Continuous Trend-Based Classification
of Streaming Time Series

Maria Kontaki*, Apostolos N. Papadopoulos, and Yannis Manolopoulos

Department of Informatics, Aristotle University,
GR-54124 Thessaloniki, Greece. E-mail:
{kontaki,apostol,manolopo}@delab.csd.auth.gr

Abstract. Trend analysis of time series data is an important research direc-
tion. In streaming time series the problem is more challenging, taking into ac-
count the fact that new values arrive for the series, probably in very high rates.
Therefore, effective and efficient methods are required in order to classify a
streaming time series based on its trend. Since new values are continuously
arrive for each stream, the classification is performed by means of a sliding
window which focuses on the last values of each stream. Each streaming time
series is transformed to a vector by means of a Piecewise Linear Approxi-
mation (PLA) technique. The PLA vector is a sequence of symbols denoting
the trend of the series, and it is constructed incrementally. The PLA is com-
posed of a series of segments representing the trend of the raw data (either
UP or DOWN). Efficient in-memory methods are used in order to: 1) deter-
mine the class of each streaming time series and 2) determine the streaming
time series that comprise a specific trend class. Performance evaluation based
on real-life datasets is performed, which shows the efficiency of the proposed
approach both with respect to classification time and storage requirements.
The proposed method can be used in order to continuously classify a set of
streaming time series according to their trends, to monitor the behavior of a
set of streams and to monitor the contents of a set of trend classes.

Keywords: data streams, time series, trend detection, classification, data mining

1 Introduction

The study of query processing and data mining techniques for data stream processing
has recently attracted the interest of the research community [2], due to the fact
that many applications deal with data that change very frequently with respect
to time. Examples of such application domains are network monitoring, financial
data analysis, sensor networks to name a few. The most important property of data
streams is that new values are continuously arrive, and therefore efficient storage and
processing techniques are required to cope with the high update rate.

A streaming time-series S is a sequence of real values s, s, ..., where new
values are continuously appended as time progresses. For example, a temperature
sensor which monitors the environmental temperature every five minutes, produces
a streaming time-series of temperature values. As another example, consider a car

* This research is supported by the State Scholarships Foundation (I.K.Y.).

equipped with a GPS device and a communication module, which transmits its posi-
tion to a server every ten minutes. A streaming time-series of two-dimensional points
(the z and y coordinates of its position) is produced. Note that, in a streaming
time-series data values are ordered with respect to the arrival time. New values are
appended at the end of the series.

A class of algorithms for stream processing focuses on the recent past of data
streams by applying a sliding window on the data stream [2,3]. In this way, only
the last W values of each streaming time series is considered for query processing,
whereas older values are considered obsolete and they are not taken into account. As
it is illustrated in Figure 1, streams that are non-similar for a window of length W
(left), may be similar if the window is shifted in the time axis (right).

Stream 1

-~V

Stream 2

~ VY

]
l«— W—»
(a) non-similar streams (b) similar streams

Fig. 1. Similarity using a sliding window of length W.

We use trends as base to classify streaming time series for two reasons. First, trend
is an important characteristic of a streaming time series. In several applications the
way that stream values are modified is considered important, since useful conclusions
can be drawn. For example, in a stock data monitoring system it is important to
know which stocks have an increasing trend and which ones have a decreasing trend.
Second, trend-based representation of time series is more close to the human intuition.
In the literature, many papers [6, 7] use the values of the data streams and a distance
function like Euclidean distance to cluster streams. Although a distance function
can be large for a pair of streams, these two streams can be intuitionally considered
similar, if their plots are examined. Thus, distance functions aren’t always good
metrics to cluster or to classify objects.

In this paper, we focus on the problem of continuous time series classification
based on the trends of the series as time progresses. Evidently, we expect that the
same series will show different trend for different time intervals. The classification
is performed by considering the last W values of each stream (in a sliding window
manner). Again, two streaming time series that show similar trends for a specific time
interval may be totally dissimilar for another time interval. This effect is illustrated
in Figure 1, where the trends of the time series are represented by dotted lines. We

note also that two series which show similar trends may be completely different with
respect to the values they assume.

