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Abstract

We give formulations for modal deductive databases and present a modal query language
called MDatalog. We define modal relational algebras and give the seminaive evaluation al-
gorithm, the top-down evaluation algorithm, and the magic-set transformation for MDatalog
queries. The results of this paper like soundness and completeness of the top-down evalua-
tion algorithm or correctness of the magic-set transformation are proved for the multimodal
logics of belief KDI4s5, KDI45, KD4s5s, KD45(m), KD4Ig5a, and the class of serial context-
free grammar logics. We also show that MDatalog has PTIME data complexity in the logics
KDI4s5, KDI45, KD4s5s, and KD45(m).

1 Introduction

Modal logics are useful for reasoning about knowledge and beliefs. In particular, they can be used
for reasoning about multi-degree beliefs (a kind of uncertainty), for modeling distributed systems
of beliefs, and for reasoning about epistemic states of agents in multi-agent systems (see Section 2.2
for some modal logics with these purposes). Example 2.1 in this paper demonstrates the usefulness
of modal logics in modeling distributed systems of beliefs. Example 4.3 in [25] about the wise men
puzzle demonstrates how agents can use modal logics to reason about common beliefs and epistemic
states of other agents.

Deductive databases are very useful for practical applications. In deductive databases, inten-
tional relations are defined using extensional relations and logical rules, and users can thus create
sophisticated relations from basic ones. The field of deductive databases is mature and there are
well-developed techniques for computing queries in such databases (see, e.g., [1]). It is desirable to
study modal extensions of deductive databases.

As far as we know, there are no works by other authors that are devoted to modal deductive
databases and directly use modal logics. The modal Datalog defined in [13, Definition 23] is formu-
lated in classical logic and uses only unary or binary predicates. Deductive databases/knowledge
bases in description logics have recently been studied by a considerable number of researchers (see,
e.g., [4, 17, 14, 10, 15, 5]). Description logics are cousins of modal logics that represent the domain
of interest in terms of concepts, objects, roles, and are useful for modeling and reasoning about
structured knowledge. However, they differ from modal logics in the same way as “objects” differ
from “possible worlds”.

Not only are modal extensions desirable for deductive databases, but the computational methods
of deductive databases are also worth studying for modal logics. Informally, assume that a modal
query consists of a first-order positive modal logic program without function symbols and a querying

∗This is a revised version of “L.A. Nguyen. Foundations of Modal Deductive Databases. Fundamenta Informaticae,
79 (1-2), 2007, 85-135.”
†Supported by grant N N206 3982 33 from the Polish Ministry of Science and Higher Education.

1



formula of the form ∃xϕ, where ϕ is a positive formula without quantifiers and x is a vector of all
the variables of ϕ. If one applies the relational translation to classical logic for a modal query, then
Skolem function symbols may be introduced and the Horn property may not be preserved. If the
functional translation [29, 7] or the semi-functional translation [28] is used, then Skolem function
symbols may appear. That is, translation techniques do not work for modal queries. Also note that
the method of systematically checking all ground substitutions is very insufficient and unacceptable.
Therefore the study of the computational methods of deductive databases for modal queries is fully
justifiable.

In [20], we extended Datalog for monomodal logics, giving two languages: MDatalog and eM-
Datalog. The first one is a natural extension of Datalog, while the second one is the general modal
Horn fragment with a refined condition of range-restrictedness. It was shown in [20] that every
eMDatalog query can be translated in polynomial time into an MDatalog query which is equivalent
to the original in any normal monomodal logic. The evaluation method proposed in [20] is based on
building a least L-model for a modal deductive database, where L is the base modal logic. It was
applied for the basic serial/almost serial monomodal logics. In [24], we showed that the data com-
plexity of MDatalog and eMDatalog in KD, T, KB, KDB, B, K5, KD5, K45, KD45, KB5, and S5
is complete in PTIME, in K is complete in coNP, and in K4, KD4, and S4 is complete in PSPACE.
This implies that, in general, MDatalog and eMDatalog are more expressive than Datalog, since the
data complexity of Datalog is complete in PTIME. Recall also that if one translates an MDatalog
program into a logic program in classical first-order logic then Skolem function symbols may need
to be used and the resulting program is not a Datalog program.

In [21, 25, 27], we proposed a modal logic programming language called MProlog and gave
a framework for developing least model semantics, fixpoint semantics, and SLD-resolution calculi
for MProlog programs. Our framework uses a direct approach and does not assume any special
restriction on the form of program clauses and goals. The framework has been applied for basic
serial monomodal logics, multimodal logics of belief, a class of basic serial multimodal logics, and
the class of serial context-free grammar logics. A prototyping implementation of MProlog was
reported in [22]. In the works [21, 25, 27] on MProlog, we used a special structure called a model
generator to represent a Kripke model. A model generator is a set of ground modal atoms, which
may contain labeled existential modal operators. The direct consequence operator of the fixpoint
semantics is a function that maps a model generator to another one. With that feature, we are
able to group atoms in a model generator by predicate symbols and this is a key to develop modal
relational algebras. Furthermore, as we will see, the fixpoint semantics and SLD-resolution calculi
for MProlog are starting points for developing evaluation methods for modal deductive databases.

In our recent conference paper [23], we extended the query language MDatalog for multimodal
deductive databases. Basing on the existing techniques of Datalog, we defined modal relational al-
gebras and gave the seminaive evaluation algorithm and the magic-set transformation for MDatalog
queries. These bottom-up evaluation techniques for MDatalog closely relate to the fixpoint seman-
tics of MProlog programs. The results of [23] were presented for the multimodal logics KDI4s5,
KDI45, KD4s5s, KD45(m), which are multimodal extensions of the monomodal logic KD45. The
logics KDI4s5 and KDI45 are intended for reasoning about multi-degree belief, while KD4s5s can
be used for distributed systems of belief, and KD45(m) can be used for reasoning about epistemic
states of agents. We proved that MDatalog has PTIME data complexity in these logics.

This work is a revised and extended version of the above mentioned conference paper. In
this work, we present our results also for the multimodal logic KD4Ig5a and the class sCFG of
serial context-free grammar logics. The logic KD4Ig5a is intended for reasoning about belief and
common belief of agents [26]. The class sCFG contains serial multimodal logics with axioms of
the form 2iϕ → 2j1 . . .2jhϕ. We give a full proof of correctness of the magic-set transformation
for MDatalog in the considered modal logics (which was not included in [23]). Furthermore, we
present a top-down evaluation algorithm for MDatalog, which is based on our SLD-resolution calculi
for MProlog, and prove its soundness, completeness, and tightness. Our algorithm relates to the
query-subquery evaluation method of Datalog, but we do not use adornments and annotations.
Our top-down evaluation method is more efficient than the bottom-up evaluation method based
on our magic-set transformation and the seminaive evaluation. (Our magic-set transformation for
MDatalog does not strictly simulate our top-down evaluation algorithm because modal contexts of
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goal atoms cannot be pushed from goals to subgoals in a pure way and for that reason we allow
some loosening.)

The rest of this work is structured as follows. In Section 2, we give basic definitions for mul-
timodal logics, introduce multimodal logics of belief and the class sCFG of serial context-free
grammar logics, give an ordering between Kripke models, and define the modal logic programming
language MProlog. In Section 3, we recall our framework of [25] for developing fixpoint semantics
and SLD-resolution calculi for MProlog programs. We also present our instantiations of the frame-
work for the considered modal logics. Proofs of correctness of the instantiations are not included
in this work but they can be found in [25, 27]. In Section 4, we define the MDatalog language and
give definitions for modal deductive databases. In Section 5, we show that MDatalog has PTIME
data complexity in KDI4s5, KDI45, KD4s5s, KD45(m). In Section 6, we define the L-SPCU
algebra, which is an extension of the relational algebra SPCU for a modal logic L, and show that
nonrecursive MDatalog queries in L can be simulated by L-SPCU queries. The data complexity
of MDatalog in KD4Ig5a and sCFG is PSPACE-hard, and some operator of the L-SPCU algebra
may return an infinite relation even when the input consists of finite relations. In Section 7, we
overcome these problems by providing an approximation method for evaluating MDatalog queries
in KD4Ig5a and sCFG. In Sections 8, 9, and 10, we present the seminaive evaluation algorithm,
the top-down evaluation algorithm, and the magic-set transformation for MDatalog, respectively.
We conclude this work in Section 11.

2 Preliminaries

2.1 Definitions for Quantified Multimodal Logics

A language for quantified multimodal logics is an extension of the language of classical predicate
logic with modal operators 2i and 3i, for 1 ≤ i ≤ m (where m is fixed). The modal operators 2i
and 3i can take various meanings. For example, 2i can stand for “the agent i believes” and 3i for
“it is considered possible by agent i”. The operators 2i are called universal modal operators, while
3i are called existential modal operators. Terms and formulas are defined in the usual way, with
an emphasis that if ϕ is a formula then 2iϕ and 3iϕ are also formulas.

A term or a formula is ground if it does not contain variables.
If ϕ is a formula, then by ∀(ϕ) we denote the universal closure of ϕ, which is the formula obtained

by adding a universal quantifier for every variable having a free occurrence1 in ϕ. Similarly, ∃(ϕ)
denotes the existential closure of ϕ, which is obtained by adding an existential quantifier for every
variable having a free occurrence in ϕ.

The modal depth of a formula ϕ, denoted by mdepth(ϕ), is the maximal nesting depth of modal
operators occurring in ϕ. For example, the modal depth of 2i(3jp(x) ∨2kq(y)) is 2.

We now define Kripke models, model graphs, and the satisfaction relation.

Definition 2.1 A Kripke frame is a tuple 〈W, τ,R1, . . . , Rm〉, whereW is a nonempty set of possible
worlds, τ ∈W is the actual world, and Ri is a binary relation on W , called the accessibility relation
for the modal operators 2i, 3i. If Ri(w, u) holds then we say that the world u is accessible from
the world w via Ri.

A frame 〈W, τ,R1, . . . , Rm〉 is said to be connected if each of its worlds is directly or indirectly
accessible from the actual world via the accessibility relations, i.e. for every w ∈ W there exist
w0 = τ, w1, . . . , wk−1, wk = w with k ≥ 0 such that (wi, wi+1) ∈ R1 ∪ . . . ∪Rm for all 0 ≤ i < k.

Definition 2.2 A fixed-domain Kripke model with rigid terms, hereafter simply called a Kripke
model or just a model, is a tuple M = 〈D,W, τ,R1, . . . , Rm, π〉, where D is a set called the domain,
〈W, τ,R1, . . . , Rm〉 is a Kripke frame, and π is an interpretation of constant symbols, function
symbols and predicate symbols. For a constant symbol a, π(a) is an element of D, denoted by aM .
For an n-ary function symbol f , π(f) is a function from Dn to D, denoted by fM . For an n-ary
predicate symbol p and a world w ∈W , π(w)(p) is an n-ary relation on D, denoted by pM,w.

1i.e. an occurrence not bound by quantifiers
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Definition 2.3 A model graph is a tuple 〈W, τ,R1, . . . , Rm, H〉, where 〈W, τ,R1, . . . , Rm〉 is a
Kripke frame and H is a function that maps each world of W to a set of formulas.

Every model graph 〈W, τ,R1, . . . , Rm, H〉 corresponds to an Herbrand model M =
〈U ,W, τ,R1, . . . , Rm, π〉 specified by: U is the Herbrand universe (i.e. the set of all ground terms),
cM = c, fM (t1, . . . , tn) = f(t1, . . . , tn), and ((t1, . . . , tn) ∈ pM,w) ≡ (p(t1, . . . , tn) ∈ H(w)), where
t1, . . . , tn are ground terms. We will sometimes treat a model graph as its corresponding model.

Definition 2.4 Let M be a Kripke model. A variable assignment (w.r.t. M) is a function that maps
each variable to an element of the domain of M . The value of a term t w.r.t. a variable assignment
V is denoted by tM [V ] and defined as follows: If t is a constant symbol a then tM [V ] = aM ; if t is
a variable x then tM [V ] = V (x); if t is f(t1, . . . , tn) then tM [V ] = fM (tM1 [V ], . . . , tMn [V ]).

Definition 2.5 Given some Kripke model M = 〈D,W, τ,R1, . . . , Rm, π〉, some variable assignment
V , and some world w ∈W , the satisfaction relation M,V,w � ψ for a formula ψ is defined as follows:

M,V,w � p(t1, . . . , tn) iff (tM1 [V ], . . . , tMn [V ]) ∈ pM,w;
M,V,w � 2iϕ iff for all v ∈W such that Ri(w, v), M,V, v � ϕ;
M,V,w � ∀x.ϕ iff for all a ∈ D, (M,V ′, w � ϕ),

where V ′(x) = a and V ′(y) = V (y) for y 6= x;

and as usual for other cases (treating 3iϕ as ¬2i¬ϕ, and ∃x.ϕ as ¬∀x.¬ϕ). If M,V,w � ϕ then
we say that ϕ is true at w in M w.r.t. V . We write M,w � ϕ to denote that M,V,w � ϕ for every
V . We say that M satisfies ϕ, or ϕ is true in M , and write M � ϕ, if M, τ � ϕ. For a set Γ of
formulas, we call M a model of Γ and write M � Γ if M � ϕ for every ϕ ∈ Γ.

Let us explain why we include the actual world in the definition of Kripke models. Consider
possible definitions of M � Γ. Without the actual world, one would define that M � Γ if M,w � Γ
for every world w of M . This is not appropriate for our settings of modal logic programming: for
example, when Γ is a logic program containing a classical fact p(a), then we do not require that
p(a) is true at every possible world of M , because otherwise it would imply that p(a) is “known”
to be true in M .

If the class of admissible interpretations contains all Kripke models (with no restrictions on the
accessibility relations) then we obtain a quantified multimodal logic which has a standard Hilbert-
style axiomatization denoted by K(m). Other normal (multi)modal logics are obtained by adding
certain axioms to K(m). Mostly used axioms are ones that correspond to a certain restriction on
the Kripke frame defined by a classical first-order formula using the accessibility relations. For
example, the axiom (D) : 2iϕ → 3iϕ corresponds to the frame restriction ∀x∃y Ri(x, y). Normal
modal logics containing this axiom (for all 1 ≤ i ≤ m) are called serial modal logics.

For a normal modal logic L whose class of admissible interpretations can be characterized by
classical first-order formulas of the accessibility relations, we call such formulas L-frame restrictions,
and call frames with such properties L-frames.

Definition 2.6 We call a model M with an L-frame an L-model. We say that ϕ is L-satisfiable if
there exists an L-model of ϕ, i.e. an L-model satisfying ϕ. A formula ϕ is said to be L-valid and
called an L-tautology if ϕ is true in every L-model. For a set Γ of formulas, we write Γ �L ϕ and
call ϕ a logical consequence of Γ in L if ϕ is true in every L-model of Γ.

Note that our definition of Γ �L ϕ reflects “local semantic consequence” due to the inclusion of
actual world . Also note that Γ �L ϕ means ∀(Γ)→ ∀(ϕ) is an L-tautology.

2.2 Multimodal Logics of Belief

To reflect properties of belief, one can extend K(m) with some of the following axioms:
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Name Schema Meaning
(D) 2iϕ→ ¬2i¬ϕ belief is consistent
(I) 2iϕ→ 2jϕ if i > j subscript indicates degree of belief
(4) 2iϕ→ 2i2iϕ belief satisfies positive introspection
(4s) 2iϕ→ 2j2iϕ belief satisfies strong positive introspection
(5) ¬2iϕ→ 2i¬2iϕ belief satisfies negative introspection
(5s) ¬2iϕ→ 2j¬2iϕ belief satisfies strong negative introspection

The following systems are intended for reasoning about multi-degree belief:

KDI4s5 = K(m) + (D) + (I) + (4s) + (5)

KDI45 = K(m) + (D) + (I) + (4) + (5)

In the above systems, the axiom (I) gives 2iϕ the meaning “ϕ is believed up to degree i”, and 3iϕ
can be read as “it is possible weakly at degree i that ϕ”. Note that the axiom (5s) is derivable in
KDI4s5.

