condition (ii) ensures the level
rank of node v is greater than the level rank of node c. Conditions (i) and (ii) are
intuitive if node v is to be a descendant of node c. The third condition ensures
that node v does not have another ancestor at the same level as the given
context node c. If there is another ancestor at the same level as the context
node c, then the context node could not be the ancestor of node v. This can be
stated with certainty due to the properties of preorder traversal - namely that
a node is visited immediately before its children, and the children are visited
from left to right. So, if there is another node at the same level as node c, then
that node must have a higher preorder rank than node c but also a preorder
rank less than node v (the range requirement of condition (iii) ensures this).
Thus, although the identity of the ancestor at level(c) has not been definitely
established, it has been definitively determined that the ancestor of node v
cannot be node c - by finding any other node at the same level and within the

range specified. Only if there is no node at the same level as the context node c
and within the range specified, can it be stated with certainty that the context
node c is an ancestor of node v, and conversely that node v is a descendant
of the context node c.

An illustration of Lemma 1 now follows. While referring to the conjunctive
range predicate in Lemma 1 and to the illustration in Figure 2; let v = node h;
let c = node e. To determine if node h is a descendant of the context node e,
one must examine the conditions:

(i) Is pre(h) > pre(e)...(7 > 4)...condition holds true.
(ii) Is level(h) > level(e)...(3 > 1)...condition holds true
(iii) For all nodes whose preorder rank is greater than pre(e) and less than

pre(h), these nodes are located within the shaded area in Figure 2,
do any of them have a level rank the same as level(e), in this case 1?
No, they do not and therefore, the condition holds true.

All three conditions are true, thus node h is a descendant of the context node
c.

a

b
c

d
e

f

g h

i

j

0

1

2
3

4

5

6 7

8

9

0

1

2
1

1

2 2

3 3 3

Fig. 2. Example of navigating the descendant axis of a PreLevel encoded XML tree.

Now, let us take an example whereby the conjunctive range predicate will
return false. By following the above example, but assigning node d to be the
context node c, conditions (i) and (ii) hold true, but condition (iii) fails because
node e has the same level rank as node d.

2.4 Navigating the Ancestor Axis

The ancestor axis selects all nodes in the document that are ancestors of a
given context node [13]. Thus, the new conjunctive range predicate defining a
location step along the ancestor axis, based on the PreLevel encoding, is:

Lemma 2.
v ∈ c/ancestor ⇔ pre(v) < pre(c) (i)

∧ level(v) < level(c) (ii)
∧ ∀x : pre(x) ∈ (pre(v) , pre(c)) (iii)
⇒ level(x) 6= level(v)

Lemma 2 states that an arbitrary node v is an ancestor of a given context node
c if and only if:

(i) the preorder rank of v is less than the preorder rank of c, and
(ii) the level rank of v is less than the level rank of c, and
(iii) for all nodes (let us label them x) having a preorder rank greater

than pre(v) and less than pre(c), that none of those nodes have a
level rank the same as level(v).

Proof: Condition (i) exploits the properties of preorder traversal to ensure the
arbitrary node v appears in document order before the given context node c.
Condition (ii) exploits the level rank properties to ensure node v appears higher
in the document tree than node c . Condition (iii) ensures that the given context
node c does not have another ancestor at the same level as node v. If there
is any other node at the same level as node v, then node v could not be the
ancestor of the context node c. This can be stated with certainty due to the
properties of preorder traversal - namely that a node is visited immediately
before its children, and the children are visited from left to right. So, if there is
another node at the same level as node v, then that node must have a higher
preorder rank than node v but also a preorder rank less than the context node c
(the range requirement of condition (iii) ensures this). Only if there is no node
at the same level as node v and within the range specified, can it be stated with
certainty that node v is an ancestor of the context node c.