The rest of the article is organized as follow. In Section 2 we give significant
related work on the issue of trend analysis in streams. Section 3 discusses in detail
the proposed approach which is based on two important issues: 1) an effective in-
memory representation of the streams by means of an approximation and 2) an
efficient in-memory organization in order to quickly categorize a stream when new
values for that stream are available. Experimental results based on real-life datasets
are offered in Section 4, whereas Section 5 concludes the work and raises some issues
for further research in the area.

2 Related Work and Contribution

The last decade, mining time series has attracted the interest of the researchers.
Classification is a well-known data mining problem. Many papers have been proposed
to classify objects from different research domains as machine learning, knowledge
discovery and artificial intelligence.

The classification problem is more challenging in the case of streaming time series
due to the dynamic nature of the streaming case. In the recent past, [1] proposed a
classification system in which the training model adapts to the changes of the data
streams. The method is based on the micro-clusters, vectors which contain simple
statistics over a time period of a stream. Classification is achieved by combining
micro-clusters in different time instances (snapshots). The method uses a periodically
scheme to update the micro-clusters and reports the classification on demand. Our
method incrementally computes and continuously reports the classification. Moreover
the scheme, that was used, needs a training set in opposition to our scheme that has a
restricted number of classifiers and the classifiers are a priori known. In [13] used info-
fuzzy networks to address the problem. Other approaches include one-pass mining
algorithms [4,8], in which the classification model is constructed in the beginning,
and therefore do not recognize possible changes in the underlying concept.

Piecewise linear approximation has been used to represent efficiently time series
in many topics as clustering, classification and indexing [11,17, 18]. Many variations
have been proposed, among them are the piecewise aggregate approximation (PAA)
[12] that stores the mean value of equal-length segments and the adaptive piecewise
constant approximation (APCA) [10] that stores the mean value and the right end-
point of variable-length segments.

Trend analysis has been used to cluster time series in many domains such as time
series [19, 14], bioinformatics [15] and ubiquitous computing [16]. Yoon et al proposed
six trend indicators. A time series is represented as a partial order of the indicators.
A bitmap index is used to encode indicators into bit strings in order to compute the
distance between two time series with the XOR operator. In [14, 15] modifications
of PLA are used to detect trends and three types of them are used (up, down and
steady) to cluster time series. These methods study the clustering problem in time
series. They do not use an incremental way to compute the trend representation.
Additionally the clustering algorithms were proposed are not one-pass algorithms.
So the methods are not appropriate in a streaming case. In comparison with our
method the trend representation is incrementally computed and the classification

is continuously reported using an efficient in-memory access method. Recently, [17]
proposed trend analysis to address the problem of subsequence matching in financial
data streams. The Bollinger Band indicator (%b) is used to smooth time series and
then the PLA is applied. The %b indicator uses simple moving average and thus
the whole sliding window is required to compute next values of %b. So the pla
representation is not computed incrementally and in case of thousand of streams the
memory requisites are enormous.
The contribution of the work is summarized as follows:

— An incremental computation of the PLA approximation is presented, which en-
ables the continuous representation of the time series trends under the sliding
window paradigm.

— An efficient in-memory access method is proposed which facilitates fundamental
operations such as: determine the class of a stream, insert a stream into another
class, delete a stream from an existing class.

— Continuous trend-based classification is supported, which enables the monitoring
trend classes or the monitoring of data stream.

— The proposed technique can be applied even in the case where only a subset of
the data streams change their values at some time instance. Therefore, it is not
required to have stream values at every time instance for all streams.

3 Trend Representation and Classification

In data stream processing there are two important requirements posed by the na-
ture of the data. The first requirement states that processing must be very efficient
in order to allow continuous processing due to the large number of updates. This
suggests the use of the main memory in order to avoid costly I/O operations. The
second requirement states that random access to past stream data is not supported.
Therefore, any computations that must be performed on the stream should be in-
cremental, in order to avoid reading past stream values. In order to be consistent
with the previous requirements, we propose a continuous classification scheme which
requires small storage overhead and performs the classification in an incremental
manner, taking into consideration the synopsis of each stream. Each stream synopsis
requires significantly less storage than the raw stream data, and therefore, better
memory utilization is achieved. Before we describe the proposed method in detail we
give the basic symbols used throughout the study in Table 1.