For multi-agent systems, we use subscripts beside 2 and 3 to denote agents and assume that
2iϕ stands for “agent i believes that ϕ is true” and 3iϕ stands for “ϕ is considered possible by
agent i”. For distributed systems of belief we can use the logic system

KD4s5s = K(m) + (D) + (4s) + (5s)

In this system, agents have full access to belief bases of each other. They are “friends” in a united
system. In another kind of multi-agent system, agents are “opponents” and they play against each
other. Each one of the agents may want to simulate epistemic states of the others. To write a
program for an agent, one may need to use modal operators of the other agents. A suitable logic
for this problem is:

KD45(m) = K(m) + (D) + (4) + (5)

We use a subscript in KD45(m) to distinguish the logic from the monomodal logic KD45, while
there is not such a need for the other considered multimodal logics.

To capture common belief of a group of agents, one can extend the logic KD45(m) with modal
operators for groups of agents and some additional axioms. Suppose that there are n agents and
m = 2n − 1. Let g be an one-to-one function that maps every natural number less than or equal
to m to a non-empty subset of {1, . . . , n}. Suppose that an index 1 ≤ i ≤ m stands for the group
of agents whose indices form the set g(i). (We want to use 1, . . . ,m as modal indices for all the
considered modal logics and we need the function g for comparing groups of agents.) We can adopt
the axioms (D), (4), and additionally,

(Ig) : 2iϕ→ 2jϕ if g(i) ⊃ g(j)
(5a) : ¬2iϕ→ 2i¬2iϕ if g(i) is a singleton

The condition of (Ig) states that i indicates a group containing the group identified by j, and the
condition of (5a) states that i stands for an agent. Thus, for reasoning about belief and common
belief, we can use:

KD4Ig5a = K(m) + (D) + (4) + (Ig) + (5a)

Here we want to catch the most important properties of belief and common belief, and the aim is
not to give an exact formulation of belief or common belief. This logic is different in the nature from
the well-known multimodal logic of common knowledge. It also differs from the multimodal logic
of mutual belief introduced by Aldewereld et al. [2]. Our modal operator of common belief satisfies
positive introspection, while the operator of mutual belief introduced in [2] lacks this property. On
the other hand, the latter operator has some properties that the former does not have.

The given axioms correspond to the following frame restrictions:
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Axiom Corresponding Condition
(D) ∀u ∃v Ri(u, v)
(I) Rj ⊆ Ri if i > j
(Ig) Rj ⊆ Ri if g(i) ⊇ g(j)
(4) ∀u, v, w (Ri(u, v) ∧Ri(v, w)→ Ri(u,w))
(4s) ∀u, v, w (Rj(u, v) ∧Ri(v, w)→ Ri(u,w))
(5) ∀u, v, w (Ri(u, v) ∧Ri(u,w)→ Ri(w, v))
(5s) ∀u, v, w (Rj(u, v) ∧Ri(u,w)→ Ri(v, w))
(5a) as for (5) if g(i) is a singleton

As an example, it can be checked that a connected frame 〈W, τ,R1, . . . , Rm〉 is a KDI4s5-frame
iff there are nonempty subsets of worlds W1 ⊆ . . . ⊆Wm such that W = {τ}∪Wm and Ri = W×Wi,
for 1 ≤ i ≤ m.

2.3 Serial Context-Free Grammar Logics

A grammar logic is a multimodal logic extending K(m) with “inclusion axioms” of the form
2i1 . . .2ikϕ → 2j1 . . .2jhϕ. Such logics were introduced by Fariñas del Cerro and Penttonen
in [8]. An inclusion axiom 2i1 . . .2ikϕ→ 2j1 . . .2jhϕ corresponds to the restriction Rj1 ◦. . .◦Rjh ⊆
Ri1 ◦ . . . ◦ Rik on accessibility relations. If k = 0 (resp. h = 0) then the LHS (resp. RHS) of the
inclusion stands for the identity relation.

An inclusion axiom 2i1 . . .2ikϕ→ 2j1 . . .2jhϕ can also be seen as the grammar rule i1 . . . ik →
j1 . . . jh where, if k = 0 or h = 0 then the corresponding side stands for the empty word. Thus the
inclusion axioms of a grammar logic L capture a grammar G(L). Here we do not distinguish terminal
symbols and nonterminal symbols. G(L) is context-free if its rules are of the form i→ j1 . . . jk.

A context-free grammar logic L is a grammar logic whose inclusion axioms correspond to gram-
mar rules that collectively capture a context-free grammar G(L). A serial context-free gram-
mar logic (sCFG logic for short) is an extension of a context-free grammar logic with the axiom
(D) : 2iϕ→ 3iϕ (for every 1 ≤ i ≤ m).

Proposition 2.1 Let L be an sCFG logic. Then the following conditions are equivalent:

1. 2i1 . . .2ikϕ→ 2j1 . . .2jhϕ is L-valid for any ϕ.

2. 2i1 . . .2ikϕ→ 2j1 . . .2jhϕ is derivable in L for any ϕ without using axiom (D).

3. j1 . . . jh is derivable from i1 . . . ik using the context-free grammar G(L).

See [27] for the proof of this proposition.

Corollary 2.2 Let L be an sCFG logic, � and �′ be universal modalities. Then the problem of
checking whether �′ϕ→ �ϕ is L-valid for any ϕ is decidable.

Proof. This corollary follows from Proposition 2.1 and the fact that the derivation problem in
context-free grammars is decidable. •

We sometimes use sCFG also to denote an arbitrary logic belonging to the sCFG class.
For further reading on modal logics, we refer the reader to [6, 9, 3, 11].

2.4 Ordering Kripke Models

A formula is in negation normal form if it does not contain the connective → and in which each
negation occurs immediately before a classical atom. Every formula can be transformed to its
equivalent negation normal form in the usual way. A formula is called positive if its negation
normal form does not contain negation. A formula is called negative if its negation is a positive
formula.

Definition 2.7 A model M is said to be less than or equal to N , write M ≤ N , if for any positive
ground formula ϕ, if M satisfies ϕ then N also satisfies ϕ.
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The relation ≤ in the above definition is a pre-order2. It is defined semantically and is not easy
to be checked. For checking, we can use the following syntactic ordering.

Definition 2.8 Let M = 〈D,W, τ,R1, . . . , Rm, π〉 and N = 〈D′,W ′, τ ′, R′1, . . . , R′m, π′〉 be Kripke
models. We say that M is less than or equal to N w.r.t. a binary relation r ⊆ W ×W ′, and write
M ≤r N , if the following conditions hold:

1. r(τ, τ ′).

2. ∀x, x′, y Ri(x, y) ∧ r(x, x′)→ ∃y′ R′i(x′, y′) ∧ r(y, y′), for all 1 ≤ i ≤ m.

3. ∀x, x′, y′ R′i(x′, y′) ∧ r(x, x′)→ ∃y Ri(x, y) ∧ r(y, y′), for all 1 ≤ i ≤ m.

4. For any x ∈ W and x′ ∈ W ′ such that r(x, x′), and for any ground classical atom E, if
M,x � E then N, x′ � E.

In the above definition, the first three conditions state that r is a bisimulation of the frames of
M and N . Intuitively, r(x, x′) states that the world x is “less than or equal” to x′ (i.e. for every
positive ground formula ϕ, if M,x � ϕ then N, x′ � ϕ).

Lemma 2.3 If M ≤r N then M ≤ N .

This lemma can be proved by induction on the length of ϕ that, if ϕ is a positive ground formula
and r(x, x′) holds then M,x � ϕ implies N, x′ � ϕ (cf. [19]).

2.5 Positive Multimodal Logic Programs

A modality is a (possibly empty) sequence of modal operators. A universal modality is a modality
that contains only universal modal operators. We use 4 to denote a modality and � to denote
a universal modality. Similarly as in classical logic programming, we use a clausal form �(ϕ ←
ψ1, . . . , ψn) to denote the formula ∀(�(ϕ ∨ ¬ψ1 . . . ∨ ¬ψn)). We use E to denote a classical atom.

Definition 2.9 A program clause is a formula of the form �(A ← B1, . . . , Bn), where n ≥ 0 and
A, B1, . . . , Bn are formulas of the form E, 2iE, or 3iE with E being a classical atom. � is called
the modal context, A the head, and B1, . . . , Bn the body of the program clause. If n = 0 then we
call the clause a unary clause.

Definition 2.10 An MProlog program is a finite set of program clauses.

Definition 2.11 An MProlog goal atom is a formula of the form �E or �3iE, where E is a
classical atom. An MProlog query is a formula of the form ∃(α1 ∧ . . . ∧ αk), where α1, . . . , αk are
MProlog goal atoms. An MProlog goal is the negation of an MProlog query, written in the form
← α1, . . . , αk. We denote the empty goal (also called the empty clause) by �.

If P is an MProlog program, Q = ∃(α1∧ . . .∧αk) is an MProlog query and G =← α1, . . . , αk is
the corresponding goal, then P �L Q iff P ∪{G} is L-unsatisfiable. For the proof of this statement,
just note that G = ∀(¬(α1 ∧ . . . ∧ αk)).

When the base logic is intended for reasoning about multi-degree belief, it has little sense to
write a program clause in the form 2i2jϕ or a goal in the form ← 2i2jE or ← 2i3jE. Besides,
in the logics KDI4s5 and KD4s5s we have the tautology ∇∇′ϕ ≡ ∇′ϕ, where ∇ and ∇′ denote
modal operators. For these reasons, we introduce some restrictions for MProlog programs and goals
in these logics.

Definition 2.12 For L ∈ {KDI4s5,KDI45,KD4s5s}, an MProlog program is called an L-
MProlog program if its program clauses have modal contexts with length 0 or 1, an MProlog goal
is called an L-MProlog goal if its modal depth is 0 or 1. (Recall that the modal depth of ϕ is the
maximal nesting depth of modal operators occurring in ϕ.)

2i.e. a reflexive and transitive binary relation
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In the logic KD45(m), we have the tautologies 2i2iϕ ≡ 2iϕ and 2i3iϕ ≡ 3iϕ. In KD4Ig5a,
these two equivalences hold for the case when g(i) is a singleton. So, we introduce restrictions for
MProlog programs and goals in KD45(m) and KD4Ig5a.

Definition 2.13 An MProlog program is called a KD45(m)-MProlog program if the modal contexts
of its program clauses do not contain subsequences of the form 2i2i. An MProlog goal is called
a KD45(m)-MProlog goal if each of its goal atoms 4E satisfies the condition that 4 does not
contain subsequences of the form 2i2i or 2i3i. KD4Ig5a-MProlog programs and goals are defined
similarly with the condition that g(i) is a singleton.

For L not mentioned in the two above definitions (e.g. L = sCFG), assume that no restriction is
adopted for the form of L-MProlog programs and goals (i.e. every MProlog program is an L-MProlog
program, and every MProlog goal is an L-MProlog goal).

Definition 2.14 Let P be an L-MProlog program and G = ← α1, . . . , αk be an L-MProlog goal.
An answer θ for P ∪ {G} is a substitution whose domain is a set of variables of G. We say that θ
is a correct answer in L for P ∪ {G} if θ is an answer for P ∪ {G} and P �L ∀((α1 ∧ . . . ∧ αk)θ).

It is shown in [27] that MProlog has the same expressiveness power as the general Horn frag-
ment in normal modal logics. Furthermore, the restrictions adopted for L-MProlog do not reduce
expressiveness of the language (see [27]).

Example 2.1 Let us consider the situation when a company has some branches and a central
database. Each of the branches can access and update the database, and suppose that the company
wants to distinguish data and knowledge coming from different branches. Also assume that data
coming from branches can contain noises and statements expressed by a branch may not be highly
recognized by other branches. This means that data and statements expressed by branches are
treated as “belief” rather than “knowledge”. In this case, we can use the multimodal logic KD4s5s,
where each modal index represents a branch of the company, also called an agent. Recall that in
this logic each agent has full access to the belief bases of the other agents. Data put by agent i are
of the form 2iE (agent i believes in E) or 3iE (agent i considers that E is possible). A statement
expressed by agent i is a clause of the form 2i(A ← B1, . . . , Bn), where A is an atom of the form
E, 2iE, or 3iE, and B1, . . . , Bn are simple modal atoms that may contain modal operators of the
other agents. For communicating with normal users, the central database may contain clauses with
the empty modal context, i.e. in the form E ← B1, . . . , Bn, which hide sources of information. As
a concrete example, consider the following program/database Pddb in KD4s5s:

agent 1:
ϕ1 = 21likes(Jan, cola)←
ϕ2 = 21likes(Piotr, pepsi)←
ϕ3 = 21(31likes(x, cola)← likes(x, pepsi))
ϕ4 = 21(31likes(x, pepsi)← likes(x, cola))
agent 2:
ϕ5 = 22likes(Jan, pepsi)←
ϕ6 = 22likes(Piotr, cola)←
ϕ7 = 22likes(Piotr, beer)←
ϕ8 = 22(likes(x, cola)← likes(x, pepsi))
ϕ9 = 22(likes(x, pepsi)← likes(x, cola))
agent 3:
ϕ10 = 23likes(Jan, cola)←
ϕ11 = 33likes(Piotr, pepsi)←
ϕ12 = 33likes(Piotr, beer)←
ϕ13 = 23(very much likes(x, y)← likes(x, y),21likes(x, y),22likes(x, y))
agent communicating with users:
ϕ14 = very much likes(x, y)← 23very much likes(x, y)
ϕ15 = likes(x, y)← 33very much likes(x, y)
ϕ16 = possibly likes(x, y)← 3ilikes(x, y)
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The modal index i in ϕ16 can take value 1, 2, or 3. Let the base logic be KD4s5s. For the
goal ← very much likes(x, y), we have the unique correct answer {x/Jan, y/cola}. For the goal
← likes(x, y), we have two correct answers {x/Jan, y/cola} and {x/Piotr, y/pepsi}. For the goal
← possibly likes(x, y), we have 5 correct answers.

3 A Framework for Multimodal Logic Programming

In this section, we briefly recall our framework given in [25] for developing least model semantics,
fixpoint semantics and SLD-resolution calculi for L-MProlog programs. For an illustrating example,
we refer the reader to the Introduction of [25]. The base logic L is required to be a normal multimodal
logic such that the set of L-frame restrictions consists of ∀x∃y Ri(x, y) (seriality), for all 1 ≤ i ≤ m,
and some classical first-order Horn clauses. The restriction of seriality is to guarantee the existence
of least models of MProlog programs. It is also needed for our fixpoint semantics and SLD-resolution
calculi for MProlog, because they are based on the assumption that 3i is an “instance” of 2i. In
this section, we also present instantiations of the framework for the multimodal logics specified in
Sections 2.2 and 2.3.

3.1 Labeled Modal Operators and Notations

In classical logic programming, the direct consequence operator TP acts on sets of ground atoms.
It computes “direct” consequences of the input set using the program clauses of P . The operator
is monotonic and continuous and has the least fixpoint, which is a set of atoms forming the least
Herbrand model of P . In modal logic programming, to obtain a similar result we first have to
decide what is the domain of the direct consequence operator TL,P . Naturally, we still want it to
be the class of sets of atoms. But what is an “atom” in this case? When applying the operator
TL,P to an input set, if we obtain some atom of the form 43iE (where 4 is a modality and E is
a classical atom), then to simplify the computation we label the modal operator 3i to address the
chosen world(s) in which this particular E must hold. A natural way is to label 3i by E to obtain
〈E〉i. Thus, an output/input of TL,P consists of atoms of the form 4E, where 4 is a sequence of
modal operators of the form 2i or 〈F 〉i, with E, F being ground classical atoms.

On the other hand, when dealing with SLD-derivation, we cannot change a goal ← 3i(A ∧ B)
to ← 3iA,3iB because this is not equivalence preserving (as the two existential modal operators
can refer to different possible worlds). But if we label the operator 3i, let’s say by X, so that
the existential modal operators will refer to the same possible world, then we can safely change
← 〈X〉i(A ∧B) to ← 〈X〉iA, 〈X〉iB. Such a variable X may later be unified with a classical atom,
so we call it an atom variable.

We will use the following notations:

• > : the truth symbol, with the usual semantics3;

• E, F : classical atoms (which may contain variables) or >;

• X, Y , Z : variables for classical atoms or >, called atom variables;

• 〈E〉i, 〈X〉i : 3i labeled by E or X;

• ∇ : 2i, 3i, 〈E〉i, or 〈X〉i, called a modal operator;

• 4 : a (possibly empty) sequence of modal operators, called a modality;

• � : a universal modality (i.e. a modality containing only universal modal operators);

• A, B : formulas of the form E or ∇E, called simple atoms;

• α, β : formulas of the form 4E, called atoms;

• ϕ, ψ : (labeled) formulas (i.e. formulas that may contain 〈E〉i and 〈X〉i).
3i.e. it is always true that M,V,w � >
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We use subscripts beside ∇ to indicate modal indices in the same way as for 2 and 3. To
distinguish a number of modal operators we use superscripts, e.g. ∇′, ∇(i), ∇(i′).

