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Abstract. Inspired by the best querying performance of ViST among
the rest of the approaches in the literature, and meanwhile to overcome
its shortcomings, in this paper, we present another efficient and novel
geometric sequence mechanism, which transforms XML documents and
XPath queries into the corresponding geometric data/query sequences.
XML querying is thus converted to finding non-contiguous geometric sub-
sequence matches. Our approach ensures correct (i.e., without semantic
false) and fast (i.e., without the costly post-processing phase) evaluation
of XPath queries, while at the same time guaranteeing the linear space
complexity. We demonstrate the significant performance improvement of
our approach through a set of experiments on both synthetic and real-life
data.

1 Introduction

With the advent of XML as a standard for data representation and exchange on
the Web, indexing and querying XML documents becomes increasingly impor-
tant for current and future data-centric applications. Substantial research efforts
[4,7,5,11] have been conducted to structurally index and retrieve data from XML
documents.

The first problem of retrieving data from XML documents is how to deal with
specific queries containing constraints related to the content of the documents.
Providing a uniform index structure [15] for both the structure and content
information of an XML document is thereupon desirable. More importantly, the
mechanism should be preferably implemented using some well-supported DBMS
data structures like B+Tree.

The second problem is that a query compatible to XPath is modeled as a tree,
referred to as a twig, and can be complicated [6] when wildcards ”*” and self-or-
descendent axis(”//”) are presented (for example, Q5 in Table 3). To match such
a complex query against a document tree without corresponding preprocessing
mechanism is equivalent to the tree inclusion problem and has been proved to
be NP-complete [1].

Previous research efforts have been devoted to twig pattern matching for
several years. XISS [10] is the first to break twig pattern query into binary twigs,
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and ”stitch” the binary twigs (i.e. two nodes with parent-child relationship)
together to obtain the final results. State-of-the-art mechanisms, i.e. structural
join [3], holistic twig join [12], have been proposed to stitch root-to-node paths
together by using specially designed stacks. Additionally, some index structures,
such as XR-Tree [8] and XB-Tree [12], have been proposed to optimize the above
twig join operations. However, the performance of all the above mechanisms is
suffered from the time-consuming join operations.

Wang et al. proposed a novel ViST mechanism [15], which transforms both
XML documents and XPath queries into structure-encoded sequences so that
the twig pattern matching problem is converted to subsequence matching prob-
lem. The advantage of this approach is that it does not need to break down a
twig pattern into root-to-leaf paths and process them individually, thus avoiding
the heavy join operations to join intermediate results. This method improves all
the previous searching mechanisms significantly. However, ViST has three major
shortcomings. First, its structure-encoded sequence model can cause the seman-
tic false problem. That is, an XML fragment which semantically matches a query
may not be returned. Second, ViST may lead to false answers (false alarms) be-
cause its encoding method can not fully sustain the structures of XML data trees.
Time-consuming refinement phase or post-processing phase has to be called to
eliminate the false answers. Although Wang et al. [14] further proposed a way
to eliminate the post-processing phase with O(n2) total size complexity (where
n is the total node number in a data tree), it depends on specialized trie + path
link structure to find sibling-cover in the trie and remove the false answers, in
which the semantic false still exists. Third, ViST can not guarantee the linear
size complexity of structure-encoded sequence. In the worst case, the total size
of structure-encoded sequence is O(n2) when a document is a unary tree.

To overcome the above three problems, in this paper, we present another
encoding mechanism to transform XML documents and XML queries into geo-
metric sequences. Our objective is to ensure correct (i.e. without semantic false)
and fast (i.e. without the post-processing phase) evaluation of XPath queries,
while at the same time guaranteeing the linear size complexity of the sequence.
This approach enables us to achieve better storage and query performance than
ViST.