3.1 Time Series Synopsis

In this section we study the problem of the incremental determination of each stream
synopsis, in order to reduce the required storage requirements and enable stream clas-
sification based on trend. Trend detection has been extensively studied in statistics
and related disciplines [5,9]. In fact, there are several indices that can be used in
order to determine trend in a time series. Among the various approaches we choose
to use the TRIX indicator [9] which is computed by means of a triple moving average
on the raw stream data. We note that before trend analysis is performed, a smoothing
process should be applied towards removing noise and producing a smoother curve,

ISymbol [Description

S a streaming time series

S(t) the value of stream S at time ¢
N number of streaming time series
n length of a streaming time series
w sliding window length

D period of moving average (p < W)
EM Aip(t)|the i-th exponential moving average of period p (¢ > p)
TRIX(t) |percentage differences of EM A3, (t) signal

PLA piecewise linear approximation

PLA(i) |the i-th segment of the PLA

k the number of segments of the PLA

tlmin the minimum time instance of a bucket list
tlmaz the maximum time instance of a bucket list
thmin the minimum time instance of a bucket
tbmax the maximum time instance of a bucket

Table 1. Basic notations used throughout the study.

revealing the time series trend for a specific time interval. This smoothing is facili-
tated by means of the TRIX indicator, which is based on a triple exponential moving
average calculation of the logarithm of the time series values. In the sequel, we first
explain the use of the exponential moving average and then we introduce the TRIX
indicator.

Definition 1
The exponential moving average of period p over a streaming time series S is calcu-
lated by means of the following formula:

2

EMA,(t)=EMA,(t—1)+ i

(S(t) — EMA,(t - 1)) (1)

Definition 2
The TRIX indicator of period p over a streaming time series S is calculated by means
of the following formula:

EMA3,(t) — EMA3,(t — 1)
EMA3,(t—1)

TRIX(t) =100 (2)
where EMA3, is a signal generated by the application of a triple exponential moving
average of the input time series.

The signal TRIX (t) oscillates around the zero line. Whenever TRIX (t) crosses
the zero line, it is an indication of trend change. This is exactly what we need in
order to perform a trend representation of an input time series. Figure 2 illustrates
an example. Note that the zero line is crossed by the T RI X (t) signal, whenever there
is a trend change in the input signal. Figure 2 also depicts the smoothing achieved
by the application of the exponential moving average.

value

300 350 400 450 500 550
time

Fig. 2. Example of a time series and the corresponding T'RI X (t) signal.

Definition 3

The PLA representation of a streaming time series S for a time interval of W values
is a sequence of at most W-1 pairs of the form (¢, trend), where ¢ defines the left-point
time of the segment and trend denotes the trend of the stream (UP or DOWN) in
the specified segment.

Each time a new value arrives, the PLA is updated. Three operations (ADD,
UPDATE, EXPIRE) are implemented to support incremental computation of the
PLA. The ADD operation is applied when a trend change detected and adds a new
PLA-point. The UPDATE operation is applied when the trend is stable and updates
the timestamp of the last PLA-point. The EXPIRE operation is applied when the
first segment of the PLA is expired and deletes the first PLA-point. Notice that when
the UPDATE operation is applied the class of the stream does not change.

3.2 Continuous Classification

In this section we study the way continuous classification is performed. Taking into
account that each PLA segment has an UP or DOWN direction, the number of pos-
sible trend classes for a sliding window of length W is given by Cyy =2 (W — 1) as
it is illustrated by the following proposition.

Proposition
The number of different classes Cyy of streaming time series is given by:

Cw=2-(W-1) (3)
where W is the sliding window length.