If a modality 4 is obtainable from 4′ by replacing some (possibly zero) ∇i by 2i then we call
4 a 2-lifting form of 4′. If 4 is a 2-lifting form of 4′ then we call an atom 4α a 2-lifting form
of 4′α. For example, 21〈p(a)〉122q(b) is a 2-lifting form of 〈X〉1〈p(a)〉132q(b).

A ground formula is redefined to be a formula with no variables and no atom variables. A modal
operator is said to be ground if it is 2i, 3i, or 〈E〉i with E being > or a ground classical atom. A
ground modality is a modality that contains only ground modal operators. A labeled modal operator
is a modal operator of the form 〈E〉i or 〈X〉i.

We redefine also substitutions in order to deal with atom variables and labeled formulas. Defi-
nitions involving with substitution and unification change accordingly in the usual way.

Definition 3.1 A substitution θ is a (finite or infinite) set of the form {x1/t1, x2/t2, . . . ,
X1/E1, X2/E2, . . . , Y1/Z1, Y2/Z2, . . .}, where x1, x2, . . . are distinct variables, t1, t2, . . . are terms,
X1, X2, . . . , Y1, Y2, . . . are distinct atom variables, and for any element v/s of the set, s is distinct
from v. The set {x1, x2, . . ., X1, X2, . . . , Y1, Y2, . . .} is called the domain of θ and denoted by
Dom(θ). A substitution θ is said to be ground if the set {Y1, Y2, . . .} is empty, t1, t2, . . . are ground
terms, and E1, E2, . . . are ground classical atoms.

Denote EdgeLabels = {〈E〉i | E ∈ B ∪ {>} and 1 ≤ i ≤ m}, where B is the Herbrand base (i.e.
the set of all ground classical atoms). The semantics of 〈E〉i ∈ EdgeLabels is specified below.

Definition 3.2 Let M = 〈D,W, τ,R1, . . . , Rm, π〉 be a Kripke model. A 3-realization function
on M is a partial function σ : W × EdgeLabels → W such that if σ(w, 〈E〉i) = u, then Ri(w, u)
holds and M,u � E. Given a 3-realization function σ, a world w ∈ W , and a ground formula ϕ,
the satisfaction relation M,σ,w � ϕ is defined in the usual way, except that M,σ,w � 〈E〉iψ iff
σ(w, 〈E〉i) is defined and M,σ, σ(w, 〈E〉i) � ψ. We write M,σ � ϕ to denote that M,σ, τ � ϕ. For
a set I of ground atoms, we write M,σ � I to denote that M,σ � α for all α ∈ I; we write M � I
and call M a model of I if M,σ � I for some σ.

Definition 3.3 Let σ and σ′ be 3-realization functions on a model M . We say that σ is an
extension of σ′ if whenever σ′(w, 〈E〉i) is defined then σ(w, 〈E〉i) = σ′(w, 〈E〉i). We say that σ is a
maximal 3-realization function on M if σ(w, 〈E〉i) is defined whenever M,w � 3iE.

Atom variables in modal operators of the form 〈X〉i are mainly interpreted by substitutions.
When a formula ϕ is taken to be semantically considered, all modal operators 〈X〉i in ϕ are treated
as4 〈>〉i, which is formalized by the following definition.

Definition 3.4 Given a Kripke model M , a 3-realization function σ, and a labeled formula ϕ
without quantifiers, we write M,σ � ∀

c
(ϕ) to denote that for any substitution θ which substitutes

every variable by a ground term and does not substitute atom variables, M,σ � ϕθ δ>, where
δ> = {X/> | X is an atom variable}. By M � ∀

c
(ϕ) we denote M,σ � ∀

c
(ϕ) for some σ.

If Γ is a set of formulas without labeled modal operators, I is a set of ground atoms, and ϕ is a
formula without quantifiers, then the relations Γ �L I and Γ �L ∀c(ϕ) are interpreted as usual.

The quantifier ∀
c

is introduced because 3-realization functions are defined using Herbrand base
and we do not want to restrict only to Herbrand models. Suppose that there are enough constant
symbols not occurring in Γ, for example, infinitely many. Then, because L has a complete ax-
iomatization, for Γ being a formula set and ϕ a formula – both without labeled modal operators,
Γ �L ∀(ϕ) iff Γ �L ∀c(ϕ).

4Atom variables appear only in goal bodies (see Definition 2.11). In the negation of a goal (i.e. a query) they are
existentially quantified. Hence it is sufficient to choose some concrete values for them. Furthermore, as we will see,
the modal operator 〈>〉i plays the role of 2i; and if X remains at the end as an unsubstituted atom variable then
〈X〉i intuitively also plays the role of 2i.
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3.2 Model Generators

As mentioned earlier, we will define the direct consequence operator TL,P for an L-MProlog program
P so that an output/input of TL,P consists of atoms of the form 4E, where 4 is a sequence of
modal operators of the form 2i or 〈F 〉i, with E, F being ground classical atoms. For the reason
that the least fixpoint of TL,P should represent a least L-model of P , we call inputs/outputs of TL,P
model generators.

Definition 3.5 A model generator is a set of ground atoms not containing 3i, 〈>〉i, >.

Because an atom in L may be reducible to some more compact form, for each specific logic L
we will define L-normal form of modalities. It is possible that no restrictions on L-normal form of
modalities are adopted.

Definition 3.6 For L ∈ {KDI4s5,KD4s5s,KD45(m),KDI45,KD4Ig5a, sCFG}, a modality

∇(1)
i1
. . .∇(k)

ik
is in L-normal form if

• case L ∈ {KDI4s5,KD4s5s}: k ≤ 1,

• case L = KD45(m): ij 6= ij+1 for all 1 ≤ j < k,

• case L = KDI45: i1 > . . . > ik,

• case L = KD4Ig5a: for all 1 ≤ j < k, if g(ij) is a singleton then ij 6= ij+1,

• case L = sCFG: no restrictions.

Definition 3.7 A modality 4 is in L-normal labeled form if it is in L-normal form and does not
contain modal operators of the form 3i or 〈>〉i. An atom is in L-normal (labeled) form if it is of
the form 4E with 4 in L-normal (labeled) form. (Recall that E denotes a classical atom or >.)
An atom is in almost L-normal labeled form if it is of the form 4A with 4 in L-normal labeled
form. (Recall that A denotes a simple atom of the form E or ∇E, where ∇ is a modal operator
possibly not labeled.)

Let F 6= > in this example. The modalities 2i and 〈F 〉i are in KDI4s5-normal labeled form,
while 2i2j , 3i, 〈>〉i are not. Atoms E, 2iE, 〈F 〉iE are in KDI4s5-normal labeled form, while
2i2jE, 3iE, 〈>〉iE are not. Atoms E, 2iE, 3iE, 2i2jE, 2i3jE, 〈F 〉iE are in almost KDI4s5-
normal labeled form, while 3i2jE and 2i2j2kE are not.

Definition 3.8 An L-normal model generator is a model generator consisting of atoms in L-normal
form.

An L-normal model generator I is expected to represent an L-model. This specific model is
called the standard L-model of I. It should contain only (positive) information that come from I.
This means that the standard L-model of I should be a least L-model of I.

Given an L-normal model generator I, we can construct a least L-model for it by building
an L-model graph realizing I. We identify possible worlds by finite sequences of ground labeled
existential modal operators. The actual world is identified by ε (the empty sequence). Formulas of
the form 2iα are realized in the usual way; a formula of the form 〈E〉iα is realized at a world w by
connecting w to a world identified by w〈E〉i via Ri and adding α to that world. To guarantee the
constructed model graph to be the smallest, each new world is connected via each Ri to an empty
world at the time of its creation. Sometimes, the accessibility relations are extended to satisfy all
of the L-frame restrictions.

We want to give here a more declarative definition of the standard L-model of an L-normal
model generator I. The part specific to L is extracted into ExtL and SerialL, where ExtL(I)
is an L-normal model generator extending I, and SerialL is a set of atoms of the form �〈>〉i>.
The standard L-model of I is then defined using ExtL(I) and SerialL in a unified way, almost
independently from L. The set SerialL is intended to guarantee that, for every world w and 1 ≤
i ≤ m, w will be connected to a world which is “less than or equal to” every world accessible from
w via Ri.
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Definition 3.9 Define SerialL = {�〈>〉i> | 1 ≤ i ≤ m and �〈>〉i is in L-normal form}.

A forward rule is a schema of the form α → β, while a backward rule is a schema of the form
α← β. (Recall that we use α and β to denote atoms, i.e. formulas of the form 4E.) A rule can be
accompanied with some conditions specifying when the rule can be applied. We use forward rules
to specify the operators ExtL and SatL (needed for defining fixpoint semantics) and use backward
rules as meta-clauses when dealing with SLD-resolution calculi. In practice, conditions for applying
a backward rule can be attached to the body of the rule, and in general, a backward rule can be of
the form (α ← ϕ, β, ψ) with ϕ and ψ being conjunctions of classical atoms. In this work, we just
define that a backward rule is of the form α← β.

Definition 3.10 The operator ExtL is specified by a finite set of forward rules. Given an L-normal
model generator I, ExtL(I) is the least extension of I that contains all ground atoms in L-normal
labeled form that are derivable from some atom of I using the rules specifying ExtL.

Note that ExtL(I) is an L-normal model generator if so is I.

Definition 3.11 For L ∈ {KDI4s5,KD4s5s,KD45(m),KDI45,KD4Ig5a, sCFG}, ExtL is spec-
ified by the following rules, in which formulas in both sides are required to be in L-normal labeled
form for L /∈ {KD4Ig5a, sCFG} (denote this restriction by (*)).

L ∈ {KD4s5s,KD45(m)} : no rules

L = KDI4s5 : 2iE → 2jE if i > j

L = KDI45 : 42iα→42jα if i > j
42iα→42i2jα if i > j
42i2jα→42jα if i > j

L = KD4Ig5a : 42iα→42jα if g(i) ⊃ g(j)
42iα→42i2iα
4∇i2iα→42iα if g(i) is a singleton

L = sCFG : 42iα→42j1 . . .2jkα
if 2iϕ→ 2j1 . . .2jkϕ is an axiom of L

As an example, for L = KDI4s5, ExtL({22E}) = {22E,21E}.

Definition 3.12 Let I be an L-normal model generator. The standard L-model of I is defined
as follows. Let W ′ = EdgeLabels∗ (i.e. the set of all finite sequences of elements of {〈E〉i | E ∈
B ∪ {>} and 1 ≤ i ≤ m}, where B is the Herbrand base), τ = ε (the empty sequence), H(τ) =
ExtL(I) ∪ SerialL. Let R′i ⊆W ′ ×W ′ and H(u), for u ∈W ′, u 6= τ , be the least sets such that:

• if 〈E〉iα ∈ H(w), then R′i(w,w〈E〉i) holds and {E,α} ⊆ H(w〈E〉i);

• if 2iα ∈ H(w) and R′i(w,w〈E〉i) holds, then α ∈ H(w〈E〉i).

Let Ri, for 1 ≤ i ≤ m, be the least extension of R′i such that (Ri)1≤i≤m satisfies all the L-
frame restrictions except seriality (which is cared by SerialL)5. Let W be W ′ without worlds
not accessible directly nor indirectly from τ via the accessibility relations Ri. We call the model
graph 〈W, τ,R1, . . . , Rm, H〉 the standard L-model graph of I, and its corresponding model M the
standard L-model of I. (Ri)1≤i≤m is called the skeleton of M . By the standard 3-realization
function on M we call the 3-realization function σ defined as follows: if R′i(w,w〈E〉i) holds then
σ(w, 〈E〉i) = w〈E〉i, else σ(w, 〈E〉i) is undefined.

5The least extension exists due to the assumption that all L-frame restrictions not concerning seriality are classical
first-order Horn formulas.
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Example 3.1 Let us give an example for the above construction. Consider the L-normal model
generator I = {〈p(a)〉1 p(a),21q(a),22q(b)} in L = KDI4s5, with m = 2 (recall that m is the
maximal modal index). We have ExtL(I) = I ∪ {21q(b)} (due to the rule 2iE → 2jE if i > j)
and SerialL = {〈>〉1>, 〈>〉2>}. The standard L-model of I is specified as follows:

• W = {τ, 〈p(a)〉1, 〈>〉1, 〈>〉2} is the set of possible worlds.

• τ is the actual world.

• R1 = W ×W1 and R2 = W ×W2 are the accessibility relations, where W1 = {〈p(a)〉1, 〈>〉1}
and W2 = W1 ∪ {〈>〉2}.

• The world τ is empty; the world 〈p(a)〉1 contains p(a), q(a), q(b); the world 〈>〉1 contains >,
q(a), q(b); the world 〈>〉2 contains > and q(b).

A model is a least L-model of an L-normal model generator I if it is an L-model of I and is less
than or equal to every L-model of I.

We give below expected results about model generators. Their proofs for L ∈ {KDI4s5,
KD4s5s, KD45(m), KDI45, KD4Ig5a, sCFG} are given in [27].

Lemma 3.1 Let I be an L-normal model generator, M the standard L-model of I, and σ the
standard 3-realization function on M . Then M is an L-model and M,σ � I.

Theorem 3.2 The standard L-model of an L-normal model generator I is a least L-model of I.

3.3 Fixpoint Semantics

We now return to the direct consequence operator TL,P for an L-MProlog program P . Given an
L-normal model generator I, how can TL,P (I) be defined? Basing on the axioms of L, I is first
extended to the “L-saturation of I” denoted by SatL(I), which is a set of atoms. Next, “L-instances
of program clauses” of P are “applied” to the atoms of SatL(I). This is done by the operator T

0L,P .
The set T

0L,P (SatL(I)) is a model generator but not necessary in L-normal form. Finally, the
“normalization operator” NFL converts T

0L,P (SatL(I)) to an L-normal model generator. TL,P (I)
is defined as NFL(T

0L,P (SatL(I))).
We will define a pre-order �L between modal operators for each specific logic L to decide

whether a given modality is an L-instance of another one. We require that 3i �L 〈E〉i �L 2i,
3i �L 〈X〉i �L 2i, and if ∇ �L 〈E〉i and ∇ 6= 〈E〉i then ∇ �L 〈X〉i. Note that the condition of
seriality plays an essential role here. As an example, we have the following definition.

Definition 3.13 For L ∈ {KDI4s5,KD4s5s,KD45(m),KDI45,KD4Ig5a, sCFG}, define �L to
be the least reflexive and transitive relation between modal operators such that 3i �L 〈E〉i �L 2i,
3i �L 〈X〉i �L 2i, and additionally, 2i �L 2j and 3j �L 3i if

• L ∈ {KDI4s,KDI4,KDI4s5,KDI45} and i ≤ j, or

• L = KD4Ig5a and g(i) ⊆ g(j), or

• L = sCFG and 2jϕ→ 2iϕ is L-valid (for every ϕ).

Definition 3.14 An atom ∇(1) . . .∇(n)α is called an L-instance of an atom ∇′(1) . . .∇′(n)α′ if there
exists a substitution θ such that α = α′θ and, for 1 ≤ i ≤ n, ∇(i) �L ∇′(i)θ (treating ∇′(i) as an
expression). A modality 4 is called an L-instance of 4′ if 4E is an L-instance of 4′E for some
ground classical atom E. In that case, we also say that 4′ is equal to or more general in L than 4
(hereby we define a pre-order between modalities).

For example, an atom 2132E is a KDI4s5-instance of 22〈F 〉1E, and the modality 2132 is a
KDI4s5-instance of 22〈F 〉1.
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Definition 3.15 Let � be a universal modality in L-normal form and �′ a modal context of an
L-MProlog program clause. We say that � is an L-context instance of �′ if �′ϕ → �ϕ is L-valid
(for every ϕ).