2.5 Navigating the Preceding Axis

The preceding axis selects all nodes in document order that appear before the
given context node, excluding all ancestors of the context node [13]. The new
conjunctive range predicate, based on the PreLevel encoding, defines a location
step along the preceding axis as follows:
Lemma 3.

v ∈ c/preceding ⇔ pre(v) < pre(c) (i)
∧ ∃x : pre(x) ∈ (pre(v) , pre(c)] (ii)
⇒ level(x) ∈ (0 , level(v)]

Lemma 3 states that an arbitrary node v is member of the preceding axis of a
given context node c if and only if:

(i) The preorder rank of v is less than the preorder rank of c, and
(ii) There exists a node (let us label it x) whose preorder rank is greater

than pre(v) and less than or equal to pre(c), and that the level rank
of x is less than or equal to level(v).

Proof: Condition (i) exploits the properties of preorder traversal to ensure the
arbitrary node v appears, in document order, before the given context node c.
Condition (ii) ensures that node v is not an ancestor of the context node c. Due
to the properties of preorder traversal, the existence of any other node which has
a preorder rank greater than pre(v) and less than or equal to pre(c), and which
has a level rank less than or equal to node v, rules out any possibility that node
v is the ancestor of node c. Thus, conditions (i) and (ii) together ensure that
an arbitrary node v is a member of the preceding axis of given context node c.

2.6 Navigating the Following Axis

The following axis selects all nodes that appear after the given context node in
document order, excluding the descendants of the context node [13]. The new
conjunctive range predicate defining a location step along the following axis
based on the PreLevel encoding is:

Lemma 4.

v ∈ c/following ⇔ pre(v) > pre(c) (i)
∧ ∃x : pre(x) ∈ (pre(c) , pre(v)] (ii)
⇒ level(x) ∈ (0 , level(c)]

Lemma 4 states that an arbitrary node v is member of the following axis of a
given context node c if and only if:

(i) The preorder rank of v is greater than the preorder rank of c, and
(ii) There exists a node (let us label it x) whose preorder rank is greater

than pre(c) and less than or equal to pre(v), and that the level rank
of x is less than or equal to level(c).

Proof: Condition (i) exploits the properties of preorder traversal to ensure the
arbitrary node v appears in document order after the given context node c.
Condition (ii) ensures that node v is not a descendant of the context node c.
The second condition is validated by verifying that there is another node, with a
preorder rank greater than pre(c) and less than or equal to pre(v), and which has
a level rank less than or equal to the level rank of the context node c. If any such
node exists, then due to the properties of preorder traversal - namely that a node
is visited immediately before its children and the children are visited from left
to right - the context node c cannot be the ancestor of node v, and conversely
node v cannot be the descendant of the context node c. Thus, conditions (i)
and (ii) together ensure that an arbitrary node v is a member of the following
axis of given context node c.

3 Extended Index Structure.

In this section we present a tabular representation for the PreLevel encoding that
facilitates optimised algorithms for the efficient evaluation of XPath expressions.
We adapt the tabular encoding of the XPath Accelerator originally proposed in
[2] and extend it to incorporate our Extended Preorder Index and Level Index.

3.1 Tabular Encoding

The PreLevel encoding facilitates a tabular representation of XML documents,
namely the Extended Preorder Index. The primary column of the Extended Pre-
order Index consists of the preorder ranks sorted in ascending order. The second
column contains the level ranks that correspond to the associated preorder ranks
of the primary column. Extra columns may be added to the Extended Preorder

Index to hold further node properties as defined by the XPath/XQuery data
model, such as name, node type (node, element, attribute, comment) and more.
In particular, to support the parent axis in our tabular encoding, we add a
column containing the parent’s preorder rank of each node to the Extended Pre-
order Index. However, in order to efficiently evaluate an XPath location step
along all of the XPath axes, a second index is required. This second index is in-
troduced (hereafter referred to as the Level Index) and consists of two columns
only, the level rank column and the preorder rank column. The first column in
the Level Index is the level rank column, sorted in ascending order, the second
column being the preorder rank column, again sorted in ascending order. The
Extended Preorder Index and Level Index combined may also be referred to as
the PreLevel Structure. Several observations should be made at this point.