Proof
To prove this proposition we use induction. Evidently, the proposition is true for

W=2 (note that W=2 is the smallest value for the sliding window length which en-
ables trend determination). We assume that the proposition is true for W=n, and
therefore C,, = 2 - (n-1). We will prove the proposition for W=n+1. The values at
positions n and n+1 define a straight line with either an increasing trend (UP) or a
decreasing trend (DOWN) (in the case where the TRIX indicator is zero, we retain
the previous trend). If the trend is UP and the trend of the previous PLA segment
is also UP, then the final result is UP. If the trend is DOWN and the trend of the
previous PLA segment is also DOWN, then the final result is DOWN. If one of the
above cases is true, then the (n+1)-th stream value has no contribution at all. Now
consider the case where the last trend is UP and the previous trend is DOWN, or
the case where the last trend is DOWN and the previous trend is UP. If one of the
aforementioned cases is true then clearly, the (n+1)-th stream value contributes to
another trend class. This means that the (n+1)-th stream value can give two more
trend classes. This means that C,, 11 = C,, + 2. By the induction hypothesis we know
that C,, = 2 - (n-1). Therefore, C,y1 =2 - (n-1) + 2 = 2 - n, and this completes the
proof. O

Figure 3 illustrates the different classes generated for different values of the sliding

window length (W=2, W=3 and W=4). Each class is characterized by the trend
sequence which is composed of a series of U and D symbols.

/\
/\/\\/
/\\/\/\/\/\\//

c W=4

Fig. 3. Trend classes for different values of the sliding window length (W).

Every time a new value for a streaming time series arrives, the corresponding
stream may change from a trend class to another. We illustrate the way continuous
classification can be achieved efficiently, by means of an in-memory access method
which organizes the streams according to the trend class they belong and by tak-
ing into account time information to facilitate efficient search. During continuous
classification the following operations must be supported:

— We must quickly locate the class that the corresponding stream belongs to,

— We must delete (if necessary) the corresponding stream from the old class and
assign it to a new one, and

— We must report efficiently the stream identifiers that belong to a specific trend
class.

Each trend class is supported by several lists of buckets. The first bucket of each
list is the primary bucket whereas the other buckets are overflow buckets. The overflow
buckets are used only in the case where the stream must be inserted in an existing
list (step 2 of Algorithm Insert) and the primary bucket of the list is full (bucket
size exceeded). Each bucket list is characterized by two time instances tl, and
tlmaz, denoting the minimum and the maximum time instances which corresponds
to the k — 1-th PLA point, where k is the number of points contained in the PLA
representation. We use the one before the last PLA point as base to insert streams
in bucket lists because is the last stable point (the last point maybe changed if an
update happens) and thus we have to update the classification structure only when
the stream changes class. Each bucket is composed of a set of stream identifiers and
two time instances tb,,;, and tb,,... These time instances denote the time interval
that each stream in the bucket has been inserted.

In Figure 4 an example of the structure is depicted. The class DUD consists of
two bucket lists. The first list contains additionally an overflow bucket. For the first
list the tl,,,;, is 10 and the tl,,,, is 15. This means that the streams 1,2,5,8 have the
one before the last PLA point between time 10 and 15. For the primary bucket of
the first list the tb,,;n is 12 and the tb,,4, is 17 and contains the streams 2,5 and 8.
Therefore streams 2,5 and 8 were inserted in this class between time 12 and 17. For
the overflow bucket of the first list the tb,,;;, is 18 and the tb,,,4,, is 18 and contains the
stream 1. Stream 1 was inserted at time instance 18. The description of the second
list is the same.