Observe that if the problem of checking validity in the propositional version of L is decidable
then the problem of checking whether � is an L-context instance of �′ is also decidable. For the
multimodal logics of belief specified in Section 2.2, these two problems are decidable and the latter
is much simpler. Let � be a universal modality in L-normal form and �′ a modal context of an
L-MProlog program clause. For L ∈ {KDI4s5,KD4s5s,KDI45,KD45(m)}, it is easily seen that
� is an L-context instance of �′ iff � = �′ or one of the following condition holds:

• L ∈ {KDI4s5,KD4s5s} and � is an L-instance of �′;

• L = KDI45, �′ = 2i, � is not empty, and every modal operator 2j of � satisfies j ≤ i.

For L = KD4Ig5a, the problem of checking L-context instance is decidable because the satisfiability
problem in the propositional logic KD4Ig5a is decidable [12]. For L = sCFG, the problem of
checking L-context instance is decidable by Corollary 2.2.

Definition 3.16 Let ϕ and ϕ′ be program clauses with empty modal context, � a universal modal-
ity in L-normal form, and �′ a modal context of an L-MProlog program clause. We say that �ϕ
is an L-instance of (a program clause) �′ϕ′ if � is an L-context instance of �′ and there exists a
substitution θ such that ϕ = ϕ′θ.

For example, � is a KDI4s5-context instance of �′ iff � is a KDI4s5-instance of �′ (i.e. either
� and �′ are empty or � = 2i, �′ = 2j , and i ≤ j), and we have that 21(p(a) ← q(a)) is a
KDI4s5-instance of 22(p(x)← q(x)).

We now give definitions concerning SatL, T
0L,P , and NFL.

Definition 3.17 The saturation operator SatL is specified by a finite set of forward rules. Given
an L-normal model generator I, SatL(I) is the least extension of I that contains all ground atoms
in almost L-normal labeled form that are derivable from some atom in I using the rules specifying
SatL.

Definition 3.18 For L ∈ {KDI4s5,KD4s5s,KD45(m),KDI45,KD4Ig5a, sCFG}, SatL is spec-
ified by the rules specifying ExtL plus the rules given below, in which formulas in both sides are
required to be in almost L-normal labeled form if L /∈ {KD4Ig5a, sCFG}, while the restriction (*)
of Definition 3.11 is discarded.6

6The operator SatL acts on sets of atoms, which may contain unlabeled existential modal operators, and it is
thus not suitable for replacing ExtL in the construction of the standard L-models of L-normal model generators.
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L = KDI4s5 : 2iE → 2m2iE
〈F 〉iE → 2m3iE
(Recall that m is the maximal modal index.)

L = KD4s5s : 2iE → 2j2iE
〈F 〉iE → 2j3iE

L = KD45(m) : 42iE →42i2iE
4〈F 〉iE →42i3iE

L = KDI45 : 42iE →42i2iE
4∇E →42i3iE if 3i �L ∇
42i∇jE →43jE if i > j
4〈F 〉i∇jE →43iE if i > j

L = KD4Ig5a : 4〈F 〉iE →42i3iE if g(i) is a singleton
4∇∇′E →43iE if 3i �L ∇ and 3i �L ∇′

L = sCFG : 4∇(1) . . .∇(k)α→43iα
if 2iϕ→ 2j1 . . .2jkϕ is an axiom of L
and 3jt �L ∇(t) for all 1 ≤ t ≤ k

As an example, for L = KDI4s5, we have

SatL({22p(a)}) = {22p(a),21p(a),2m22p(a),2m21p(a)}.

When computing the least fixpoint of a modal logic program, whenever an atom of the form
43iE is introduced, we “fix” the 3i by replacing the atom by 4〈E〉iE. This leads to the following
definition.

Definition 3.19 The forward labeled form of an atom α is the atom α′ such that if α is of the form
43iE then α′ = 4〈E〉iE, else α′ = α.

For example, the forward labeled form of 31s(a) is 〈s(a)〉1s(a).

Definition 3.20 Let P be an L-MProlog program. The operator T0L,P is defined as follows: for
a set I of ground atoms in almost L-normal labeled form, T0L,P (I) is the least (w.r.t. ⊆) model
generator such that if �(A← B1, . . . , Bn) is a ground L-instance of some program clause of P and
4 is a maximally general7 ground modality in L-normal labeled form such that 4 is an L-instance
of � and 4Bi is an L-instance of some atom of I (for every 1 ≤ i ≤ n), then the forward labeled
form of 4A belongs to T

0L,P (I).

For example, if P consists of the only clause 22(31p(x) ← q(x), r(x), 21s(x), 32t(x)) and
I = {〈q(a)〉1q(a), 〈q(a)〉1r(a), 2222s(a), 22〈t(a)〉1t(a)} and L = KDI4s5, then T

0L,P (I) =
{〈q(a)〉1〈p(a)〉1p(a)}.

Definition 3.21 The normalization operator NFL is specified by a finite set of forward rules.
Given a model generator I, NFL(I) is the set of all ground atoms in L-normal labeled form that
are derivable from some atom of I using the rules specifying NFL.

We require that if I is a singleton then NFL(I) is also a singleton. If there are no conditions on
L-normal form of atoms, then the set of rules specifying NFL is empty and NFL(I) = I.

Definition 3.22 For L ∈ {KDI4s5,KD4s5s,KD45(m),KDI45,KD4Ig5a, sCFG}, NFL is spec-
ified by the following rules, in which formulas in both sides are required to be in almost L-normal
labeled form, and ∇i is 2i or 〈E〉i.

7w.r.t. the pre-order between modalities described earlier for L
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L ∈ {KDI4s5,KD4s5s} : ∇′j∇iE → ∇iE

L = KD45(m) : 4∇′i∇iE →4∇iE

L = KDI45 : 4∇′j∇iE →4∇iE if j ≤ i

L = KD4Ig5a : 4∇i∇′iE →4∇′iE if g(i) is a singleton

L = sCFG : no rules

As an example, for L = KDI4s5, we have NFL({〈q(a)〉1〈p(a)〉1p(a)}) = {〈p(a)〉1p(a)}.

Definition 3.23 Define TL,P (I) = NFL(T
0L,P (SatL(I))).

We give here a digression about fixpoints. Let T : P(U) → P(U) be an operator that maps
each subset of U to a subset of U . T is said to be monotonic if for every subsets V and V ′ of
U , if V ⊆ V ′ then T (V ) ⊆ T (V ′). T is said to be continuous if for every set V of subsets of U ,
T (

⋃
V) =

⋃
{T (V ) |V ∈ V}. T is said to be compact if for every subset V of U and for every

a ∈ T (V ), there exists a finite subset V ′ of V such that a ∈ T (V ′). It is known that if T is
monotonic and compact then T is continuous (see, e.g., [30]).

Lemma 3.3 The operator TL,P is monotonic and continuous, and it has the least fixpoint TL,P ↑ω
=

⋃ω
n=0 TL,P ↑n, where TL,P ↑0 = ∅, and TL,P ↑n = TL,P (TL,P ↑(n− 1)) for n > 0.

Proof. Clearly, all the operators SatL, T0L,P and NFL are increasingly monotonic and compact.
It follows that TL,P is monotonic, compact, and continuous. The second assertion of the lemma
follows from the Kleen theorem. •

Notation 3.24 Denote the least fixpoint TL,P ↑ω by IL,P and its standard L-model by ML,P .

Definition 3.25 Let P be an L-MProlog program. An L-normal model generator I is called an
L-model generator of P if TL,P (I) ⊆ I.

As a property of the least fixpoint, IL,P is the least (w.r.t. ⊆) L-model generator of P .

Example 3.2 Consider the following program P in L = KDI4s5 :

31 s(a)← 21(q(x)← r(x), s(x))
21(21r(x)← s(x)) 22(p(x)← 32q(x))

The least L-model generator of P is IL,P = {〈s(a)〉1 s(a),21r(a), 〈s(a)〉1 q(a),22p(a),21p(a)}.

We give below expected results about the fixpoint semantics. The proofs of Lemmas 3.4 and
3.5 for L ∈ {KDI4s5, KD4s5s, KD45(m), KDI45, KD4Ig5a, sCFG} are given in [27].

Lemma 3.4 For an L-MProlog program P , P �L IL,P .

Lemma 3.5 Let P be an L-MProlog program and I an L-model generator of P . Then the standard
L-model of I is an L-model of P .

Theorem 3.6 For an L-MProlog program P , ML,P is a least L-model of P .

Proof. By Lemma 3.5, ML,P is an L-model of P . Let M be an arbitrary L-model of P . By
Lemma 3.4, M � IL,P . Hence, by Theorem 3.2, ML,P ≤M , and ML,P is a least L-model of P . •
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3.4 SLD-Resolution

The fixpoint semantics can be viewed as a bottom-up method for computing answers. It repeatedly
applies clauses of a given program P in order to compute the set IL,P of facts derivable in L from
the program. Given an atom α from IL,P , the process of tracing back the derivation of α in L from
P is called top-down, because it reduces the atom, treated as a goal, to subgoals. A more general
problem is to find answers for an L-MProlog goal w.r.t. an L-MProlog program. We study this
problem using SLD-resolution.

The main work in developing an SLD-resolution calculus for L-MProlog is to specify a reverse
analogue of the operator TL,P . While TL,P acts on model generators (with only ground atoms),
the expected reverse analogue of TL,P will act on goals (with variables). The operator TL,P is a
composition of SatL, T

0L,P , and NFL. So, we have to investigate reversion of these operators.

Definition 3.26 A goal is a clause of the form ← α1, . . . , αk, where each αi is an atom.

The following definition concerns reversion of the operator T0L,P .

Definition 3.27 Let G =← α1, . . . , αi, . . . , αk be a goal, αi = 4′A′ be the “selected atom” with
4′ in L-normal labeled form and A′ called the “selected head atom”, and ϕ = �(A← B1, . . . , Bn)
be a program clause. Then G′ is derived from G and ϕ in L using an mgu θ, and called an L-resolvent
of G and ϕ, if the following conditions hold:

• 4′ is an L-instance of a universal modality �′ and �′(A ← B1, . . . , Bn) is an L-instance of
the program clause ϕ;

• θ is an mgu of A′ and the forward labeled form of A;

• G′ is the goal ← (α1, . . . , αi−1,4′B1, . . . ,4′Bn, αi+1, . . . , αk)θ.

For example, the unique KDI4s5-resolvent of← 21p(x) and 22(p(x)← 32q(x)) is← 2132q(x)
(here, � = 22 and 4′ = �′ = 21). As another example, the unique KDI4s5-resolvent of ←
〈Y 〉121r(x), 〈X〉1s(x) and 21(21r(x) ← s(x)) is ← 〈Y 〉1s(x), 〈X〉1s(x) (here, � = �′ = 21 and
4′ = 〈Y 〉1).

As a reverse analogue of the operator SatL, we provide the operator rSatL.

Definition 3.28 The operator rSatL is specified by a finite set of backward rules. We say that
β = rSatL(α) using an rSatL rule α′ ← β′ if α← β is of the form α′ ← β′. We write β = rSatL(α)
to denote that “β = rSatL(α) using some rSatL rule”.

We require that one of the rSatL rules is the backward labeling rule 43iE ←4〈X〉iE with X
being a fresh8 atom variable. We call 4〈X〉iE a backward labeled form of 43iE.

Definition 3.29 For L ∈ {KDI4s5,KD4s5s,KD45(m),KDI45,KD4Ig5a, sCFG}, rSatL is spec-
ified by the following rules, in which formulas in both sides are required to be in almost L-normal
labeled form if L /∈ {KD4Ig5a, sCFG}:

8This means that standardizing is also needed for atom variables.
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a common rule
for L 6= sCFG : 43iE ←4〈X〉iE for X being a fresh atom variable

L = KDI4s5 : 4∇iα←42jα if i ≤ j
43iE ←43jE if i > j
∇∇′E ← ∇′E if ∇′ is of the form 2i or 3i

L = KD4s5s : 4∇iα←42iα
∇∇′E ← ∇′E if ∇′ is of the form 2i or 3i

L = KD45(m) : 4∇iα←42iα
4∇i∇′iE ←4∇′iE if ∇′i is of the form 2i or 3i

L = KDI45 : 4∇iα←42jα if i ≤ j
43iE ←43jE if i > j
42i2jα←42iα if i ≥ j
42i3iE ←43iE
42iα←42j2iα if i < j
43iE ←4〈X〉i3iE for X being a fresh atom variable

L = KD4Ig5a : 43iE ←43jE if g(i) ⊃ g(j)
4∇iα←42jα if g(i) ⊆ g(j)
42i2iα←42iα
42iα←4〈X〉i2iα if g(i) is a singleton and

X is a fresh atom variable
4∇i3iE ←43iE if g(i) is a singleton
43iE ←4〈X〉j3iE if g(i) ⊇ g(j) and

X is a fresh atom variable

L = sCFG : 43iα←4〈X〉iα for X being a fresh atom variable
4∇(1) . . .∇(k)α←42iα if

2iϕ→ 2j1 . . .2jkϕ ∈ Axioms(L) and
∇(t) �L 2jt for all 1 ≤ t ≤ k

43iα←43j1 . . .3jkα if
2iϕ→ 2j1 . . .2jkϕ ∈ Axioms(L)

4∇α←42iα if ∇ �L 2i

Definition 3.30 Let G =← α1, . . . , αi, . . . , αk be a goal. If α′i = rSatL(αi) using an rSatL rule ϕ,
then G′ =← α1, . . . , αi−1, α

′
i, αi+1, . . . , αk is derived from G and ϕ, and we call G′ an (L-)resolvent

of G and ϕ, and αi the selected atom of G.

For example, resolving ← 2132p(x) with the rule ∇∇′E ← ∇′E results in ← 32p(x), since ∇
is instantiated to 21, and ∇′ is instantiated to 32.

As a reverse analogue of the operator NFL, we provide the operator rNFL.

Definition 3.31 The operator rNFL is specified by a finite set of backward rules. We say that
β =θ rNFL(α) using an rNFL rule α′ ← β′ if θ is an mgu such that αθ ← β is of the form α′ ← β′.
We write β =θ rNFL(α) if “β =θ rNFL(α) using some rNFL rule”.

Definition 3.32 For L ∈ {KDI4s5,KD4s5s,KD45(m),KDI45,KD4Ig5a, sCFG}, rNFL is spec-
ified by the following rules, in which formulas in both sides are required to be in almost L-normal
labeled form, ∇i is 2i or 〈E〉i, and X is a fresh atom variable.
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L ∈ {KDI4s5,KD4s5s} : ∇iE ← 〈X〉j∇iE

L = KD45(m) : 4∇iE ←4〈X〉i∇iE

L = KDI45 : 4∇iE ←4〈X〉j∇iE if j ≤ i

L = KD4Ig5a : 4∇iE ←4〈X〉i∇iE if g(i) is a singleton

L = sCFG : no rules

As an example, for L = KDI4s5, we have 〈Y 〉1〈E〉2E =θ rNFL(〈X〉2E) with θ = {X/E} and
Y being a fresh atom variable.

Definition 3.33 Let G = ← α1, . . . , αi, . . . , αk be a goal. If α′i =θ rNFL(αi) using an rNFL rule
ϕ, then G′ = ← α1θ, . . . , αi−1θ, α

′
i, αi+1θ, . . . , αkθ is derived from G and ϕ using the mgu θ, and

we call G′ an (L-)resolvent of G and ϕ, and αi the selected atom of G.

Observe that rSatL rules and rNFL rules are similar to program clauses and the way of applying
them is similar to the way of applying classical program clauses, except that we do not need mgu’s
for rSatL rules.

We now define SLD-derivation and SLD-refutation. We say that an expression ϕ is a variant of
an expression ψ if there exist substitutions θ and γ such that ϕ = ψθ and ψ = ϕγ.

Definition 3.34 Let P be an L-MProlog program and G be a goal. An SLD-derivation from
P ∪{G} in L consists of a (finite or infinite) sequence G0 = G,G1, . . . of goals, a sequence ϕ1, ϕ2, . . .
of variants of program clauses of P , rSatL rules, or rNFL rules, and a sequence θ1, θ2, . . . of mgu’s
such that if ϕi is a variant of a program clause or an rNFL rule then Gi is derived from Gi−1 and
ϕi in L using θi, else θi = ε (the empty substitution) and Gi is derived from Gi−1 and (the rSatL
rule variant) ϕi.

We require that each ϕi in the above definition does not have any variable or atom variable
which already appears in the derivation up to Gi−1. This can be achieved by subscripting variables
and atom variables in G by 0 and in ϕi by i. This process of renaming variables is usually called
standardizing the variables apart (see [18]). Each ϕi is called an input clause/rule of the derivation.