– Both the preorder ranks and the level ranks may be determined during the
initial parsing of the XML document tree, and thus have minimal computa-
tional overheads associated with them.

– Each node in the XML tree has a single preorder rank and a single level rank
associated with it. Thus, the Extended Preorder Index contains a one-to-one
mapping. However, as many nodes may reside at the same level, the Level
Index contains a one-to-many mapping - it is an inverted index.

– Both the Extended Preorder Index and the Level Index can be constructed
in parallel during the initial parsing of the XML document tree. The act of
parsing of an XML document (reading from top to bottom and left to right)
corresponds to a preorder traversal. Thus, the Extended Preorder Index is
constructed in a sorted list, sorted on the preorder rank in ascending order.
It may not be obvious that the Level Index is also constructed in a sorted
list. When the preorder traversal begins, the level information is recorded
also (level 0 for the root node). As the preorder traversal progresses, all
new levels and the associated preorder ranks are recorded. As the preorder
traversal encounters nodes on a level already recorded, the preorder ranks
are simply appended to the list of existing preorder ranks at that level.
Thus, depending on the structure used at implementation time, for example
a linked list, when the preorder traversal has been completed, we are left
with a column of unique level ranks, sorted in ascending order with each
level rank pointing to a linked list of preorder ranks and each linked list also
sorted in ascending order.

– Lastly, in order to facilitate a lookup of the Level Index in constant time, a
position column is included in the Extended Preorder Index. During the con-
struction of the Level Index, before any preorder ranks have been inserted,
each level is assigned a counter initialised to zero. As a preorder rank is added
(or appended) to the Level Index, the counter at that level is incremented by
one and its value is written in the position column of the Extended Preorder
Index, in the row of the related preorder rank. Thus, the position value, when
obtained using a lookup of the Extended Preorder Index, facilitates a direct
jump to a given preorder rank within the Level Index in constant time. The
position column is the key to enabling the evaluation of location steps on

the primary XPath axes in constant time and to the optimised evaluations
of level-based queries (to be introduced in §4.2).

The main issue is to compute the conjunctive range predicates for each of the
XPath primary axes in constant time. This is demonstrated in Section 3.2.

3.2 Example of an Evaluation along the Descendant Axis

The sample PreLevel encoded tree and the corresponding PreLevel Structure,
are illustrated in Figure 3. A high level algorithm detailing the steps to evalu-
ate a location step along the descendant axis in constant time is provided in
Algorithm 1.

a

b
c

d
e

f

g h

i

j

0

1
2

3
4

5

6 7

8

9

0

1
2

1
1

2 2

3 3 3
(a) A PreLevel encoded
XML tree

8

4

5

5

4

0

0

1

0

Parent

3

3

2

1

2

3

2

1

1

1

Pos

IElem28

JElem39

HElem37

GElem36

FElem25

EElem14

DElem13

CElem22

BElem11

AElem00

…NameKindLevelPre

8

4

5

5

4

0

0

1

0

Parent

3

3

2

1

2

3

2

1

1

1

Pos

IElem28

JElem39

HElem37

GElem36

FElem25

EElem14

DElem13

CElem22

BElem11

AElem00

…NameKindLevelPre

(b) Extended Preorder Index

6, 7, 93
2, 5, 82
1, 3, 41

00
PreLevel

6, 7, 93
2, 5, 82
1, 3, 41

00
PreLevel

(c) Level In-
dex

Fig. 3. Sample XML tree and the corresponding PreLevel Structure.