2 The Problems with ViST

As proposed in [15], a structure-encoded sequence is derived from a prefix traver-
sal of an XML document, in format of a sequence of (symbol, prefix ) pairs, (a1,
p1), (a2, p2), ..., (an, pn), where ai represents a node in the XML document
tree (a1a2...an is the pre-order sequence) and pi is the encoded path from root
to ai. In the same spirit, XML queries are converted into structure-encoded
query sequences in which ”*” and ”//” are explicitly encoded. Querying XML is
equivalent to finding non-continuous subsequence matches in ViST. The corre-
sponding structure-encoded sequence of the XML document example in Figure
1 is illustrated in Figure 2. Let TStr denote the structure encode sequence.
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J

v1: "indexing" v2: "and" v3: "querying" v4: "XML" v5: "doc um ents"

v6: "CIKM"

Fig. 1. An Example of XML Document in Tree Structure

TStr = (A, ε) (B, A) (D, AB) (v1, ABD) (E, AB) (v2, ABE) (F, AB) (v3,
ABF) (B, A) (D, AB) (v4, ABD) (K, AB) (v5, ABK) (J, A) (v6, AJ)

Fig. 2. Structure-Encoded Sequence of the XML Document in ViST Approach

The problem of false answers (a.k.a false alarms) arises immediately in ViST
in which an XML document is represented by a structure-encoded sequence. For
example, given a query Q2: /A/B[./E][./K], its tree structure is shown in Figure
8(b), and its corresponding structure-encoded query sequence is shown in Figure
3. The underlined non-continuous subsequence in TStr marks a result (matching).
However, it is a false answer since the structure expressed in Q2 does not exist
in the XML document example. We call this kind of queries non-existence false.

Q2Str = (A, ε) (B, A) (E, AB) (K, AB)

Fig. 3. Structure-Encoded Sequence of Q2

Consider, for another example, Q3 shown in Figure 8(c), its structure-encoded
sequence is shown in Figure 4. In ViST, Q2 and Q3 may return the same re-
sults because Q2 is a subsequence of Q3. We call this kind of query pairs non-
equivalence false. It implies that refinement phase or post-processing phase has to
be called to eliminate the false answers in these two cases. However, the process
may not be always trivial.

Moreover, ViST has a serious semantic flaw in transforming XPath queries
into structure-encoded sequences. Suppose we have an XML fragment:

< A >< B >< K >< C >< /C >< /K >< /B >< /A >

and its corresponding structure-encoded sequence:

FragStr =< A, ε >< B, A >< K, AB >< C, ABK >

If Q: /A[./B//C][//K] is transformed into a structure-encoded query sequence
and evaluated against this fragment:

QStr =< A, ε >< B, A >< C, AB// >< K, A// >
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Q3Str = (A, ε) (B, A) (E, AB) (B, A) (K, AB)

Fig. 4. structure-encoded Sequence of Q3

we can see that there is no such subsequence matching of QStr in Fragstr since K
appear after C in ViST, as shown in Figure 5. However, Q semantically matches
the fragment. This flaw can hardly be fixed since the order among the items in a
structure-encoded sequence is indispensable in ViST. We call this semantic flaw
of ViST semantic false.

A

B K

C

An XPath Query

A

B

K

C

An XML Doc um ent

Fig. 5. A Semantic False Query Evaluation in ViST

3 Proposed Method

To overcome the shortcomings of ViST, in this section, we present a geometric-
encoding mechanism, which transforms XML documents/queries into geometric
data/query sequences. Further enhancement to our geometric encoding approach
is also described.

3.1 Mapping XML Documents into Geometric Data Sequences

We firstly model XML as an ordered, node labeled, rooted tree. More formally,
consider a graph T = (VG, VT, vr, EG, labelnode, nid,

∑
T). VG is the set

of element nodes and VT is the set of text nodes. ∀v ∈ VT , v has no outgoing
edge. vr is the root of the XML data tree, where there exists a path from vr to
v, ∀v ∈ VG ∪ VT . Moreover, it implies that vr has no incoming edge. Each node
v ∈ VG ∪VT is labeled through the function labelnode over the set of terms,

∑
T .

The label of a node v ∈ VG is referred to as the tag name. The label of v ∈ VT

is referred to as a distinct keyword contained in the corresponding text. We use
quotation mark in future figures to distinguish the label in VT .

Each edge e, e ∈ EG, is a parent-child edge, denoting the parent-child re-
lationship. The parent node is denoted as vep , and the child node is denoted
as vec . A path is a sequence of edges starting from the node vi to the node vj ,
denoted as ei, ei+1, ..., ej . A node vi is ancestor of vj iff a path to vj goes
through vi. The order among the sibling nodes is distinguished. Each node is
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assigned a unique nid number for indexing and querying purpose. We refer Tvi

as the subtree induced by node vi. Figure 1 shows an example of our data model.
The solid edges represent EG. The dashed edge denotes a edge e, vep ∈ VG, and
vec ∈ VT . The quoted string represents a label of a node v ∈ VT .