Definition 3.35 An SLD-refutation of P ∪ {G} in L is a finite SLD-derivation from P ∪ {G} in L
which has the empty clause (denoted by �) as the last goal in the derivation.

Definition 3.36 Let P be an L-MProlog program and G be a goal. A computed answer θ in L of
P ∪ {G} is the substitution obtained by restricting the composition θ1 . . . θn to the variables and
atom variables of G, where θ1, . . . , θn is the sequence of mgu’s used in an SLD-refutation of P ∪{G}
in L.

Example 3.3 Consider the following program P and the goal G = ← 21p(x) in L = KDI4s5 :

ϕ1 = 22(p(x)← 32q(x))
ϕ2 = 21(q(x)← r(x), s(x))
ϕ3 = 21(21r(x)← s(x))
ϕ4 = 31 s(a)←
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Here is an SLD-refutation of P ∪ {G} in L with computed answer {x/a}:

Goals Input clauses/rules MGUs
← 21p(x)
← 2132q(x) ϕ1 {x1/x}
← 32q(x) rSatL : 2132E ← 32E
← 31q(x) rSatL : 432E ←431E
← 〈X〉1q(x) rSatL : 431E ←4〈X〉1E
← 〈X〉1r(x), 〈X〉1s(x) ϕ2 {x5/x}
← 21r(x), 〈X〉1s(x) rSatL : 4∇1E ←421E
← 〈Y 〉121r(x), 〈X〉1s(x) rNFL : 21E ← 〈Y 〉121E
← 〈Y 〉1s(x), 〈X〉1s(x) ϕ3 {x8/x}
← 〈X〉1s(a) ϕ4 {x/a, Y/s(a)}
� ϕ4 {X/s(a)}

We give below an expected theorem on soundness and completeness of SLD-resolution for L-
MProlog. Its proof for L ∈ {KDI4s5, KD4s5s, KD45(m), KDI45, KD4Ig5a, sCFG} is given
in [27].

Theorem 3.7 (Soundness and Completeness of SLD-Resolution) Let P be an L-MProlog
program and G an L-MProlog goal. Then every computed answer in L for P ∪ {G} is a correct
answer in L for P ∪ {G}. Conversely, for every correct answer θ in L for P ∪ {G}, there exists a
computed answer γ in L for P ∪ {G} such that Gθ = Gγδ for some substitution δ.

4 MDatalog and Modal Deductive Databases

In this section, we give definitions for modal deductive databases and define a query language
called MDatalog for such databases. Let L be one of the modal logics considered in this pa-
per. We divide the group of such logics into two subgroups BMD (bounded modal depth) and
UMD (unbounded modal depth) as follows: BMD = {KDI4s5,KDI45,KD4s5s,KD45(m)} and
UMD = {sCFG,KD4Ig5a}.9

A (database) schema is a finite set of predicates, where each predicate p has a fixed arity, denoted
by arity(p), and is either extensional (edb) or intensional (idb). We denote the set of edb (resp. idb)
predicates of a schema S by edb(S) (resp. idb(S)). Informally, in a deductive database, extensional
predicates are explicitly specified by relations, while intensional predicates are defined by a logic
program that may use the extensional predicates.

Definition 4.1 An MProlog program clause without function symbols is range-restricted (or al-
lowed) if every variable occurring in the head also occurs in the body. An MProlog program over
a schema S is an MProlog program whose predicates belong to S and whose predicates that occur
in heads of program clauses belong to idb(S). An L-MDatalog program over a schema S is an
L-MProlog program over S which is free from function symbols and contains only range-restricted
clauses.

Definition 4.2 An n-ary L-tuple is an ordered pair (4, t), where t is a classical n-ary tuple of
constant symbols and 4 is a ground modality in almost L-normal labeled form. An n-ary L-
relation is a set of n-ary L-tuples. An L-relation is an n-ary L-relation for some n. An L-relation
is in L-normal labeled form if its tuples are of the form (4, t) with 4 in L-normal labeled form.

When it is clear from the context, we also write “tuple” to mean “L-tuple”.
When an L-relation is attached to (or named by) a predicate p of the same arity, we call the

relation an L-relation of p. If (4, t) is a tuple in an L-relation of a predicate p then we also treat

9In [27], we consider larger groups of modal logics:

• BMD = {KDI4s5,KDI45,KD4s5s,KD45(m),KD5,KD45,S5,KD,T,KDB,B},
• UMD = {sCFG,KDI4s,KDI4,KD4Ig5a,KD4,S4}.
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it as the atom 4p(t). Conversely, an ground atom 4p(t) in almost L-normal labeled form can be
treated as an L-tuple related with the predicate p. In this way, an L-relation of a predicate p can
be treated as a set of atoms of p, and conversely, a set of ground atoms of p which are in almost
L-normal labeled form can be treated as an L-relation of p.

A database instance I over a schema S in L is a mapping that maps each predicate p ∈ S to an
L-relation of arity arity(p) in L-normal labeled form. A database instance over S can be treated
as a set of atoms of the predicates of S. Conversely, a set I of ground atoms of the predicates of S
which are in L-normal labeled form can be treated as a database instance over S in L.

An extensional database (edb) instance I over edb(S) in L is a database instance over edb(S) in
L such that there exists an L-MDatalog program PI consisting of unary clauses with the property
that I = IL,PI

, i.e. I = TL,PI
↑ω. We call PI the source program of I. An edb instance I can be

either explicitly given or specified by PI .
10 In the first case, we require only the existence of PI and

will not use it for computation. In the second case, it can be shown that

I = ExtL(NFL({�E | �E ∈ PI} ∪ {�〈E〉iE | �3iE ∈ PI})).

Definition 4.3 A modal deductive database over a schema S in L consists of an edb instance I over
edb(S) in L and an L-MDatalog program P over S. The program P can be treated as the function
PL that maps I to a database instance over idb(S) such that PL(I) is the least (w.r.t. ⊆) L-model
generator J such that TL,P (I ∪ J) = J .

The program Pddb given in Example 2.1 is an L-MDatalog program. All the predicates used
in that program are intensional. To treat unary clauses (e.g. 21likes(Jan, cola)←) as extensional
data, we can change predicate likes in those clauses to an extensional predicate likes and add to
the program the clauses 2i(likes(x, y)← likes (x, y)), for i = 1, 2, 3.

Let TL,P,I be the operator defined by TL,P,I(J) = TL,P (I ∪ J). Then TL,P,I is monotonic and
continuous, and PL(I) is the least fixpoint of TL,P,I specified by TL,P,I ↑ ω =

⋃
0≤k≤ω TL,P,I ↑ k,

where TL,P,I ↑ k is defined in a similar way as TL,P ↑ k. By the following lemma, this definition of
PL(I) is compatible with the semantics of MProlog programs:

Lemma 4.1 Let P be an L-MDatalog program over a schema S and I be an edb instance over
edb(S) in L ∈ BMD∪UMD. Then PL(I)∪ I = TL,(P∪PI) ↑ω, where PI is the source program of I.
As a consequence, the standard L-model of PL(I) ∪ I is a least L-model of P ∪ PI .

Proof. Note that I is the least fixpoint of TL,PI
, and the predicates occurring in PI , i.e. edb(S), are

not defined by P . It is easy to see that PL(I)∪ I is contained in the least fixpoint of TL,(P∪PI), and
it is also a fixpoint of TL,(P∪PI), hence it is the least fixpoint of TL,(P∪PI). The second assertion
follows from Theorem 3.6. •

Definition 4.4 An L-MDatalog query over a schema S is a pair (P,ϕ(x1, . . . , xk)), where P is an
L-MDatalog program over S and ϕ(x1, . . . , xk) is a positive formula without quantifiers over (the
signature) S such that x1, . . . , xk are all the variables of ϕ and if ψ1 ∨ ψ2 is a subformula of ϕ
then ψ1 and ψ2 have the same variables. An L-MDatalog query (P,ϕ) over S takes as input an
edb instance I over edb(S) in L and returns the classical relation of tuples (c1, . . . , ck) of constant
symbols such that P ∪ PI �L ϕ(c1, . . . , ck).

Proposition 4.2 Every L-MDatalog query (P,ϕ(x1, . . . , xk)) over a schema S, where L ∈ BMD∪
UMD, can be transformed in polynomial time to an L-MDatalog query (P ′, q(x1, . . . , xk)) over
S ∪ {q}, where q is an idb predicate, such that for every edb instance I over edb(S) in L and every
constant symbols c1, . . . , ck,

P ∪ PI �L ϕ(c1, . . . , ck) iff P ′ ∪ PI �L q(c1, . . . , ck).

This proposition can be proved in a similar way as done in [27] for the proposition on the
expressiveness of MProlog.

10Sometimes, when L ∈ UMD, I may be infinite and cannot be explicitly given.
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5 Data Complexity

Data complexity is measured when the query is fixed and the extensional database is taken as input.
In this section, we show that for L ∈ BMD the data complexity of L-MDatalog is in PTIME, i.e. for
every L-MDatalog query (P,ϕ(x1, . . . , xk)) over a schema S and every constant symbols c1, . . . , ck,
the problem of checking P ∪ PI �L ϕ(c1, . . . , ck) for an input edb instance I over edb(S) in L is in
PTIME. Here, I but not PI is taken as input, but the case when PI is taken as input does not differ
much, because I can be computed from PI in polynomial time when L ∈ BMD. Since the data
complexity of Datalog is complete in PTIME (see, e.g., [16]), the data complexity of L-MDatalog
for L ∈ BMD is also complete in PTIME.

Theorem 5.1 The data complexity of L-MDatalog for L ∈ BMD is in PTIME.

Proof. Let (P,ϕ(x1, . . . , xk)) be an L-MDatalog query over a schema S and I be an input edb
instance for this query. Recall that the size of a formula set is the sum of the lengths of its formulas.
Let d be the size of P and n be the size of I. Note that, for α ∈ TL,P,I ↑h for some h, the modal
depth of α is bounded by 1 for L ∈ {KDI4s5,KD4s5s}, by m for L = KDI45, and by the modal
depth of P for L = KD45(m). Denote this bound by e. Since P is fixed, both d and e are constants.

The key of this proof is that modal depths of atoms appearing in TL,P,I ↑ω are bounded by e.
Also observe that for any atom α, the sets SatL({α}) and NFL({α}) can be computed in a finitely
bounded number of steps. Fix some h ≥ 1 and let J = TL,P,I ↑h and α ∈ J .

The number of classical atoms that may occur in (the atoms of) J is of rank O(nd). Hence the
size of J is of rank O(nd(e+1)). It follows that the size of SatL(I ∪ J) and the number of steps
needed for computing SatL(I ∪ J) from I and J are also of rank O(nd(e+1)). The number of steps
needed for computing T

0L,P (SatL(I ∪ J)) from SatL(I ∪ J) is of rank O(nd.d.(e+1)). The size of
T
0L,P (SatL(I∪J)) can be estimated in a similar way as the size of J and is of rank O(nd(e+2)). The

number of steps needed for computing TL,P,I ↑(h+ 1) from T
0L,P (SatL(I ∪ J)) is of the same rank

as the size of T0L,P (SatL(I ∪ J)). Therefore the number of steps needed to compute TL,P,I ↑(h+ 1)
from TL,P,I ↑ h is bounded by a polynomial of n. The size of TL,P,I ↑ ω can be estimated in the
same way as the size of J and is of rank O(nd(e+1)). Hence the number of steps needed to compute
TL,P,I ↑ω is bounded by a polynomial of n.

Consider the standard L-model M of PL(I) ∪ I. Since the possible worlds of M are identified
by ground modalities with length bounded by e, the number of possible worlds of M is of rank
O(nd.e). The content of each possible world of M is the set of ground classical atoms that hold at
the world, and hence has size of rank O(nd). The size of M , defined as the sum of the number of
possible worlds, the sizes of the accessibility relations, and the sizes of the contents of the possible
worlds, is thus of rank O(n2.d.e). The size of ExtL(PL(I) ∪ I) ∪ SerialL and the number of steps
needed for computing that set can be estimated in the same way as for SatL(I ∪J) and are of rank
O(nd.e). Hence the number of steps needed to construct M is bounded by a polynomial of n.

By Lemma 4.1, M is a least L-model of P ∪ PI . Hence, for every constant symbols c1, . . . , ck,
P ∪ PI �L ϕ(c1, . . . , ck) iff M � ϕ(c1, . . . , ck). Checking M � ϕ(c1, . . . , ck) is done in polynomial
time in the size of M and ϕ. Hence the data complexity of L-MDatalog is in PTIME. •

For L ∈ UMD, data complexity of L-MDatalog is defined using PI as input and under the
assumption that the extensional database I is specified by PI . (The problem is that I may be
infinite even when PI is finite.) We do not have an exact data complexity of L-MDatalog for the
case L ∈ {KD4Ig5a, sCFG}. As the data complexity of KD4-MDatalog is complete in PSPACE
[24] and KD4 is a fragment of KD4Ig5a and a logic of sCFG, the data complexity of KD4Ig5a-
MDatalog and sCFG-MDatalog is PSPACE-hard.

6 Modal Relational Algebras

Let L be one of the modal logics considered in this paper. In this section, we define a modal relational
algebra in L, called the L-SPCU algebra. This algebra extends the classical SPCU algebra (see,
e.g., [1]) with some operators involving with modalities. We also compare L-SPCU algebra queries
with nonrecursive L-MDatalog programs (defined in Definition 6.2).
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In this section, we use I, J to denote L-relations.
The L-SPCU algebra is formed by the following operators:

Selection The two primitive forms are σj=c and σj=k, where j, k are positive integers and c is
a constant symbol. The operator σj=c takes as input any L-relation I with arity ≥ j and
returns as output an L-relation of the same arity. In particular, σj=c(I) = {(4, t) | (4, t) ∈
I and t(j) = c}. The operator σj=k is defined analogously for inputs with arity ≥ max{j, k}:
σj=k(I) = {(4, t) | (4, t) ∈ I and t(j) = t(k)}. A composition of selections is written in the
form σϕ1∧...∧ϕk

and defined by σϕ1∧...∧ϕk
(I) = σϕ1(. . . (σϕk

(I)) . . .).

Projection The general form of this operator is πj1,...,jn , where j1, . . . , jn is a sequence of pos-
itive integers, possibly with repeats. This operator takes as input any L-relation with ar-
ity ≥ max{j1, . . . , jn} and returns an L-relation with arity n. In particular, πj1,...,jn(I) =
{(4, (c1, . . . , cn)) | (4, t) ∈ I for some t with t(ji) = ci for 1 ≤ i ≤ n}.

Cross-product This operator, denoted by ×, takes as input a pair of L-relations in L-normal
labeled form with arbitrary arities k and h and returns an L-relation with arity k + h, which
is also in L-normal labeled form. In particular, if arity(I) = k and arity(J) = h, then
I × J = {(4, (t(1), . . . , t(k), s(1), . . . , s(h))) | there exist 4′ and 4′′ such that (4′, t) ∈ I,
(4′′, s) ∈ J , and 4 is a maximal L-instance in L-normal labeled form of 4′ and 4′′}.

Union This operator, denoted by ∪, takes as input a pair of L-relations with the same arity and
returns an L-relation with the same arity that is the sum of the input relations.

Context-shrink The two primitive forms are 2−i and 3−i , where 1 ≤ i ≤ m.11 These operators
take as input any L-relation I and return as output an L-relation in L-normal labeled form of
the same arity. In particular, 2−i (I) = {(4, t) | there exists (4∇, t) ∈ I such that 2i �L ∇}.
The operator 3−i is defined analogously.

Context-stretch The two primitive forms are 2+
i and 3+

i , where 1 ≤ i ≤ m.12 These operators
take as input any L-relation I in L-normal labeled form and return as output an L-relation of
the same arity. In particular, 2+

i (I) = {(42i, t) | (4, t) ∈ I} and 3+
i (I) = {(43i, t) | (4, t) ∈

I}.

Context-selection The general form of this operator is σ�, where � is the modal context of
an L-MDatalog program clause. This operator takes as input any L-relation I in L-normal
labeled form and returns as output an L-relation in L-normal labeled form of the same arity.
In particular, σ�(I) = {(4, t) | (4, t) ∈ I and the universal modality �′ being a 2-lifting
form of 4 is an L-context instance of �}.