We will explain how we use the bucket lists structure to continuous classify
streams with an example. Assume the two bucket lists of the classes DUD and DUDU
of the Figure 4. The bucket size is 3 and the window size is 16. At time instance 21
a new value for the stream 1 is arrived. The following operations take place: a) we
search the stream 1 in the bucket lists of class DUD, b) we delete it, ¢) we update
PLA and d) we insert it in the bucket lists of class DUDU. The stream 1 has the
one before last PLA point at time 14. We search for the bucket list in which ¢/,
and tl,,4, enclose time 14 (step 1 of search algorithm). This is the first list. The first
list contains an overflow bucket so we must find the insertion time of the stream 1
(insertion time algorithm). The stream 1 was inserted in this class either when a new
PLA-point was added (PLA(k — 1)-point + 1) or when the first segment expired (W
+ PLA(0)-point - 1). The maximum of these two times is the time that the stream
was inserted. Therefore the insertion time is 18. We search in the list, a bucket in
which tb,;, and tby,... enclose time 18 (step 3 of search algorithm). This is the over-
flow bucket (figure 8). We delete stream 1 and then we delete the bucket because is
empty (delete algorithm). Then we update the PLA of the stream. The new class
is the DUDU class. Now the one before the last PLA point is at time 20. Since the
bucket lists of this class is not empty (step 1 of the insert algorithm) and since the
tlmaz of the one before the last bucket list is smaller than 20 (step 2), we check if the
last bucket list is full (step 3). In the Figure 9 we can see that the primary bucket of

this list is not full. So we update the tl,,4, (step 3) and the tb,,4, and we insert the
stream in the primary bucket of this list (step 5). The algorithms for insert, search
and delete are given in Figure 5, Figure 6 and Figure 8 respectively.

Class DUD Class DUDU 3,.D 14,D
Bucket List "’/\/\-
timi 1Ima§ a3 E iy d 18
10-15 | 16-18 13-13 |14-17 xpire 10.U
. PLA of the stream 1 at
tomin->2._.17 | 20-20 16-16 |[15-19 time instance 18
58| 4 6 | 37 | 3D =L 21
A 3 A
4
tomax | 18- 18 | pyimary Bucket 10U 20,U
1 +— Qverflow Bucket PLA of the stream 1 at
time instance 21

Fig. 4. Example of search algorithm with bucket size 3.

Algorithm Insert

/* Determine the list to insert the stream */

If the corresponding class is empty, then a new list is created and the values tl,in and tlmaex

are set to the time instance t,,_1 of the (n — 1)-th PLA point.

Otherwise, check if t,,_1 is less than the tl,,q, value of the last list. If yes, then the stream
identifier is inserted into one of the existing bucket lists. The appropriate bucket list is the list in
which the tl,,;n and tl,.. enclose the t, _1.

Otherwise, check if the primary bucket of the last list is full. If the primary bucket is not full then
the stream is inserted into that list by updating the corresponding value tl,,q4. If the primary
bucket is full, a new bucket list is generated and the values tlyin and tl,,q. are set to the time
instance t,—1 of the (n — 1)-th PLA point.

/* Determine the bucket to insert the stream */

If the primary bucket of the current list does not exist, then a primary bucket is created and the
stream is inserted. The tb,,in and tby, ., values are updated with the current time.

If the primary bucket of the current list is not full, then the stream is inserted into that bucket
and the tb,, 4. value is updated with the current time.

Otherwise the stream is inserted into the last overflow bucket of the list, by updating

accordingly the tb,,qo value. If the last overflow bucket is full, a new overflow bucket is generated.

Fig. 5. Insertion algorithm.

4 Performance Study

The proposed trend-based classification scheme has been implemented in C++, and
the experimental evaluation has been performed on a Pentium IV machine with
1GByte RAM running Windows 2000. Two real-life datasets with different charac-
teristics have been used:

Algorithm Search

1. Determine the bucket list by checking for the values of tl,,in and tlmax

that enclose the time instance t,,_1 of the stream.
2. If the list contains only a primary bucket, then the stream identifier is found into that bucket.
3. If the list contains a number of overflow buckets, then by using the time instance that

the stream has been inserted (Fig. 7), the corresponding overflow bucket which
contains the stream is easily detected.

Fig. 6. Search algorithm.

Algorithm Insertion Time

1. Compute the time that the last expiration has occurred. The time is given by lastEX P=W +
PLA(0)-point - 1.

2. Compute the time that the last ADD operation has occurred. The time is given by lastADD=
PLA(k — 1)-point + 1.

3. The time that the stream has been inserted is given by max(lastEX P,lastADD).

Fig. 7. Insertion Time algorithm.

Algorithm Delete

Call algorithm Search in order to determine the position of the stream.
Remove the stream identifier from the bucket.