We secondly transform an XML document into a sequence by pre-order
traversing the above XML data tree, recording a node’s parent when back-
tracking. For the example in Figure 1, its sequence representation is shown in
Figure 6.

ABDv1DBEv2EBFv3FBABDv4DBKv5KBAJv6JA

Fig. 6. A Sequence Representation of the Example XML Document

To clearly represent a sequence, we slightly modify the above sequence to
indicate the start (s), intermediate(i), end (e) positions of a specific node which
appears multiple times in the sequence. The modified sequence representation
is shown in Figure 7. Let TGeo denote the modified sequence, and f : T → TGeo.
Easily we can see f is a bijection between TGeo and T . In the rest of the paper,
we call the modified sequence geometric sequence. We later show in Section 4
that those extra symboli and symbole require trivial processing in both indexing
and querying process.

TGeo=AsBsDsv1DeBiEsv2EeBiFsv3FeBeAiBsDsv4DeBiKsv5KeBeAi Jsv6JeAe

Fig. 7. A Geometric Sequence Representation of the Example XML Document

A

KE

BB

(c )

A

KE

B

(b)

A

B K

D

(a)

Q3Q2Q1

Fig. 8. Example of Query Sequences in Tree Form

3.2 Transforming XPath Query into Geometric Query Sequence

A query compatible to XPath is modeled as a tree, as shown in Figure 8. The core
of evaluating an XPath query at an XML document is finding all the answers
of such a twig pattern matching the constraints (axes, nested structure, terms
etc.) of the query. Moreover, a query can be complicated when wildcards ”*” and
self-or-descendent axis(”//”) are presented. When we transform an XPath query
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Table 1. List of Q1, Q2, and Q3 in Geometric Query Sequences

Path Expression Geometric Query Sequence
Q1: /A[B/D][//K] Q1Geo: As Bs Ds De

p Be
p Ai

u Ks Ke Ae

Q2: /A/B[./E][./K] Q2Geo: As Bs Es Ee
p Bi Ks Ke

p Be
p Ae

Q3: /A/B[E]/following-sibling::B/KQ3Geo: As Bs Es Ee
p Be

p Ai Bs Ks Ke
p Be

p Ae

into a geometric query sequence in a similar way of mapping XML documents
into geometric sequences, we ensure that all the information in the XPath query
is preserved. We show this by using example queries Q1, Q2, and Q3 in Table
1. Their tree structures are shown in Figure 8.

Consider the example query Q2: /A/B[./E][./K], its tree structure is shown
in Figure 8(b). When we transform it into a geometric query sequence, we must
preserve: (1) A is parent of B, and (2) B is parent of both E and K. In this
paper, Q2 is transformed into a geometric query sequence: As Bs Es Ee

p Bi Ks

Ke
p Be

p Ae, where p implies that the upcoming item is parent of the current
item. As we can observe, any internal node is followed by its parente or parenti
in the geometric sequence. However, a Ee may be followed by Bi in real data
sequence not Be. This issue can be easily solve by defining Bi equals to Be when
determining the parent relationship. If p is not explicitly stated, the relationship
is ancestor-descendant (”//”) by default.

Similarly, for query Q1: /A[B/D][//K], its tree structure is shown in Figure
8(a). When we transform it into geometric sequence, we must preserve: (1) D is
a child node of B which, in turn, a child node of A and (2) K is a descendant
of A. As we state in previous section, ViST may incur semantic false when
transforming Q1 into structure-encoded query sequence since there is no explicit
information of the relationship between K and B (D) stated. In this case, we add
”u” to a specific node which has at least two child nodes and meanwhile ”//” is
involved. Q1 is transformed into a geometric sequence: As Bs Ds De

p Be
p Ai

u

Ks Ke Ae as shown in Table 1, where u signifies that semantic uncertainty may
occur in the upcoming item.

After an XPath Query is transformed into a geometric query sequence, query-
ing XML documents is equivalent to finding (under the guidance of flag ’p’
and/or ’u’) non-contiguous subsequence matches in the corresponding geomet-
ric data sequences. For query Q1, the underlined non-contiguous subsequence
matching in Figure 7 marks a correct matching (i.e. the example document sat-
isfies the query).