Saturation This operator, denoted by SatL, takes as input any L-relation I in L-normal labeled
form and returns as output an L-relation of the same arity. In particular, SatL(I) = {(4, t) |
there exists 4′ such that (4′, t) ∈ I and 4E ∈ SatL({4′E}) for some E}, where the latter
operator SatL acts on model generators as defined in Section 3.3.

Labeling The general form of this operator is Labelp, where p is an n-ary predicate symbol. This
operator takes as input any L-relation I with arity n and returns as output an L-relation of
the same arity. In particular, Labelp(I) = {(4, t) | (4, t) ∈ I and 4 is not of the form 4′3i}
∪ {(4〈p(c1, . . . , cn)〉i, (c1, . . . , cn)) | (43i, (c1, . . . , cn)) ∈ I}.

Normalization This operator, denoted by NFL, takes as input any L-relation I and returns as
output an L-relation in L-normal labeled form and of the same arity. In particular, NFL(I) =
{(4, t) | there exists 4′ such that (4′, t) ∈ I and 4E ∈ NFL({4′E}) for some E}, where
the latter operator NFL acts on model generators as defined in Section 3.3.

11In [23], 2−i and 3
−
i are denoted by 2i and 3i, respectively.

12In [23], 2+
i and 3

+
i are denoted by 2←i and 3←i , respectively.
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Note that the operators ×, 2−i , 3−i , and σ� are dependent on the base logic L. However, for
simplicity we do not attach the index L to these operators.

For L ∈ BMD ∪ UMD, all the above operations except SatL can be effectively computed
and return a finite L-relation if the input consists of finite L-relations. This is clear for selection,
projection, union, context-shrink, context-stretch, context-selection, and labeling. The assertion
holds for cross-product because, given two ground modal operators ∇ and ∇′, there is at most
one maximal modal operator ∇′′ such that ∇′′ �L ∇ and ∇′′ �L ∇′. The assertion holds for
normalization because the set NFL({4′E}) is finite and can be effectively computed for every
ground atom 4′E. Similarly, for L ∈ BMD, the operation SatL can also be effectively computed
and returns a finite L-relation if the input consists of finite L-relations. For L ∈ UMD, the operator
SatL may return an infinite L-relation even when the input consists of finite L-relations.

Definition 6.1 L-SPCU (algebra) queries are built from input L-relations and unary constant
relations IcL = {(�, (c)) | � is a universal modality in L-normal labeled form}, where c is a constant
symbol, using the L-SPCU algebra operators.

Definition 6.2 A predicate p directly depends on a predicate q in an L-MDatalog program P if
there exists a program clause ϕ of P containing p in the head and q in the body. Define the relation
“depends” to be the transitive closure of the relation “directly depends”. An L-MDatalog program
P is nonrecursive if none of its predicates depends on itself.

Proposition 6.1 Every L-MDatalog query (P,ϕ(x1, . . . , xk)), where L ∈ BMD ∪ UMD and P is
a nonrecursive L-MDatalog program, is equivalent to an L-SPCU query.

Sketch. By Proposition 4.2, we can assume that ϕ(x1, . . . , xk) is of the form q(x1, . . . , xk), where
q is a predicate. Since the L-SPCU algebra contains the union operator, it is sufficient to show
that every L-relation ans defined by a nonrecursive L-MDatalog program clause is equivalent to an
L-SPCU query. For simplicity, we show this using the following representative example

�(3ians(x, x, z, a)← 2jR(x, b),3kS(x, y), T (z)).

Let

Q1 = σ�(2−j (SatL(σ2=b(R)))),

Q2 = π1(σ1=3(Q1 ×3−k (SatL(S)))),

Q3 = Q2 × SatL(T ).

Then ans is equivalent to

NFL(Labelans(3
+
i (π1,1,2,3(Q3 × IaL))).

•
The conversion of the above proposition does not hold because the operators SatL, 2+

i and 3+
i

may return relations which are not in L-normal labeled form. Also note that L-SPCU queries do not
contain “iteration”, so in general they are not comparable with recursive L-MDatalog programs.

An additional operator that deserves consideration is the redundant elimination operator
REL(I) = {(4, t) ∈ I | there is no (4′, t) ∈ I such that 4′ 6= 4 and 4 is an L-instance of
4′}. We believe that this operator has a good behavior when used in L-SPCU queries.

7 An Approximation Method for L-MDatalog in L ∈ UMD
Recall that for L ∈ UMD, the data complexity of L-MDatalog is PSPACE-hard, and the operator
SatL may return an infinite L-relation even when the input consists of finite L-relations. To over-
come these problems we provide an approximation method for evaluating L-MDatalog queries for
the case L ∈ UMD. The idea is to impose a limit on the lengths of modalities that can occur in
the computation. In this section, if not stated otherwise, L ∈ UMD, P is an L-MDatalog program
over a schema S, and I is an edb instance over edb(S) in L.

We use a fixed number l ≥ 1 as the limit we impose on the lengths of modalities that can occur
in the computation of the fixpoint semantics of L-MDatalog programs and L-SPCU queries.
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Definition 7.1 Given an L-normal model generator I with modal depth not greater than l,
l-SatL(I) is the least extension of I that contains all ground atoms in almost L-normal labeled
form that are derivable from some atom in I using the rules specifying SatL in the way that no
atom in the derivation has modal depth greater than l.

Definition 7.2 Define the operator l-TL,P analogously as for TL,P but with l-SatL in the place of
SatL. Define l-TL,P,I(J) = l-TL,P (I ∪ J). Thus l-TL,P,I is monotonic and continuous and has the
least fixpoint l-TL,P,I ↑ ω =

⋃
0≤k≤ω l-TL,P,I ↑ k, where l-TL,P,I ↑ k is defined in a similar way as

TL,P ↑k. Let l-PL(I) denote the least fixpoint of l-TL,P,I .

Proposition 7.1 Let P be an L-MDatalog program over a schema S, where L ∈ UMD, and I be
an edb instance over edb(S) in L. Then l-PL(I) is an approximation of PL(I): i) the larger l is the
better l-PL(I) approximates PL(I); ii) for every α ∈ PL(I), there exists l such that α ∈ l-PL(I).
The database instance l-PL(I) can be computed in polynomial time and has a polynomial size in the
size of I (assuming that P and l are fixed).

The first assertion of this lemma follows from that l-PL is monotonic w.r.t. l. The second
assertion can be proved analogously as for Theorem 5.1.

By Proposition 4.2, every L-MDatalog query (P,ϕ(x1, . . . , xk)) over a schema S can be effectively
transformed to an L-MDatalog query (P ′, q(x1, . . . , xk)) over S ∪ {q}, where q is an idb predicate,
such that for every edb instance I over edb(S) in L and every constant symbols c1, . . . , ck, P ∪PI �L
ϕ(c1, . . . , ck) iff P ′ ∪ PI �L q(c1, . . . , ck). Thus checking whether P ∪ PI �L ϕ(c1, . . . , ck) can be
done by checking whether q(c1, . . . , ck) is true in the standard L-model of P ′L(I)∪I (by Lemma 4.1),
which in turn is equivalent to q(c1, . . . , ck) ∈ P ′L(I). As l-P ′L(I) is an approximation of P ′L(I),
we can approximate the task of checking whether P ∪ PI �L ϕ(c1, . . . , ck) by checking whether
q(c1, . . . , ck) ∈ l-P ′L(I), which is solvable in polynomial time in the size of the input I (assuming
that P and l are fixed).

Definition 7.3 Suppose that we are given an L-MDatalog query (P, q(x1, . . . , xk)) over a schema
S, with q ∈ idb(S), and an edb instance I over edb(S) in L. Then we call the approximation of
the check P ∪ PI �L q(c1, . . . , ck) by the check q(c1, . . . , ck) ∈ l-PL(I) the l-modal-depth-restricted
fixpoint semantics of the query. Under this semantics, the query (P, q(x1, . . . , xk)) on the input I
returns the set of tuples of constant symbols (c1, . . . , ck) such that q(c1, . . . , ck) ∈ l-PL(I).

Definition 7.4 We define the algebraic operator l-SatL analogously as for the algebraic operator
SatL, using the operator acting on model generators l-SatL instead of SatL. Define L|l-SPCU
algebra to be the L-SPCU algebra with SatL replaced by l-SatL. L|l-SPCU queries are built from
input L-relations with modal depth not greater than l and unary constant relations l-IcL = {(�, (c)) |
� is a universal modality in L-normal labeled form with length not greater than l}, where c is a
constant symbol, using the L|l-SPCU algebra operators.

The following proposition corresponds to Proposition 6.1 and can be proved analogously.

Proposition 7.2 Every L-MDatalog query (P, q(x1, . . . , xk)), where L ∈ UMD and P is a nonre-
cursive L-MDatalog program, is equivalent under the l-modal-depth-restricted fixpoint semantics to
an L|l-SPCU query.

8 Seminaive Evaluation of MDatalog

We extend the seminaive evaluation technique of Datalog (see, e.g., [1]) for MDatalog.
First, consider the case L ∈ BMD. Let P be an L-MDatalog program over a schema S and

I an edb instance over edb(S) in L. We first give a naive algorithm for computing PL(I). Since
PL(I) = TL,P,I ↑ω, we can obtain PL(I) by computing TL,P,I ↑ k for increasing values of k until a
fixpoint TL,P,I ↑k = TL,P,I ↑ (k − 1) is reached. Suppose that we have already computed TL,P,I ↑k
for some k and the content of the relation of an idb predicate p in TL,P,I ↑ k is stored in pk.
Let Jk consist of such relations pk. To compute TL,P,I ↑ (k + 1) consider the program P (k+1)
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obtained from P by replacing every idb predicate p in bodies of the clauses of P by pk. P (k+1) is

a nonrecursive MDatalog program, and hence P
(k+1)
L (I ∪ Jk) can be computed using the L-SPCU

algebra operators. The results of P
(k+1)
L (I ∪ Jk) are then assigned to relations pk+1 to start the

next round (if necessary).
In the naive algorithm, a considerable amount of redundant computation is done, as TL,P,I ↑k

⊆ TL,P,I ↑ (k + 1) and each round recomputes all elements of the previous round. To avoid this

situation, the seminaive evaluation technique is used. Let P (k+1)′ , for k ≥ 1, be the program
constructed as follows: for each clause �(A← B1, . . . , Bn) of P and each 1 ≤ i ≤ n, add to P (k+1)′

the clause �(A ← B′1, . . . , B
′
i−1, B

∗
i , B

′′
i+1, . . . , B

′′
n), where B′j (resp. B′′j ) is obtained from Bj by

replacing the predicate of Bj , denoted by p, by pk (resp. pk−1), and B∗i is obtained from Bi by
replacing the predicate of Bi, denoted by q, by the predicate defined by (qk−qk−1). The key in this
evaluation is B∗i , which contains only new atoms that are derived at round k. Then the seminaive

algorithm is the modification of the naive algorithm with P (k) replaced by P (k′) for k ≥ 2. It is
straightforward to prove that the seminaive algorithm produces TL,P,I ↑k at round k. This means
that the seminaive algorithm is correct for L-MDatalog with L ∈ BMD.

Now consider the case L ∈ UMD. We approximate evaluation of L-MDatalog queries by using
the l-modal-depth-restricted fixpoint semantics, where l is a fixed number. Change the text of the
case L ∈ BMD by replacing PL by l-PL and TL,P,I by l-TL,P,I . Then the text is still correct.
That is, the seminaive algorithm is correct under the l-modal-depth-restricted fixpoint semantics
for L-MDatalog with L ∈ UMD.

9 Top-Down Evaluation of MDatalog

The top-down evaluation method of Datalog closely relates to the standard SLD-resolution cal-
culus of classical logic programming. In this section, basing on our SLD-resolution calculus for
MProlog, we extend that method for MDatalog. Apart from techniques involved with modalities,
our formulation differs from the framework of annotated query-subquery evaluation presented in
the book [1] by Abiteboul et al. in the aspects that we do not use adornments and annotations.
With adornments and annotations, the annotated query-subquery evaluation of Datalog executes
relational operations only on classical tuples of constant symbols (augmented eventually with anno-
tations). Without adornments and annotations, we do relational operations also on substitutions.
The problem is that, adornments and annotations are not sufficient enough to deal with modalities,
which may contain variables and atom variables. Besides, they would make the presentation more
complicated.

Top-down evaluation of queries simulates SLD-resolution but does it set-at-a-time and manages
to find all answers effectively. In SLD-derivations, constant symbols and repeats of variables may
be pushed from goals to subgoals through unification, and the search space is thus restricted.
Furthermore, “modal contexts” of goal atoms may also be pushed from goals to subgoals. These
properties make the top-down evaluation attractive.

In this section, if not stated otherwise, L ∈ BMD. The case L ∈ UMD is considered at the end
of this section.

9.1 Informal Description

We first adapt our SLD-resolution calculus for L-MDatalog in order to find all answers effectively.
We set up the problem as follows: given an L-MDatalog program over a schema S, an edb instance
I over edb(S) in L, and an atom α in almost L-normal labeled form of an idb predicate p, which
may contain variables and atom variables, construct an answer L-relation ans p such that for every
SLD-refutation of P ∪PI ∪ {← α} in L with computed answer θ, αθ is an L-instance of some atom
from ans p, treating tuples of ans p as atoms of the predicate p. (Here, θ may contain bindings for
atom variables.) This property of ans p is called completeness of the evaluation. We expect also
two other properties: soundness and tightness. Soundness states that for every atom α′ of ans p,
there exists an SLD-refutation of P ∪ PI ∪ {← α′} in L, and tightness informally states that all
tuples of ans p closely relate to the main query given for evaluating.

26



Definition 9.1 A goal L-tuple is defined similarly as an L-tuple, except that it may contain vari-
ables and atom variables. A goal L-relation, also called a generalized L-relation, is a set of goal
L-tuples of the same arity.

For each idb predicate q, we use a global variable ans q to keep an answer L-relation for q. Tuples
of ans q are treated as atoms of the predicate q. At the beginning, we set all of ans variables to
empty relations. Consider an SLD-refutation of P ∪ PI ∪ {← α}. It begins with a sequence of
applications of rSatL/rNFL rules and then an application of a program clause of P . Let ← α′ be
the result of the application of that sequence of rSatL/rNFL rules to ← α and let the sequence of
used mgu’s be θ1, . . . , θj . Let γ0 = θ1 . . . θj . Suppose that the program clause applied to ← α′ is
ϕ = �(A← B1, . . . , Bn) and the application is as follows:

• α′ = 4′A′, where 4′ is in L-normal labeled form,

• 4′ is an L-instance of a universal modality �′ and
�′(A← B1, . . . , Bn) is an L-instance of the program clause ϕ,

• θ is an mgu of A′ and the forward labeled form of A,

• the new goal is ← (4′B1, . . . ,4′Bn)θ.

Let δ0 = θ. For each 1 ≤ i ≤ n, we process ← (4′Bi)δi−1 as follows, where δi−1 is the substitu-
tion containing the bindings of variables and atom variables after processing ← (4′Bi−1)δi−2. Let
pi be the predicate of Bi.

1. Case pi is an edb predicate: If (4′Bi)δi−1γi is an L-instance of some atom from SatL(I(pi))
for some substitution γi then let δi = δi−1γi and continue to process the next goal atom.

2. Case pi is an idb predicate:

(a) Recursively process ← (4′Bi)δi−1 in the same way as for ← α. This task does not
pass bindings of variables and atom variables directly outside, but it updates the answer
L-relations held by global variables.

(b) If (4′Bi)δi−1γi is an L-instance of some atom from ans pi for some substitution γi then
let δi = δi−1γi and continue to process the next goal atom.

Then γ0δn holds an answer for← α. Hence, we would like to add the atom αγ0δn to the answer
L-relation ans p, where p is the predicate of α. Assume that all variables of α occur (also) in the
classical atom of α. As P is an range-restricted program, αγ0δn does not contain variables, but it
may contain atom variables (in labeled existential modal operators) and this is a problem to solve.
Suppose that 〈X〉j occurs in αγ0δn. Then 〈X〉j also occurs in α and X is not substituted by γ0δn.
Observe that we can change 〈X〉j in ← α at the beginning to 2j without affecting the process.
Hence, we can change every labeled existential modal operator 〈X〉j in αγ0δn to 2j and add the
resulting atom to the answer L-relation ans p. (Another solution is just to standardize the atom
variables of αγ0δn as described below and add the obtained atom to ans p, which is then treated
as a generalized L-relation.)