If the bucket is empty it is removed.

If the bucket list is empty it is removed.

o

Fig. 8. Deletion algorithm.

— STOCKS: is the daily stock prices obtained from http://finance.yahoo.com. The
data set consists of 93 time sequences, and the maximum length of each one is
set to 3,000.

— TAO: this dataset (Tropical Atmosphere Ocean) contains the wind speed of 65
sites on Pacific and Atlantic Ocean since 1974, obtained from the Pacific Marine
Environmental Laboratory (http://www.pmal.noaa.gov/tao). We have used the
highest data resolution (e.g. the sampling time interval) that was available. About
12,000 streams form the data set, and the maximum length of each one is set to
1,000.

In the sequel we give the performance results for different parameter values for the
sliding window length (W), the exponential moving average period (p), the number of
the streaming time series (IV), the bucket size(B). The experiments are divided into
two categories. The first category studies the quality of the clustering and the second
studies the performance. We focus on two performance measures: the computational
cost required to perform continuous classification and the memory requirements of

the proposed approach because they are the most important metrics in determining
the effectiveness and the robustness of a stream processing system. The CPU cost
was measured in seconds. Finally, the proposed method works both in cases where
all the streams or part of them are updated. For the experiments below, the first case
was used.

4.1 Quality of PLA

The underlying idea of the approach is to cluster streams using an abstractive repre-
sentation of the streams that is closer to the "human sense” despite using the values
of the streams and the Euclidean distance or others distance metrics. In this section
we examined the conforming between the piecewise linear approximation of a stream
and the general shape of a stream without micro changes.

Next, we give some classification examples. Figure 9 shows classification patterns
and a sample of streams that are associated with each one. For each stream, both
the raw data and the PLA are illustrated. The classification instances are peaked
after a random number of updates. Notice that if we are not contented with the
representation, we can choose a greater p for a more abstractive description of the
stream, or a smaller p for a more comprehensive description.

\//\

—_ ﬁ -v“
— L ol ii‘“ﬂﬁ—
A N) 4”"
'h’:-"'k\:lf A 2P’ f el ."a.'.'/"-’/’ (A i —.ij.:-'p ﬁﬁa 2;-
r *ﬁ‘,— --.;. 1'--"#'*"”“"’"‘"“—-"-.. A,
B, il P {/l eI By

“4."“ e, e

f

] —
& L ¢ Coas il "‘-‘: T —
T A sy B B i
T
%-J i._vﬂ"rr - R

e A VA VAV Y4

Al N

_ AN NS e
“‘-‘“-"}...‘-gih"‘n’é‘- ?/ N \.rl '-/,.“-“'1/”(’ 7?“ H'h\uw o ‘I'y J\?'f'-'-""}ﬁ':_ﬁ

, e) iy -~
\'L'_," {-vg- / L ”-:“kl o |||1"I }M e] T, /\ -

N PR N 4 “\”A-' K e A
- .11_._; .l"\.-.' v—‘/"' =ANA "‘"-"{_l / /" 0‘, y“‘ R tL r’\.." poypond _n"v\ o v\.\- - ;-/ L
[P N, 1] " s !

el S IV

Fig. 9. Classification examples.

Additionally, Figure 10 shows the number of clusters for different values of p with
respect to W for the TAO and STOCKS data sets. The term CL_raw is used for the
possible number of clusters that is entirely depended on the window size W. It was
expected the number of clusters, that is actually used, is reduced as the p is increased
because less details are represented by the PLA. Therefore some streams are moved
in classes with smaller number of segments.

700

3000 [)) + clps—1

600 |- p LT

2500 . CLp39 --o- |
. Cloraw -

500 |-

2000

400 -

1500 [

Number of Clusters
Number of Clusters

300 [

1000 [.
200 | -

100 | 500 [

e Terrreessr]

! L n n n eoarcl

0 50 100 150 200 250 0 500 1000 1500 2000
Window Size Window Size

Fig. 10. Number of clusters vs window length for a) TAO and b) STOCKS data sets.