Revert to the semantic false problem presented in ViST, as illustrated in
Section 2. Let’s see how our geometric encoding mechanism avoids the problem.
The geometric data/query sequence of the XML fragment and the query (Figure
5)is as follows:

FragGeo = AsBsKsCsCeKeBeAe

QGeo = AsBsCsC
p
e Bp

eAu
i KsKeAe
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To match QGeo against FragGeo, when we evaluate Au
i , we resume the range

information of As.It implies that we will search for Ke in FragGeo within the
range of As instead of Be, starting with which, we can find Ks, Ke and Ae.
Section 4 will introduce an elegant stack mechanism to implement the method.

3.3 Numbered Geometric Sequence

Furthermore, consider the fact that in an XML document, the same element
names may appear several times. Given the data tree in Figure 1 and query Q2
in Figure 8(b), Q2 should return no result. However, in Table 1, Q2Geo does not
provide enough information to eliminate the second Be, which implies that a
result would be returned if the second Be is included.

TGeonum = A1sB1sD1sv1D1eB1iE1sv2E1eB1iF1sv3F1eB1eA1i

B2sD2sv4D2eB2iK1s v5K1eB2eA1iJ1sv6J1eA1e

Fig. 9. Numbered Geometric Sequence Representation of XML Document

To tackle this problem, we enhance the basic geometric-encoding data se-
quence by numbering each (repeated) item, so that a geometric sequence is
sequence of symbolnumber(s|i|e) . Figure 9 gives a numbered geometric data se-
quence. Note that we do not number the geometric query sequence. We can see
that there is no such subsequence matching in TGeonum . Additionally, for each
query sequence having symboli, we only choose the first one in TGeo on the basis
of the fact that the rest symboli is redundant in querying process. Moreover, for
queries having the same child nodes in branches, it is equal to find all the non-
decreasing subsequence matching in geometric sequence for all the nodes with
the same names. ”*” is handled as a range query as the same to ViST. If p is
not explicitly stated in geometric sequence model, ”//” is then default and not
instanced on the basis of the fact that ”//” only represents ancestor-descendant
relationship. By contrasting to ViST’s instance step, resource-consuming prefix
checking and range query steps connected with ”//” are eliminated in our geo-
metric sequence model. Due to lack of space, the correctness of querying XML
through numbered geometric data/query sequence matching is not provided.

4 Holistic Sequence Matching

To acclerate XPath evaluation, the challenge of our geometric model is to (i)
avoid the semantic false problem, (ii) eliminate the false answers without re-
finement or post-processing phases, and (iii) provide a linear storage complexity
mechanism to reduce the size of index. In section 3, we show that the total size
of numbered geometric sequence is O(n). In this section, we demonstrate our
subsequence matching can find all the correct answers without refinement or
post-processing phase which is inevitable in ViST.
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Table 2. List of Q1, Q2, and Q3 in Optimized Geometric Query Sequences

Path Expression Geometric Sequence
Q1: /A[B/D][//K] Q1OptGeo: As De

p Be
p Ai

u Ke Ae

Q2: /A/B[./E][./K] Q2OptGeo: Ee
p Bi Ke

p Be
p Ae

Q3: /A/B[E]/following-sibling::B/K Q3OptGeo: Ee
p Be

p Ai Bs Ke
p Be

p Ae

4.1 Index Structure

We adopt a hierarchical indexing structure similar to ViST with some modifica-
tions. Each item in a geometric data sequence is in form of (symbolnumber(s|i|e)).
Items in a geometric sequence are first put into a trie-like structure. Then each
node in the trie is assigned two extra elements ”preorder” and ”size”, where
”preoder” is the pre-order traversal position of the node in the data tree, and
”size” is used for dynamic scope allocation purpose, whose detail study can be
found in the [13]. To build the index structure, each node in the trie, in format
of (symbolnumber(s|i|e) , preorder, size), is firstly inserted into a sequence B+Tree
index (i.e. SB-Index) using its symbol(s|i|e) as the key. For all the nodes with
the same symbol(s|i|e), they are inserted into a position B+Tree (i.e. PB-Index)
using its preorder as the key. Figure 10 illustrates the index structure used.

C i

B
i

SB
-I

n
d

ex

(7, 100, 300)

(1, 20, 80)

PB
-I

n
d

ex

(5, 25, 75)

(13, 30, 40)

Key: symbol.(s|i|e) Key: preorder

1
13

7
5

PB
-I

n
d

ex

preorder

s ize

num ber

Fig. 10. Index Structure: SB-Index and PB-Index

4.2 Bottom-Up XPath Evaluation

Observing that the performance of evaluating XPath queries over XML docu-
ments is significantly affected by the lengths of geometric query sequences, we
improve our subsequence matching algorithm on the basis of optimized geomet-
ric query sequence transformation. The rational behind is that instead of keeping
pairs of nodes like Bs and Be in a query sequence, we can actually remove one
of them without loss of semantics while performing subsequence matching.