Let us now illustrate Algorithm 1. Let v = node h; let c = node e; nodes
are represented by their preorder rank. It can be verified that pre(h) is greater
than pre(e) (i.e. 7>4), and that level(h) is greater than level(e) (i.e. 3>1). The
Level Index is used to identify the next preorder rank greater than pre(e) at
level(e) (i.e. null). This information is obtained in constant time as the position
column of the Extended Preorder Index facilitates a direct jump to pre(e) within
the level(e) index. Note, the next preorder rank greater than pre(e) at level(e),
should it exist, must appear immediately after pre(e) because the index is sorted
in ascending order. If the next preorder rank after pre(e) at level(e) is greater
than pre(h), the node being tested, then node h must be a descendant of node e.
This can be stated with certainty as the properties of preorder traversal require
a node’s children to be visited immediately after its parent. Also, as in this case,
if there are no preorder ranks greater than pre(e) at level(e), indicated with null,
node h must be a descendant of node e. The fact that there may be no preorder
ranks greater than pre(e) at level(e) simply means that node e is the root node
of the rightmost subtree rooted at level(e).

Algorithm 1 To determine if an arbitrary node v is a descendant of a given
context node c.
Name: IsNodeDescendant
Given: An arbitrary node v , a context node c.
Returns: Boolean (TRUE or FALSE)
begin

//Using the Extended Preorder Index

if (pre(v) <= pre(c)) or (level(v) <= level(c)) then
return FALSE;

endif
//Using the Level Index

next_pre := next preorder rank after pre(c) at level(c);
if (next_pre > pre(v)) or (next_pre == null) then

return TRUE;
else

return FALSE;
endif

end

This subsection has illustrated an evaluation of a location step along the
descendant axis in constant time, however an evaluation along the ancestor
axis in constant time may be illustrated in a similar fashion by adapting the
algorithm appropriately. An evaluation along the following and preceding
axes may also be evaluated in constant time however lack of space prevents this
demonstration here but may be referenced in [8].

4 Optimised XPath Queries

The PreLevel Structure enables an efficient encoding mechanism that supports
highly optimised structural and navigational queries as well as content and data-
centric queries.

4.1 Evaluating the Size of a Subtree

Using our PreLevel Structure, the size of a subtree tree rooted at an arbitrary
node v can be determined very efficiently. The evaluation of the subtree size is
independent of the actual size of the subtree (and indeed the size of the entire
document tree) but rather dependent on the number of levels between the given
node v and the root node of the entire document tree. In [6], a comprehensive
study of over 190,000 XML trees was performed revealing that 99% of all the
documents had less than 8 levels. The vast majority of the remaining 1% of
documents had less than 30 levels, with only a tiny fraction having more than
30 levels. Thus, it may be seen that the number of levels (or depth) in an XML
tree is sufficiently small so as to be deemed to have a minimal computational
impact on our evaluation. The size of the subtree evaluated with our algorithm
is accurate and no extra information beyond the preorder and level ranks are

Algorithm 2 To determine the size of subtree rooted at an arbitrary node v
Name: SizeOfSubtree
Given: An arbitrary node v ,

The maximum preorder rank in document tree max_pre.
Returns: subtree_size
begin

//Using the Extended Preorder Index, determine if node v is a leaf node

if (level(pre(v) + 1) <= level (v)) then subtree_size := 1;
return subtree_size;

endif
//Using the Level Index

next_pre := next preorder rank after pre(v) at level(v);
//limit will contain the maximum upper preorder rank of the preorder interval (non-inclusive)
//specifying the subtree nodes.

limit := next_pre;
init_level := level(v) - 1;
//par(v) returns the preorder rank of the parent node of v

par_pre := par(v);
//For each level between level(v) and root node, find first node with preorder rank > pre(v)

for (count = init_level; count > 0; count --)
next_pre := next preorder rank after par_pre at level(par_pre);
if (limit != null) then

if (next_pre != null) and (next_pre < limit) then limit := next_pre;
endif

endif
par_pre := par(par_pre);

endfor
if (limit != null) then subtree_size := limit - pre(v);
else subtree_size := (max_pre - pre(v)) + 1;
endif
return subtree_size;

end

necessary to determine the size of the subtree. A more detailed explanation
of this algorithm may be found in [8]. An algorithm demonstrating the steps
required to evaluate the size of a subtree rooted at an arbitrary node v using
our PreLevel Structure is provided in Algorithm 2.