4.2 Performance Evaluation

We first examine the performance of the method with respect to window length.
Figure 11 illustrates the total CPU cost (11a) and the CPU cost to compute the
PLA of all streams for all the updates (11b) for the TAO data set. Different values
for p are used. From Figure 11, the total CPU cost is determined from the PLA CPU
cost. The latter is independent from the window size due to the use of the TRIX
indicator.

cPU_pl ——
CPUTD5 -
CPUDO -

CPU_p13
CPUpI7 -
20 CPUP2L --o-- |

Total CPU

L L L L L L L L L L
0 50 100 150 200 250 0 50 100 150 200 250
Window Size Window Size

Fig. 11. a) Total CPU cost and b) PLA CPU cost vs window length.

Table 2 illustrates the total memory for the STOCKS data set and partial mem-
ory prerequisites for the PLA representation and the classification structure. Total
memory is essentially affected by the PLA memory. The PLA memory is increased
as the window size increases.

Next we examine the performance of our method with respect to the number of
streams. Figure 12a depicts the CPU cost for all the streams (12145) and for all the
updates (about 700) for the TAO data set. The term TOTAL_CPU is used for the
sum of the PLA and the classification CPU cost. The CPU cost increases linearly
with respect to the number of streams.

Window Size|Total Classification| PLA
memory (KB)|memory (%) |memory (%)
128 13013.797 28.6% 71.4%
324 16065.762 25.9% 74.1%
520 19059.859 23.9% 76.1%
716 21772.871 21.4% 78.6%
912 24441.957 19.6% 80.4%
1108 27129.715 18.1% 81.9%
1304 29934.621 17.2% 82.8%
1500 32726.527 16.5% 83.5%

Table 2. Total CPU and classification memory vs bucket size

The memory prerequisites of the PLA per update for the TAO data set are illus-
trated in Figure 12b. The term MEM raw is used for the memory prerequisites of the
raw data. Notice that the y-axis scales logarithmically. The PLA memory increases
steadily with respect to the number of streams but it is less than the 10% of raw
data memory.

CPU_TOTAL —— 'MEM_pla ——
CPU_CLAS —x— MEM_faw %
CPU_PLA - x

»»»»»»»»

PLA Memory (MB)

L L L L L L
0 2000 4000 6000 8000 10000 12000
Number of Streams.

Fig. 12. a) CPU cost and b) memory prerequisites of PLA vs number of streams for TAO.

To better understand the influence of the bucket size in the classification method,
Figure 3 shows the CPU cost and the memory prerequisites of the classification
method. Large bucket size reduces the memory prerequisites but increases CPU cost,
whereas a small bucket size has the opposite results. The bucket size is a trade-off
between memory resources and computation time.

5 Conclusions and Future Work

Trend analysis of time evolving data streams is a challenging problem due to the
fact that the trend of a time series changes with respect to time. In this paper
we studied the problem of continuous trend-based classification of streaming time
series, by using a compact representation for each stream and an in-memory access

Bucket Size|Total CPU|Classification
memory (MB)

50 3.745 25.061

100 3.7842 14.803

200 3.6836 8.573

300 3.73 6.082

400 3.801 4.764

500 3.9377 3.876

600 4.0029 3.286

Table 3. Total CPU and classification memory vs bucket size

method to facilitate efficient search, insert and delete operations. A piece-wise linear
approximation (PLA) has been used in order to determine the trend curve of each
stream. The PLA representation has been applied on a smoothed version of each
stream. We have used the TRIX indicator for smoothing. Moreover, a continuous
classification method has been presented which reassigns a stream to new trend class
if necessary. Performance evaluation results based on real-life datasets have shown
the feasibility and the efficiency of the proposed approach.

In the near future we plan to extend the current work towards continuous clus-
tering of streaming time series, by taking into account the similarity between trend
classes.

References

1. C. C. Aggarwal, J. Han, P. S. Yu: ”On Demand Classification of Data Streams”, Proceed-
ings of the International Conference of Knowledge Discovery and Data Mining(KDD),
WA, USA, 2004.

2. B. Babcock, S. Babu, M. Datar, R. Motwani, J. Widom: “Models and Issues in Data
Stream Systems”, Proceedings ACM PODS, pp. 1-16, Madison, Wisconsin, June 2002.