Here, we propose a geometric query sequence transformation rule, with an
aim to minimize the length of the query sequence. That is: removing all the
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symbols unless it connects with a symbolui . 3 Examples of the optimized XPath
query sequences after transformation are listed in Table 2.

Interestingly, the transformed query subsequences enable us to perform query
evaluation in a bottom-up manner, since we start our subsequence matching from
a symbole. For example, given the query Q2 : /A/B/[./E][./K] in Figure 8 and
its optimized geometric query sequence: Ep

e Bi Kp
e Bp

e Ae, we start the evaluation
process from Ee instead of As. In comparison, the matching algorithm described
in ViST exhibits the top-down flavor.

To facilitate the optimized geometric subsequence matching, we improve our
stack mechanism accordingly, where only one set of stacks called symbol stacks
are involved. We use Stacksymbol to denote the stack which accommodates items
having symbol.

Given an optimized geometric query sequence ql1
1v1

ql2
2v2

. . . qlm
mvm

and a ge-
ometric data sequence d1num1,V1

d2num2,V2
. . . dnnumn,Vn

, where (m ≤ n), ∀x(1 ≤
x ≤ m) (vx = s|i|e) ∧ (lx = u|p| ), and ∀y(1 ≤ y ≤ n) (Vy = s|i|e). Starting with
the empty stacks, we scan across the two sequences from left to right. When two
equal symbols encounter (i.e., qx = dy and vx = Vy) in qlx

xvx
and dynumy,Vy

, we
consider the following situations.

[Case 1] (vx = Vy = s)
We push dynumy,s into the symbol stack Stackdy .

[Case 2] (vx = Vy = e)
There exist two possibilities. 1) When the top item of Stackdy has a subscript
intermediate flag i, we check whether dynumy,i has the same numy as this
top item. If they are the same, we push dynumy,i into Stackdy ; otherwise a
mismatch happens and we start our backtracking process. That is, we pop
all those candidate items, which lie between dynumy,e and the top item in
Stackdy , out of the corresponding symbol stacks including this top item,
and continue to re-search these candidate items in the data sequence.
2) When the top item of Stackdy has a subscript end flag e, we check whether
dynumy,i has the same numy as this top item. If they are not the same, we
push dynumy,i into Stackdy ; otherwise a mismatch happens and we start the
above backtracking process.

[Case 3] (vx = Vy = i)
We check whether dynumy,i has the same numy as the top item in Stackdy . If
they are the same, we push it into Stackdy ; otherwise, a mismatch happens,
and we start our backtracking process.
Note that when we encounter qu

xi
in the query sequence, we need to shift

the search pointer in the data sequence backward to dynumy,s to avoid the
semantic false problem (as specified in Section 3).

To illustrate our optimized geometric subsequence matching procedure, let’s
take query Q2 as the example. A snapshot of the symbol stacks is given in Fig-
ure 11. Detailed algorithmic description can be found in the Algorithm 1(pc
3 Recall in Section 4, symbolus signifies that we need to resume the range information

of symbols so as to cope with the semantic false problem.
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E1e B1i K1e

B2e

mis match in g

s tac kE s tac kB s tac kK

1
2 3

4

Fig. 11. Stack Status Avoiding Non-existence Query in OptGeoMatching

denotes parent-child relationship and ad denotes ancestor-descendant relation-
ship). Firstly, E1e is pushed into StackE (Step 1). Since p is in Ep

e in the query
sequence, the only item in Figure 9 that satisfies the parent-child constraint is
B1i, and is thus pushed into StackB (Step 2). K1e is further pushed into StackK

(Step 3). As p is in Kp
e , B2e is the only possible parent item. However, its num-

ber 2 does not conform to the number 1 of the top item B1i in StackB (Step
4). Thus B2e cannot be pushed into StackB, and a mismatch happens. We need
to backtrack to Bi and re-start the searching in the data sequence from B2i,
returning no satisfactory query answer in the end.