The SizeOfSubtree function facilitates the efficient evaluation of all members
of the descendant and following axes of a given node v. By exploiting the par-
ent column in the Extended Preorder Index we can also very efficiently evaluate
all members of the ancestor and preceding axes for any given arbitrary node
v. The remaining XPath axes (parent, child, descendant-or-self, ancestor-
or-self, following-sibling, and preceding-sibling) determine either supersets
or subsets of one of the primary axes and may be evaluated from them.

4.2 Optimised Level-based Queries

The PreLevel Structure makes a notable contribution to the efficient processing
of XPath expressions by facilitating optimised evaluations of level-based queries.

A level-based query is such that the results of the query reside at a particular
level in the XML tree.

Taking the descendant axis as an example, all nodes that are a descendant
of an arbitrary node v will reside in a preorder-defined interval, delimited by lower
and upper preorder ranks. Thus, using our Level Index, it is easy to identify a
sequence of nodes residing at a particular level that belong to a preorder-defined
interval. For example, given a query to select all grandchildren of an arbitrary
node v ; the result of such a query will be represented using the Level Index as
an interval or array with lower and upper preorder bounds residing at a specific
level. The position column of the Extended Preorder Index facilitates a direct
jump to the lower and upper preorder bounds within the Level Index.

The Level Index is sorted in ascending order and can be searched very ef-
ficiently using a binary search algorithm with a time complexity of O(lg n).
The lower bound of the preorder interval containing node v ’s descendants at
a given level l, is obtained by performing a binary search at level l for the first
preorder rank greater than pre(v). In a similar fashion, the upper bound of the
preorder interval containing node v ’s descendants at a given level l, is obtained
by performing a binary search at level l for the last preorder rank preceding a
container preorder rank of node v ’s descendants. A container preorder rank is
a preorder rank greater than the largest preorder rank in node v ’s descendants.
Due to the properties of preorder traversal, a valid container preorder rank for
node v ’s descendants is the next preorder rank greater than pre(v) at level(v).
The container preorder rank can be obtained in constant time using a lookup of
the Level Index and provides an upper bound for node v ’s descendants at an
arbitrary level l.

Thus, given the preorder rank of a context node, the upper and lower bounds
of the interval containing the context node’s descendants at an arbitrary level
l can be obtained using the Level index, requiring only two lookup operations of
time complexity O(lg n) each, at level l. The processing of nodes at intermediary
levels is unnecessary for all levels between the context node and the level to be
queried.

The optimal time complexity for reading n values from an array of size n is
linear, i.e. O(n). Thus, given that the results of a level-based query is an array
subset of the Level Index, which is always sorted in document order; and given
that the position column of the Extended Preorder Index facilitates a direct
jump to the lower and upper preorder bounds within the Level Index; when
both lower and upper bounds of the interval have been obtained, the actual
results of the level-based query may be retrieved in optimal time. Indeed, once
the interval is know, the solution is optimal for retrieving all descendants of a
given node v that reside at an arbitrary level l. A sample algorithm to evaluate
all descendants of a given node v residing at an arbitrary level l is provided in
Algorithm 3.

In a similar fashion, the solution for identifying all members of the following-
sibling and preceding-sibling axes are also optimal. It should be noted that
queries along the descendant, descendant-or-self and child axes of an ar-

Algorithm 3 To determine all the descendants of an arbitrary node v at a
given level m
Name: AllDescendantsAtLevelM
Given: An arbitrary node v ,

The maximum preorder rank in document tree max_pre,
A level m, where m is the path length from root node to node v .