3. M. Datar, A. Gionis, P. Indyk, R. Motwani: ”Maintaining stream statistics over sliding
windows”, Proceedings of the 2002 Annual ACM-SIAM Symp. on Discrete Algorithms,
pp.635-644, 2002.

4. P. Domingos, G. Hulten: ”Mining High-Speed Data Streams”,Proceedings of ACM
SIGKDD Conference,2000.

5. G.P. C. Fung, J. X. Yu, W. Lam: ” News Sensitive Stock Trend Prediction”, In PAKDD,
pp. 481-493, 2002

6. S. Guha, A. Meyerson, N. Mishra, R. Motwani, L. OCallaghan: ”Clustering Data
Streams: Theory and Practic”, IEEE TKDE, Vol. 15, No. 3, pp. 515-528, May/June
2003.

7. S. Guha, N. Mishra, R. Motwani, L. OCallaghan: ” Clustering data streams”, In Proc. of
the 2000 Annual IEEE Symp. on Foundations of Computer Science, pp. 359366, 2000.

8. G. Hulten, L. Spencer, P. Domingos: ”"Mining Time Changing Data
Streams”, Proceedings of ACM KDD Conference,2001.

9. J. K. Hutson: ”TRIX - Triple Exponential Smoothing Oscillator”, Technical Analysis
of Stocks and Commodities, pp. 105-108, July/August 1983.

10

11.

12.

13.

14.

15.

16.

17.

18.

19.

E. Keogh, K. Chakrabarti, S. Mehrotra, M. Pazzani: ” Locally Dimensionality Reduction
for Indexing Large Time Series Databases”, Proceedings of ACM SIGMOD Conference,
California, USA, 2001.

E. Keogh, M. Pazzani: ” An enhanced representation of time series which allows fast
and accurate classification, clustering and relevance feedback”,Proceedings of the In-
ternational Conference of Knowledge Discovery and Data Mining (KDD), pp. 239-241,
1998.

E. Keogh, M. Pazzani: ” A simple dimensionality reduction technique for fast similarity
search in large time series databases”, Proceedings of Pacific- Asia Conf. on Knowledge
Discovery and Data Mining, pp. 122-133, 2000.

M. Last: ”Online Classification of Nonstationary Data Streams”, Intelligent Data Anal-
ysis, Vol. 6, No. 2, pp. 129-147, 2002.

P. Ljubic, L. Todorovski, N. Lavrac, J. C. Bullas: ” Time-series analysis of UK traffic ac-
cident data”, Proceedings of the Conference on Data Mining and WareHouses (SiKDD),
Ljubljana, Slovenia, 2002.

L. Sacchi, R. Bellazzi, C. Larizza, P. Magni, T. Curk, U. Petrovic and B. Zupan:
“Clustering and Classifying Gene Expressions Data through Temporal Abstractions”,
Proceedings of 8th Intelligence Data Analysis in Medicine and Pharmacology Work-
shop(IDAMAP 2008), Protaras, Cyprus, 2003.

T. Takada, S. Kurihara, T. Hirotsu, T. Sugawara: ” Proximity Mining: Finding Proxim-
ity using sensor Data History”, Proceedings of 5th IEEE Workshop on Mobile Computing
Systems and Applications (WMCSA), CA, USA,2003.

H. Wu, B. Salzberg and D. Zhang: “Online Event-driven Subsequence Matching over
Financial Data Streams”, Proceedings of ACM SIGMOD Conference, Paris, France,
2004.

B-K. Yi, C. Faloutsos: ”Fast Time Sequence Indexing for Arbitrary Lp Norms”, Proceed-
ings of 26th International Conference on Very Large Databases (VLDB), Cairo, Egypt,
2000.

J.P. Yoon, Y. Luo and J. Nam: “A Bitmap Approach to Trend Clustering for Predic-
tion in Time-Series Databases”, Proceedings of Data Mining and Knowledge Discovery:
Theory, Tools, and Technology II, Florida, USA, 2001.