To obtain all answers for the goal ← α, all choices are systematically tried, and the process is
repeated until no changes were made to the global ans variables during the last iteration of the
main loop. To guarantee the stop property, in each iteration of the main loop, each goal like ← α
is processed only once. To do this we standardize α before processing the goal and record the
standardized atom in a relation held by a global variable. The standardization is done by renaming
variables and atom variables using a fixed list of names, which is disjoint with the list of variables
of P and the list of variables and atom variables used for standardization in SLD-derivations, so
that if α1 and α2 are variants then they have the same standardized atom. The relation containing
goal atoms of a predicate p that have been processed is called an input relation and the global
variable holding it is named input p. It can be represented as a goal L-relation and we treat tuples
of input p as atoms of the predicate p. The global input variables are reset to empty L-relations
for each iteration of the main loop.

Here are some remarks to our adaptation of SLD-resolution for MDatalog:
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• We concentrate on goals with a single atom rather than goals with more atoms.

• Standardizing variables is done for goal atoms but not for input program clauses and is aimed
also to avoid redundant repeated computations.

• When processing the body of a program clause, the modality 4′ together with the bindings
of variables and atom variables is passed from left to right (rather than top-down from goal
to subgoal).

• In the step 1, we find an answer γi for PI∪{← (4′Bi)δi−1} by checking whether (4′Bi)δi−1γi
is an L-instance of some atom from SatL(I). (Note that I may be given without PI .) This is
supported by the following lemma.

Lemma 9.1 Let P be an L-MDatalog program over a schema S with edb(S) = ∅, where L ∈
BMD ∪ UMD, and ←4A be a goal where 4 is in L-normal labeled form and A does not contain
any labeled existential modal operator. Let θ be a computed answer in L of P ∪ {← 4A}. Then
(4A)θ is an L-instance of some atom from SatL(IL,P ). (Recall that IL,P = TL,P ↑ω.)

Sketch. Let M be the standard L-model graph of IL,P , σ0 be the standard 3-realization function on
M , and σ be a maximal 3-realization function on M that extends σ0. By the proof of Lemma 5.15
of [25], there exists a 2-lifting form 4′A of 4A such that M,σ � ∀c((4′A)θ). Since P is an
range-restricted program, the constant symbols used in IL,P and for the construction of M are
the constant symbols occurring in P . Assuming that the signature contains some other constant
symbols, it follows from M,σ � ∀

c
((4′A)θ) that (4′A)θ does not contain variables (but may contain

atom variables). Let 4′′ be the instance of 4′θ obtained by replacing each atom variable by >
and each modal operator 2i by 〈>〉i. We have that M,σ � 4′′Aθ. Hence, for the possible world
w = 4′′, we have that M,w � Aθ.

Let M ′ be the extended L-model graph of IL,P , which is defined similarly as the standard L-
model graph of IL,P except that SatL(IL,P ) is used instead of ExtL(IL,P ). Recall that ExtL(IL,P ) ⊆
SatL(IL,P ). Observe that M and M ′ have the same frame (because if 4†〈E〉iα ∈ SatL(IL,P ) and
4† does not contain any unlabeled existential modal operator then 4†〈E〉iα′ ∈ ExtL(IL,P ) for
some α′). Furthermore, for every possible world w of M and M ′, the content H(w) of w in M is a
subset of the content H ′(w) of w in M ′, and H ′(w)−H(w) consists of atoms with some unlabeled
existential modal operators.

Since M,w � Aθ, it can be shown that Aθ is an L-instance of some atom from H ′(w). For
example, consider the case L = KD45(m). There are 3 subcases:

• Case Aθ = E : Since M,w � Aθ, it is clear that Aθ ∈ H ′(w).

• Case Aθ = 2iE : Consider the case w〈>〉i is a modality in L-normal labeled form. Since
M,w � Aθ, we have that E ∈ H ′(w〈>〉i). It follows that w〈>〉iE is an L-instance of some
atom from SatL(IL,P ). Hence 2iE is an L-instance of some atom from H ′(w). Now consider
the case w〈>〉i is not a modality in L-normal labeled form. We have that w = u〈F 〉i for
some u and F . Since M,w � Aθ, we have that E ∈ H ′(u〈>〉i). It follows that u〈>〉iE is an
L-instance of some atom from SatL(IL,P ). Hence, u2iE and u2i2iE are L-instances of some
atoms from SatL(IL,P ). Hence 2iE is an L-instance of some atom from H ′(w).

• Case Aθ = 3iE : Since M,w � Aθ, either i) 〈F 〉iE ∈ H ′(w) for some F or ii) E ∈ H ′(u),
Ri(w, u) holds, σ(v, 〈F 〉i) = w, and σ(v, 〈F ′〉i) = u for some u, v, F , F ′. Consider the second
case. Since σ(v, 〈F ′〉i) = u and E ∈ H ′(u), either 〈F ′〉iE ∈ H ′(v) or 2iE ∈ H ′(v). Hence
v〈F ′〉iE or v2iE is an L-instance of some atom of SatL(IL,P ). It follows that v2i3iE or
v2i2iE is an L-instance of some atom of SatL(IL,P ). Hence 3iE ∈ H ′(w) or 2iE ∈ H ′(w).

Since Aθ is an L-instance of some atom from H ′(w) and 4′′ = w, 4′′Aθ is an L-instance of
some atom from SatL(IL,P ), which implies that (4A)θ is also an L-instance of some atom from
SatL(IL,P ). •
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9.2 A Formal Presentation of the Algorithm

We now formally present the algorithm of the evaluation method described in the previous section.

Algorithm 9.1

Evaluate an L-MDatalog query (P, q(x1, . . . , xk)) over a schema S, where L ∈ BMD and q ∈ idb(S),
on an edb instance I over edb(S) in L.

1. Initialize the global variables ans p to empty L-relations for every p ∈ idb(S).

2. Repeat

(a) set the global variables input p to empty L-relations for every p ∈ idb(S)

(b) call Procedure 9.2 to process the goal ← q(x1, . . . , xk)

until the global ans variables were not changed during the last iteration.

3. Return {t | (�, t) ∈ ans q where � is the empty modality}.

Procedure 9.2

Process a goal ← α, where α is an atom in almost L-normal labeled form.

1. Standardize variables and atom variables of α. Let the resulting atom be α′.

2. Let p be the predicate of α′. If the goal L-tuple representing α′ already belongs to input p
then exit, else add the tuple to input p.

3. For each program clause ϕ defining p in P : Call Procedure 9.3 to process the goal← α′ on ϕ.

Procedure 9.3

Process a goal ← α on a program clause ϕ = �(A← B1, . . . , Bn), where α is a standardized atom
in almost L-normal labeled form and has the same predicate as A.

1. If the classical atoms of α and A cannot be unified then exit.

2. For every atom α′ derivable from α using a sequence of applications of rSatL/rNFL rules
and a sequence of mgu’s θ1, . . . , θj , do:

• Let γ0 = θ1 . . . θj and let α′ = 4′A′, where A′ and A have modalities of the same length.

• Let �′ be the universal modality that is a 2-lifting of 4′. If �′(A ← B1, . . . , Bn) is an
L-instance of the program clause ϕ, and δ0 is an mgu of A′ and the forward labeled form
of A, then:

(a) sup0 := {δ0}.13

(b) For each i from 1 to n do:

i. Let pi be the predicate of Bi.

ii. supi := ∅.
iii. Case pi ∈ edb(S): For every δi−1 ∈ supi−1 and every atom β ∈ SatL(I(pi)), if

(4′Bi)δi−1γi is an L-instance of β using a most general substitution γi then add
δi−1γi to supi.

iv. Case pi ∈ idb(S): For every δi−1 ∈ supi−1 do:

A. Call Procedure 9.2 to process the goal ← (4′Bi)δi−1.

B. For every atom β ∈ ans pi, if (4′Bi)δi−1γi is an L-instance of β using a most
general substitution γi then add δi−1γi to supi.

(c) For each δn ∈ supn do: let α′′ be the atom obtained from αγ0δn by replacing every
modal operator of the from 〈X〉j by 2j ; add the L-tuple representing α′′ to the
L-relation ans p, where p is the predicate of α.

13supi denotes ith “supplementary” relation.
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9.3 Properties of the Algorithm

In this subsection, we prove that the top-down evaluation method for MDatalog presented by
Algorithm 9.1 is sound, complete, and tight. Roughly speaking, Algorithm 9.1 is a reformulation
of SLD-resolution for MDatalog with a different way of passing bindings of variables and atom
variables. Our proofs are therefore based on the proofs of soundness and completeness of our
SLD-resolution calculus for MProlog.

Theorem 9.2 (Soundness) Let (P, q(x1, . . . , xk)) be an L-MDatalog query over a schema S,
where L ∈ BMD, and I be an edb instance over edb(S) in L. Consider the execution of Algo-
rithm 9.1 for that query on I. Then, for every α′′ ∈ ans p, P ∪PI ∪{← α′′} has an SLD-refutation
in L.

Proof. We prove this theorem by induction on the time when α′′ is added to ans p in Step 2c of
Procedure 9.3. Let 4′′ be the modality obtained from 4′δn by replacing every modal operator of
the from 〈X〉j by 2j (where 4′ and δn are the objects used in Procedure 9.3).

We can simulate the refutation of ← α embedded in Procedure 9.3 for ← α′′ as follows. Instead
of the goal ← (4′B1, . . . ,4′Bn)δ0 (or the sequence of goals ← (4′B1)δ0, . . . , ← (4′Bn)δn−1), we
have the ground goal ←4′′B1δn, . . . ,4′′Bnδn.

Consider Step 2(b)iii of Procedure 9.3. We have that4′′Biδn is an L-instance of β ∈ SatL(I(pi)).
By Corollary 5.20 of [25], PI ∪ {← β} has an SLD-refutation in L. Hence P ∪ PI ∪ {← 4′′Biδn}
also has an SLD-refutation in L.

Consider Step 2(b)ivB of Procedure 9.3. We have that4′′Biδn is an L-instance of β ∈ ans pi. By
the inductive assumption, P ∪PI ∪{← β} has an SLD-refutation in L. Hence P ∪PI ∪{← 4′′Biδn}
also has an SLD-refutation in L.

The refutations of P ∪PI ∪{← 4′′Biδn} for 1 ≤ i ≤ n can be combined into an SLD-refutation
of P ∪ PI ∪ {← 4′′B1δn, . . . ,4′′Bnδn} in L because the goal is ground. (That is, for i from 1
to n − 1, we apply the refutation for ← 4′′Biδn to reduce the goal ← 4′′Biδn, . . . ,4′′Bnδn to
←4′′Bi+1δn, . . . ,4′′Bnδn.) •

We say that an SLD-derivation uses the left-most-atom selection function if the selected atom
of each goal in the derivation is the left most atom of the goal.

We need the following lemma for Completeness Theorem 9.4.

Lemma 9.3 Let (P, q(x1, . . . , xk)) be an L-MDatalog query over a schema S, where L ∈ BMD, and
I be an edb instance over edb(S) in L. Consider the end moment of an execution of Algorithm 9.1
for that query on I. Let p ∈ idb(S), (4, t) ∈ input p, and let θ be the computed answer of an SLD-
refutation of P ∪ PI ∪ {← 4p(t)} in L that uses the left-most-atom selection function. Then ans p
contains some 2-lifting form of (4p(t))θ (here, ans p is treated as a set of atoms of the predicate p).

Proof. We prove this lemma by induction on the length of the mentioned SLD-refutation. Let
θ1, . . . , θh be the sequence of mgu’s used in the refutation. We have that (4p(t))θ1 . . . θh = (4p(t))θ.
Let α = 4p(t) and suppose that the first fragment of the refutation of ← α uses a sequence of
applications of rSatL/rNFL rules with mgu’s θ1, . . . , θj , resulting in a goal α′ = ∆′A′, and then
uses a variant ϕ′ = �(A′′ ← B′1, . . . , B

′
n) of a program clause ϕ = �(A ← B1, . . . , Bn) of P with

mgu θj+1, resulting in the goal ← (4′B′1, . . . ,4′B′n)θj+1. We have that ϕ′ = ϕ% (i.e., A′′ = A%
and B′i = Bi% for 1 ≤ i ≤ n) for some renaming substitution % that uses only variables of ϕ and ϕ′,
and that θj+1 is an mgu of A′ and the forward labeled form of A′′. Let j1 = j + 2, jn+1 = h + 1
and suppose that the fragment for processing ← (4′B′i)θj1−1θj1 . . . θji−1 of the refutation of ← α
uses mgu’s θji , . . . , θji+1−1. Thus, after processing the atom B′i−1, for 2 ≤ i ≤ n+ 1, the next goal
of the refutation of ← α is ← (4′B′i, . . . ,4′B′n)θj1−1θj1 . . . θji−1.

Consider the last iteration of the main loop of Algorithm 9.1, the execution of Procedure 9.2 at
which (4, t) is added into input p (in that iteration), and the processing of the goal ← α on the
program clause ϕ by Procedure 9.3 (in that execution of Procedure 9.2).

We have that θj+1 is an mgu of A′ and the forward labeled form of A% (since A′′ = A%). As %
does not use variables and atom variables of A′, we have that A′ = A′%. Hence θj+1 is an mgu of
A′% and the forward labeled form of A%. Since δ0 is an mgu of A′ and the forward labeled form of
A, it follows that %θj+1 = δ0γ

′
0 for some substitution γ′0.
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As an inner induction, let the inductive hypothesis be that after processing the atom Bi−1 by
Procedure 9.3, where 2 ≤ i ≤ n+ 1, or at the beginning if i = 1, it holds that %θj1−1θj1 . . . θji−1 =
δi−1γ

′
i−1 for some δi−1 ∈ supi−1 and some γ′i−1. This inductive hypothesis clearly holds for i = 1

(since j1 = j+2 and %θj+1 = δ0γ
′
0). Suppose that the inductive hypothesis holds for some 1 ≤ i ≤ n.

We show that it also holds for i+ 1.
Since %θj1−1θj1 . . . θji−1 = δi−1γ

′
i−1 and % does not use variables and atom variables of α, α′

and ∆′, we have that:

← (4′B′i)θj1−1θj1 . . . θji−1
= ← (4′(Bi%))θj1−1θj1 . . . θji−1

= ← (4′Bi)%θj1−1θj1 . . . θji−1
= ← (4′Bi)δi−1γ′i−1

Since there is a refutation of ← (4′B′i)θj1−1θj1 . . . θji−1 using mgu’s θji , . . . , θji+1−1, by Lifting
Lemma 5.18 of [25], there exists a refutation of ← (4′Bi)δi−1 using mgu’s θ′ji , . . . , θ

′
ji+1−1 such

that γ′i−1θji . . . θji+1−1 = θ′ji , . . . , θ
′
ji+1−1µi for some µi.

Consider the case when the predicate pi of Bi is an edb predicate. By Lemma 9.1,
(4′Bi)δi−1θ′ji . . . θ

′
ji+1−1 is an L-instance of some atom β ∈ SatL(I(pi)). Hence, there exists a most

general substitution γi such that (4′Bi)δi−1γi is an L-instance of β and γiµ
′
i = θ′ji , . . . , θ

′
ji+1−1 for

some substitution µ′i. Let γ′i = µ′iµi. We have that:

%θj1−1 . . . θji+1−1

= (%θj1−1 . . . θji−1)θji . . . θji+1−1

= δi−1γ
′
i−1θji . . . θji+1−1

= δi−1θ
′
ji . . . θ

′
ji+1−1µi

= δi−1γiµ
′
iµi

= δi−1γiγ
′
i.