Returns: A sequence of document nodes labelled descendants or the empty_sequence
begin

//Using Extended Preorder Index, determine if v is a leaf node

if (level(pre(v) + 1) <= level (v)) then
return empty_sequence;

endif
//Using the Level Index

next_pre := next preorder rank after pre(v) at level(v);
//Convert relative level rank to absolute level rank of document tree.

queryLevel := level(v) + m;
if (next_pre != null) then

start_pre := next preorder value > pre(v) at queryLevel;
descendants = all nodes in interval [start_pre , next_pre) at queryLevel;

else
descendants = all nodes in interval (pre(v) , max_pre] at queryLevel;

endif
return descendants;

end

bitrary node constitute the core of XPath subexpressions embedded in XQuery
statements and provide the most challenging and highly computational tasks for
XPath/XQuery processors.

5 Related Work

In [11], the experience of building Jungle, a secondary storage manager for Galax,
an open source implementation of the family of XQuery 1.0 specifications is pre-
sented. They chose to implement the Jungle XML indexes using the XPath
Accelerator. However, one significant limitation they encountered was the eval-
uation of the child axis, which they found to be as expensive as evaluating
the descendant axis. They deemed this limitation to be unacceptable and de-
signed their own alternative indexes to support the child axis. Although the
XPath Accelerator pre/post encoding scheme has since been updated in [3] to
use pre/level/size, which Jungle has yet to incorporate, our PreLevel Structure
as demonstrated in Section 4.2 supports highly efficient evaluations of not just
children, but grandchildren and indeed all nodes at any particular level of an
arbitrary node. The ability to efficiently evaluate level-based queries by consid-
ering only the nodes at the level concerned and eliminating the need for large
scale processing at the intermediary levels, is the principle contribution of the
PreLevel Structure. The Jungle implementation experience also highlighted the
significant overhead imposed at document loading time by a postorder traversal,

a necessary component in the construction of the indexing system proposed in
[14].

There has been much research into the development and specification of new
indexing structures to efficiently exploit the properties of XML. There have been
several initiatives to extend the relational data model to facilitate the XML data
model and once again the XPath Accelerator has been at the forefront [4] [1]
[15]. In [10], the key issue of whether the ordered XML data model can be ef-
ficiently represented by the relational tabular data model is examined and the
authors propose three new encoding methods to support their belief that it can.
In [5], a new system called XISS is proposed for indexing and storing XML data,
specifying three new structures to support content queries, and a new number-
ing scheme, based on the notion of extended preorder to facilitate the evaluation
of ancestor-descendant relationships between elements and attributes in con-
stant time. In [9], a hierarchical labelling scheme called ORDPATH, implemented
in the upcoming version of Microsoft SQL Server, is proposed. Each node on an
XML tree is labelled with an ordinal value, a compressed binary representation
of which, provides efficient document ordering evaluation as well as structural
evaluation. In addition, the ORDPATH scheme supports insertion of new nodes
in arbitrary positions in the XML tree, without requiring the re-labelling of any
nodes.

6 Conclusion

There is an urgent need for an indexing structure capable of supporting very
efficient structural, navigational and content-based queries over both document-
centric and data-centric XML. Our PreLevel Structure makes a significant con-
tribution toward this goal. In this paper we have presented a new tree encoding
mechanism based solely on the preorder traversal rank and the level rank of a
node. We constructed new conjunction range predicates based on the PreLevel
encoding to support the evaluation of location steps along the primary XPath
axes and provided proofs of their derivation. We then presented a tabular encod-
ing for our PreLevel Structure - the Extended Preorder Index and Level Index -
to enable the navigation of all XPath axes and demonstrated how these indexes
have a minimal computational overhead associated with their construction. The
tabular representation of the PreLevel Structure allows for flexible implementa-
tion strategies. Finally, accompanied by several algorithms, we detailed how our
tabular encoding facilitates efficient XPath queries and expression evaluations.
In particular, the properties of the Level index may be exploited to provide
highly optimised level-based query evaluations as well as the optimal retrieval
of their results.

As part of our future work, we are investigating the possibility of supporting
efficient XML updates. In tandem with our research, we have short listed several
open-source native XML databases and are examining them with a view to
providing an implementation of our work to date.