5 Experimental Results

We implement our proposed sequence matching mechanism, OptGeoMatching,
in C++. We also implemented ViST, and a classical indexing and querying
mechanism, XISS [10], for comparison purpose. XISS breaks down the queries
into binary twigs and ”stitches” them together to obtain the final results. ViST
treats both XML documents and XML queries as sequences and obtains the
final results by using subsequence matching phase to get preliminary results and
post-processing phase to eliminate false answers. We encode the string as they
are in ViST and use substring matching algorithm to detect the prefix matching.

We use the B+Tree library in Berkeley DB provided by Sleepycat software.
All the experiments are carried out on a Pentium III 750MHZ machine with
512MB main memory. We use disk pages of 8k for Berkeley B+Tree index. To
evaluate both the efficiency and scalability of the proposed method, we perform
the experiments on both real-world datasets and synthetic datasets.

Experiments on Real-World Datasets
Data Sets
For our experiments, we use public XML databases DBLP [9] and the public

XML benchmark XMARK [2].
– DBLP is popularly used in benchmarking XML indexing methods. In the

version we used in this study, it has 3,332,130 elements and 404,276 at-
tributes, totally 130,726KB data. The maximum depth of DBLP is 6. The
average length of geometric sequence is 39.

– XMARK is widely used in benchmarking XML indexing mechanism with
complex nesting structure. In this version we used in this study, it has
1,666,315 elements and 381,878 attributes, totally 115,775KB. The maxi-
mum depth of XMARK is 12.
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input: SB-Index: index of symbol names; PB-Index: index of (preorder,
size) labels; QGeo = QGeo1 , ..., QGeolen : XML query in geometric sequence
format; j: the jth point in QGeo; range: in format of (preorder, size); len:
length of XPath query sequence.
output: all the matchings of QGeo in the XML data
if j ≤ len then

if u is in QGeoj then
resume range of corresponding symbols, say (n’, size’);
OptGeoMatching(n′, size′, j + 1);

else
T ← All the matchings of QGeoj in SB-Index;
R ← All the matchings of T in PB-Index satisfying range;
for each rk ∈ R do

if stacksymbol.isempty() or s is in QGeoj then
stacksymbol.push(rk);

else
if rk.number = stacksymbol.top().number and i is in QGeoj

then
stacksymbol.push(rk);

if rk.number = stacksymbol.top().number and e is in QGeoj

and i is in stacksymbol.top() then
stacksymbol.push(rk);

if rk.number != stacksymbol.top().number and e is in QGeoj

and e is in stacksymbol.top() then
stacksymbol.push(rk);

if rk = stacksymbol.top() then
Assume range of rk is (n’, size’);
if size’ ≥ len - j then

if p is in QGeoj and parent constraint is satisfied then
if i is in QGeoj+1 then

OptGeoMatching(n′, size′, j + 1) //pc;
else

OptGeoMatching(n′, size′, j + 1) //ad;

else
OptGeoMatching(n′, size′, j + 1);
if i or e is in QGeoj then

skip to rh, where rh.n ≥ (rk.n + rk.size)

stacksymbol.pop();

else
output a matching of QGeo;

Algorithm 1: OptGeoMatching
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Table 3. List of XPath Queries

T: title; A: article; AU: author; I: inproceedings; N: namerica; P: payment; PE: person-
ref; PER: person; O: open auction; C: closed auctions; CA: closed auction; B: bidder;
BU: buyer;

XPath Queries Data Sets
Q1: //T[text()=”On views and XML”] DBLP
Q2: //A[./AU[text()=”Dan Suciu”]][./AU[text()=”Tan”]] DBLP
Q3: /*//I/AU[text()=”Peter Buneman”]/following-sibling::AU DBLP
Q4: //N/*/P[text()=”Cash”] XMARK
Q5: //*/O[./B/PE[@PER=”person0”]][./B/PE[@PER=”person23”]] XMARK
Q6: //C/CA/BU[@PER=”person11”]/following-silbing::BU XMARK

Performance of Query Processing
We used 6 queries on the DBLP and XMARK, and compared the proposed
method with ViST and XISS. Table 3 lists 6 different queries for DBLP and
XMARK, respectively. The experimental results of using the proposed method,
ViST and XISS are shown in Table 4.
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Fig. 12. Queries over Synthetic Data