References
1. Daniela Florescu and Donald Kossmann. Storing and Querying XML Data using

an RDMBS. IEEE Data Engineering Bulletin, 22(3):27–34, 1999.
2. Torsten Grust. Accelerating XPath Location Steps. In Proceedings of the 2002

ACM SIGMOD International Conference on the Management of Data, volume 31,
pages 109–120. SIGMOD Record, ACM Press, 2002.

3. Torsten Grust, Sherif Sakr, and Jens Teubner. XQuery on SQL Hosts. In Proceed-
ings of the 30th International Conference on Very Large Databases (VLDB), pages
252–263. Morgan Kaufmann, 2004.

4. Torsten Grust and Jens Teubner. Relational Algebra: Mother Tongue–XQuery:
Fluent. In 1st Twente Data Management Workshop on XML Databases and Infor-
mation Retrieval. Enschede, The Netherlands, 2004.

5. Quanzhong Li and Bongki Moon. Indexing and Querying XML Data for Regular
Path Expressions. In Proceedings of the 27th International Conference on Very
Large Databases (VLDB), pages 361–370. Morgan Kaufmann, 2001.

6. Laurent Mignet, Denilson Barbosa, and Pierangelo Veltri. The XML Web: A
First Study. In Proceedings of the 12th International World Wide Web Conference
(WWW2003), pages 500–510. ACM Press, 2003.

7. Tova Milo and Dan Suciu. Index Structures for Path Expressions. In Proceedings
of the 7th International Conference on Database Theory, pages 277–295. LNCS
1540, Springer, 1999.

8. Martin O’Connor, Zohra Bellashène, and Mark Roantree. Level-based
Indexing for Optimising XPath Expressions. Technical report, Interop-
erable Systems Group, Dublin City University, 2005. Available from:
www.computing.dcu.ie/˜isg/technicalReport.html.

9. Patrick O’Neil, Elizabeth O’Neil, Shankar Pal, Istvan Cseri, Gideon Schaller, and
Nigel Westbury. ORDPATHs: Insert-Friendly XML Node Labels. In Proceedings
of the 2004 ACM SIGMOD International Conference on the Management of Data,
volume 33, pages 903–908. SIGMOD Record, ACM Press, 2004.

10. Igor Tatarinov, Stratis Viglas, Kevin S. Beyer, Jayavel Shanmugasundaram, Eu-
gene J. Shekita, and Chun Zhang. Storing and Querying Ordered XML using
a Relational Database System. In Proceedings of the 2002 ACM SIGMOD In-
ternational Conference on the Management of Data, volume 31, pages 204–215.
SIGMOD Record, ACM Press, 2002.

11. Avinash Vyas, Mary F. Fernández, and Jérôme Siméon. The Simplest XML Storage
Manager Ever. In Proceedings of the 1st International Workshop on XQuery Im-
plementation, Experience and Perspectives <XIME-P/> in cooperation with ACM
SIGMOD, pages 37–42, 2004.

12. World Wide Web Consortium. XQuery 1.0: An XML Query Language, W3C Work-
ing Draft edition, April 2005.

13. World Wide Web Consortium. XML Path Language (XPath) 2.0, W3C Working
Draft edition, February 2005.

14. Pavel Zezula, Giuseppe Amato, Franca Debole, and Fausto Rabitti. Tree Signatures
for XML Querying and Navigation. In Proceedings of the 1st International XML
Database Symposium 2003, pages 149–163. Springer, September 2003.

15. Chun Zhang, Jeffrey F. Naughton, David J. DeWitt, Qiong Luo, and Guy M.
Lohman. On Supporting Containment Queries in Relational Database Manage-
ment Systems. In Proceedings of the 2001 ACM SIGMOD International Confer-
ence on the Management of Data, volume 30, pages 425–436. SIGMOD Record,
ACM Press, 2001.