Q1 is a simple query, ”find all the titles with ’On views and XML’”. We
find out our geometric sequence model performs slightly better that ViST cause
there is no instantiation step in geometric sequence model which is inevitable in
ViST. Q2 and Q3 are relatively complex queries, respectively, ”find all the arti-
cles written by ’Dan Suciu’ and ’Tan’” and ”find the authors co-writting inpro-
ceeding papers with ’Peter Buneman’”. This time, our geometric sequence model
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outperforms ViST because (1) we do not need to perform substring matching
in validating and instancing structure-encoded query sequences. The substring
matching increases the disk I/O since enormous data is retrieved from the in-
dex; (2) there exists no post-processing phase in our proposed method; (3) most
importantly, we performs bottom-up query evaluation strategy. Since the num-
ber of the nodes with specific authors’ names are comparatively small and their
ranges are narrow, we can thereupon achieve significant evaluation performance.
Q6 is a query which should return no result since there exists only one buyer
in one closed auction. The structure expressed by Q6 is a kind of false alarm.
Again, without exception, our geometric sequence model is significantly faster
than ViST because there is no answer during the subsequence matching in our
proposed method. We can confidently say that there is no such structure exist-
ing in XMARK file, while time-consuming refinement phase has to be called by
ViST to eliminate enormous false answers.
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Fig. 13. I/O Performance: Geo vs. ViST

Experiments on Synthetic Data
Datasets
To evaluate the extensibility of the proposed method, we generate our own

synthetic datasets. In our experimental environment, there are totally 30,000
documents with 20 different symbols. The maximum depth of our datasets is
16, and maximum fan-out of a node is set to 4. We still use 8KB disk page for
B+Tree index and 8-byte integer for pre-order number. We generate geometric
sequences directly instead of generating documents.
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Table 4. Proposed Method vs. ViST and XISS

Query Our Method (s) ViST (s) XISS (s)
Q1 2.81 2.94 7.22
Q2 7.14 13.33 319.28
Q3 17.49 69.82 612.13
Q4 7.86 9.12 467.26
Q5 12.27 18.13 392.85
Q6 9.73 39.20 729.21

Performance of Query Processing
We set the length of queries to 3, 5, 6, 7, 8, 9, 10, 12, and 14 respectively. All
the queries are non-existence queries. To focus on the impact of refinement or
post-processing phase in ViST, we do not use queries with content constraints
since our bottom-up OptGeoMatching is naturally more superior than top-down
ViST. We also do not use queries related to semantic false since ViST can not
handle these queries at all. In the scalability test, We found out that the perfor-
mance of ViST depends on distribution of nodes which are chosen as ancestors or
descendants in the queries, referred to as selectivity. The high selectivity of both
ancestors and descendants generates a considerable number of false answers in
ViST if non-existence queries or non-equivalence queries are executed, implying
that the query performance of ViST degrades in these cases.

In order to demonstrate the extensibility and stability of our proposed
method, we divide the above 30,000 documents into 4 different categories on
the basis of the distribution of nodes chosen as ancestors or descendants in the
queries.

– Dataset1 (12,000 documents): low selectivity of ancestors and descendants
– Dataset2 (5,000 documents): high selectivity of ancestors and low selectivity

of descendants
– Dataset3 (4,000 documents): low selectivity of ancestors and high selectivity

of descendants
– Dataset4 (9,000 documents): high selectivity of ancestors and descendants

The results are shown in Figure 12 and Figure 13. We find out that our
proposed method performs better than ViST in Dataset1 because the post-
processing phase is trivial in dataset1. However, for the rest of the three datasets,
our proposed method performs significantly better than ViST since refinement
phase requires enormous efforts to eliminate the false answer. Contrasting to
ViST, our proposed method performs stably in these three datasets. We notice
that even content constraint is not involved in our synthetic data experiments,
we can see that OptGeoMatching demonstrates significant disk I/O performance
comparing with ViST since top-down ViST is uncertain of its descendants and
has to search its full range for correct answers. In contrasting to top-down ViST,
OptGeoMatching performs a bottom-up subsequence matching and only needs
to search a more specific range where an ancestor node may exist.
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6 Conclusion

In this paper, we report an efficient mechanism for accelerating XPath eval-
uation steps based on the proposed geometric sequence. A bottom-up holistic
subsequence matching algorithm is proposed on the basis of a novel geometric
sequence model for XML documents. We demonstrate that our proposed mech-
anism can significantly improve the current best approach ViST, finding all the
correct answers without refinement or post-processing phase with linear size
complexity of geometric sequence and guaranteeing the completeness of XPath
evaluation without semantic false.
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