Hence, for δi = δi−1γi ∈ supi, we have that θj1−1 . . . θji+1−1 = δiγ
′
i. That is, the inductive hypoth-

esis of the second induction holds for i+ 1.
Consider the case when the predicate pi of Bi is an idb predicate. Let (4′Bi)δi−1ρ be the

standardized atom of (4′Bi)δi−1, where ρ is a renaming substitution. Since there exists a refuta-
tion of ← (4′Bi)δi−1(ρρ−1) (i.e., ← (4′Bi)δi−1) using mgu’s θ′ji , . . . , θ

′
ji+1−1, by Lifting Lemma

5.18 of [25], there exists a refutation of ← (4′Bi)δi−1ρ using mgu’s θ′′ji , . . . , θ
′′
ji+1−1 such that

ρ−1θ′ji , . . . , θ
′
ji+1−1 = θ′′ji , . . . , θ

′′
ji+1−1ρ

′ for some substitution ρ′. As Procedure 9.2 is called for
← (4′Bi)δi−1, the goal L-tuple representing (4′Bi)δi−1ρ belongs to input pi. By the inductive
assumption of the outer induction, some 2-lifting form β of (4′Bi)δi−1ρθ′′ji , . . . , θ

′′
ji+1−1 belongs

to ans pi. Since (4′Bi)δi−1ρθ′′ji , . . . , θ
′′
ji+1−1ρ

′ is an L-instance of β, and ρ−1θ′ji , . . . , θ
′
ji+1−1 =

θ′′ji , . . . , θ
′′
ji+1−1ρ

′, we have that (4′Bi)δi−1ρρ−1θ′ji , . . . , θ
′
ji+1−1 is also an L-instance of β. Hence,

there exists a most general substitution γi such that (4′Bi)δi−1γi is an L-instance of β and
γiµ
′
i = θ′ji , . . . , θ

′
ji+1−1 for some substitution µ′i. Analogously as for the case when pi is an edb

predicate, for γ′i = µ′iµi and δi = δi−1γi ∈ supi, the inductive hypothesis of the inner induction
holds for i+ 1. This completes the proof of the inner induction.

By the inner induction, we have that %θj1−1 . . . θjn+1−1 = δnγ
′
n. That is, %θj+1 . . . θh = δnγ

′
n.

Hence θ1 . . . θh = γ0%
−1δnγ

′
n. Since %−1 does not use variables and atom variables of αγ0, we

have that αγ0%
−1δnγ

′
n = αγ0δnγ

′
n. The atom α′′ added to ans p in Step 2c of Procedure 9.3 is a

2-lifting form of αγ0δn and is ground, so it is also a 2-lifting form of αγ0δnγ
′
n = αγ0%

−1δnγ
′
n =

(4p(t))θ1 . . . θh = (4p(t))θ. •

Theorem 9.4 (Completeness) The execution of Algorithm 9.1 for an L-MDatalog query
(P, q(x1, . . . , xk)) on an edb instance I returns a tuple (x1, . . . , xk)θ for every correct answer θ
in L of P ∪ PI ∪ {← q(x1, . . . , xk)}.

Proof. Since SLD-resolution for L-MProlog is complete and P , PI are range-restricted, θ must be a
computed answer in L of P ∪PI∪{← q(x1, . . . , xk)}. Furthermore, as SLD-resolution for L-MProlog
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is “strongly complete” [27] (i.e. complete when any “selection function” is used), we can assume
that the refutation that gives the computed answer uses the left-most-atom selection function. By
Lemma 9.3, q(x1, . . . , xk)θ is added to ans q, which implies the assertion of the theorem. •

Definition 9.2 An unrestricted SLD-derivation in L is an SLD-derivation in L, except that we drop
the requirement that the used substitutions θi are most general unifiers. They are only required to
be unifiers. In an unrestricted SLD-derivation, if a goal Gi is derived from Gi−1 and an rSatL rule
variant, then θi can be arbitrary and Gi = G′iθi, where G′i is the goal derived from Gi−1 and that
rSatL rule variant in the usual way.

Theorem 9.5 (Tightness) Let (P, q(x1, . . . , xk)) be an L-MDatalog query over a schema S, where
L ∈ BMD, and I be an edb instance over edb(S) in L. Consider the result of the execution of
Algorithm 9.1 for that query on I. Then:

1. For every p ∈ idb(S) and every atom α′ ∈ input p, there is a variant α of α′ that appears in
an unrestricted SLD-derivation from P ∪ PI ∪ {← q(x1, . . . , xk)} in L.

2. For every p ∈ idb(S) and every atom α′′ ∈ ans p, there exists α ∈ input p such that α′′ is a
2-lifting form of αθ for some θ and P ∪ PI ∪ {← α′′} has an SLD-refutation in L.

The first assertion states that every input atom closely relates to the given query, while the
second assertion states that every ans atom closely relates to some input atom, and therefore
closely relates to the given query.

Proof. Consider the first assertion. For convenience, we rewrite this assertion to: for every pi ∈
idb(S) and every atom β′i ∈ input pi, there is a variant βi of β′i that appears in an unrestricted SLD-
derivation from P ∪PI∪{← q(x1, . . . , xk)} in L. To prove this, it suffices to consider Step 2(b)ivA of
Procedure 9.3, which adds a variant of (4′Bi)δi−1 to input pi, and show that (4′Bi)δi−1 appears in
an unrestricted SLD-derivation from P ∪PI∪{← α} in L (where← α is the input of Procedure 9.3).

We can start from the goal ← (4′B1, . . . ,4′Bn)δ0, which is derived from ← α. It suf-
fices to show that for every 1 ≤ j < i, the goal ← (4′Bj+1, . . . ,4′Bn)δj is derivable from
← (4′Bj , . . . ,4′Bn)δj−1 using an unrestricted SLD-derivation in L, where δi−1 is formed as
δ0γ1 . . . γi−1 and δk = δk−1γk for every 1 ≤ k ≤ i− 1.

Consider the case when the predicate pj of Bj is an edb predicate. Let β ∈ SatL(I(pj)) be the
atom mentioned in Step 2(b)iii of Procedure 9.3. By Corollary 5.20 of [25], PI ∪ {← β} has an
SLD-refutation in L. Since (4′Bj)δj−1γj is an L-instance of the ground atom β, there exists an
SLD-resolution of PI ∪ {← (4′Bj)δj−1γj} in L with the empty computed answer. Hence the goal
← (4′Bj+1, . . . ,4′Bn)δj−1γj , which is equivalent to ← (4′Bj+1, . . . ,4′Bn)δj , is derivable from
← (4′Bj , . . . ,4′Bn)δj−1 using an unrestricted SLD-derivation in L.

Consider the case when the predicate pj of Bj is an idb predicate. Let β ∈ ans pj be the atom
mentioned in Step 2(b)ivB of Procedure 9.3. By Theorem 9.2, P∪PI∪{← β} has an SLD-refutation
in L. Analogously as for the case when pj is an edb predicate, we can derive← (4′Bj+1, . . . ,4′Bn)δj
from← (4′Bj , . . . ,4′Bn)δj−1 using an unrestricted SLD-derivation in L. This completes the proof
of the first assertion.

The second assertion follows from Step 2c of Procedure 9.3, with θ = γ0δn. For this, note
that when Procedure 9.3 is called for ← α, we have that α ∈ input p. Besides, by Theorem 9.2,
P ∪ PI ∪ {← α′′} has an SLD-refutation in L. •

9.4 Doing It Set-at-a-Time

Operations for databases are often done set-at-a-time instead of tuple-at-a-time. This approach
allows various optimizations, for example, sorting, indexing, clustering, etc. In this subsection, we
reformulate Algorithm 9.1 using the set-at-a-time technique. For the new algorithm, we use the
following relational operators:

• standardize(J) for a goal L-relation J returns the goal L-relation consisting of standardized
tuples of J .
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• rSatNFL(J) for a goal L-relation J returns the relation consisting of tuples (α, γ0, α
′) for

each α ∈ J and each SLD-derivation of ← α′ from ← α using a sequence of rSatL/rNFL
rules and a sequence of mgu’s θ1, . . . , θj , where γ0 is the restriction of θ1 . . . θj to the set
of variables and atom variables of α. If (γ0, α

′) and (γ′0, α
′′) are variants (i.e. identical up

to a renaming substitution) then we treat (α, γ0, α
′) and (α, γ′0, α

′′) as the same tuple. For
this, some standardization can be done during the derivations. Under this assumption, for
L ∈ BMD, rSatNFL(J) is a finite relation that can be computed in linear time.

• resolve(K,�, A)

– where K has the format as rSatNFL(J) for some J , � and A are the modal context and
the head of an L-MDatalog program clause, respectively,

– returns the relation consisting of tuples (αγ0,4′, δ0) for each tuple (α, γ0, α
′) ∈ K such

that α′ = 4′A′, the universal modality being a 2-lifting form of 4′ is an L-context
instance of �, and δ0 is the mgu of A′ and the forward labeled form of A.

• resolve subgoal(K ′, Bi, R)

– where K ′ has the format as resolve(K,�, A) for some K, �, A; Bi is an atom of the
form 2jE, 3jE, or E, with E being a classical atom; and R is an L-relation of the
predicate of E,

– returns the set of tuples (αγ0,4′, δi) with δi = δi−1γi for each (αγ0,4′, δi−1) ∈ K ′ and
a most general substitution γi such that (4′Bi)δi−1γi is an L-instance of some atom
from R.

Here is our reformulation of Algorithm 9.1 :

Algorithm 9.4

Evaluate an L-MDatalog query (P, q(x1, . . . , xk)) over a schema S, where L ∈ BMD and q ∈ idb(S),
on an edb instance I over edb(S) in L.

1. Initialize the global variables ans p to empty L-relations for every p ∈ idb(S).

2. Repeat

(a) set the global variables input p to empty L-relations for every p ∈ idb(S).

(b) call Procedure 9.5 to process the goal L-relation consisting of the atom q(x1, . . . , xk)

until the global ans variables were not changed during the last iteration.

3. Return {t | (�, t) ∈ ans q where � is the empty modality}.

Procedure 9.5

Process a goal L-relation J of a predicate p.

1. J := standardize(J).

2. J := J − input p.

3. Exit if J is empty.

4. input p := input p ∪ J .

5. K := rSatNFL(J).

6. For each program clause ϕ defining p in P :
call Procedure 9.5 to process the goal L-relation K using ϕ.

Procedure 9.6

Process a goal L-relation K of a predicate p using a program clause ϕ = �(A← B1, . . . , Bn) of P .
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1. K ′ := resolve(K,�, A).

2. i := 0.

3. While i < n and K ′ is not empty do:

(a) i := i+ 1.

(b) If the predicate pi of Bi is an edb predicate then:
K ′ := resolve subgoal(K ′, Bi, SatL(I(pi)));

(c) Else (the predicate pi of Bi is an idb predicate):

i. Recursively call Procedure 9.5 for {(4′Bi)δi−1 | (αγ0,4′, δi−1) ∈ K ′}.
ii. K ′ := resolve subgoal(K ′, Bi, ans pi).

4. ans p := ans p∪{α′′ | (αγ0,4′, δn) ∈ K ′ and α′′ is the atom obtained from αγ0δn by replacing
every modal operator of the from 〈X〉j by 2j}.

Theorem 9.6 The evaluation by Algorithm 9.4 is sound, complete, and tight (i.e., Theorems 9.2,
9.4, 9.5 still hold when “Algorithm 9.1” is replaced by “Algorithm 9.4”).

Sketch. Algorithm 9.4 simulates Algorithm 9.1 but the order of calls of simulations of Procedure 9.2
(by using Procedure 9.5) is different. However, this difference does not affect the adaptation of the
proofs of Algorithm 9.1 for Algorithm 9.4. •

Theorem 9.7 The data complexity of Algorithm 9.4 is in PTIME. (Here, the data complexity is
the time complexity measured in the size of the edb instance when the query is fixed.)

Sketch. Analogously as for the proof of Theorem 5.1 on the data complexity of L-MDatalog, one
of the keys here is that modal depths of atoms appearing in ans and input relations are bounded
by a constant. Another key is that tuples of input relations are standardized and the operator
rSatNFL can be computed in polynomial time. •

9.5 Further Optimizations

We informally mention further optimizations for Algorithm 9.4:

• Step 4 of Procedure 9.5 is better done in the way so that the answer relation ans p does not
contain any pair of different atoms α1, α2 such that α1 is an L-instance of α2.

• In Algorithm 9.4, a standardized goal atom is processed only if it does not belong to the
corresponding input relation. To increase efficiency, we can process a standardized goal atom
only if it is not an L-instance of a fresh variant of any atom from the corresponding input
relation. Step 2 of Procedure 9.5 can be modified accordingly.

• The relational operator resolve subgoal can be optimized by restricting the substitutions δi
in the returned tuples (αγ0,4′, δi) to the set of “essential” variables and atom variables
as follows. Let resolve subgoal have an additional parameter V , which for the calls of
resolve subgoal in Step 3 of Procedure 9.5 is the set of all variables occurring in (Bi+1, . . . , Bn).
Then resolve subgoal(K ′, Bi, R, V ) returns the set of tuples (αγ0,4′, δi|V ∪V ar(αγ0)∪V ar(4′))
with δi = δi−1γi for each (αγ0,4′, δi−1) ∈ K ′ and a most general substitution γi such that
(4′Bi)δi−1γi is an L-instance of some atom from R. Here, V ar(αγ0) (resp. V ar(4′)) denotes
the set of all variables and atom variables occurring in αγ0 (resp. 4′).
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9.6 The Case L ∈ UMD
Similarly as for the l-modal-depth-restricted fixpoint semantics, we can adjust the top-down eval-
uation Algorithm 9.4 for L-MDatalog with L ∈ UMD by imposing a limit l on the lengths of
modalities that can occur in the evaluation.

Definition 9.3 Let l ≥ 1 be a fixed number. We define the operator l-rSatNFL(J) in the same
way as rSatNFL(J), except that only derivations consisting of atoms with modal depths not greater
than l are accepted. Let Algorithm l-9.4 be the modification of Algorithm 9.4 where rSatNFL and
SatL are replaced respectively by l-rSatNFL and l-SatL (for Procedure 9.5).

It is easy to see that soundness (Theorem 9.2), tightness (Theorem 9.5), and PTIME data
complexity (Theorem 9.7) hold for the top-down evaluation Algorithm l-9.4 for L ∈ UMD when
l is fixed. For completeness, we have the following theorem, which can be proved similarly as
Theorem 9.4.

Theorem 9.8 Let (P, q(x1, . . . , xk)) be an L-MDatalog query over a schema S, where L ∈ UMD,
and I be an edb instance over edb(S) in L. For every correct answer θ in L of P ∪ PI ∪ {←
q(x1, . . . , xk)}, there exists a constant l such that the execution of Algorithm l-9.4 for the query
(P, q(x1, . . . , xk)) on I returns a relation containing the tuple (x1, . . . , xk)θ.

Therefore, Algorithm l-9.4 really approximates top-down evaluation of L-MDatalog for L ∈
UMD. Furthermore, it computes approximations with PTIME data complexity.

10 Magic-Set Transformation for MDatalog

The magic-set technique for Datalog simulates the query-subquery evaluation by rewriting a given
query to another equivalent one that when evaluated using a bottom-up technique (e.g. the semi-
naive evaluation) produces only facts produced by the top-down query-subquery evaluation. Adorn-
ments are used as in the query-subquery evaluation. To simulate annotations, the magic-set trans-
formation is augmented with subgoal rectification (see, e.g., [1]). Algorithm 9.1 when applied for
Datalog looks like a bottom-up evaluation of a certain program containing additional predicates of
input relations and supplementary relations. Those relations are “magic sets” for the transforma-
tion.

The query-subquery evaluation of Datalog (see, e.g., [1]) uses adornments to simulate SLD-
resolution in pushing constant symbols from goals to subgoals. The annotated version of that
evaluation uses also annotations to simulate SLD-resolution in pushing repeats of variables from
goals to subgoals. With both adornments and annotations, the annotated query-subquery evalu-
ation method of Datalog is represented so that input relations and supplementary relations (as
supi in Procedure 9.3) consist of tuples of constant symbols, and classical relational operators can
be used for them (see, e.g., [1]). For MDatalog, essential information of a goal ← 4E is not only
constant symbols occurring in E and repeats of variables in E but also the modal context 4, which
may contain variables and atom variables. That is why in Procedures 9.2 and 9.3 for MDatalog we
use input relations as relations of atoms, and supi relations as relations of substitutions. We see
no way to avoid variables and atom variables in input relations and supplementary relations for
top-down evaluation of MDatalog.

How can we simulate top-down evaluation of MDatalog by magic-set technique? There are
two problems. The first one is that our top-down evaluation of MDatalog uses operations on sets
of tuples that may contain variables and atom variables, while a usual bottom-up evaluation for
MDatalog like the seminaive evaluation operates only on relations without variables and atom
variables. The second problem is that it is very unnatural to simulate “pushing modal contexts
from goals to subgoals” by a bottom-up method. For example, if 4 is an L-instance of 4′ using
the empty substitution, then to solve ←4E we can try to solve ←4′E. Thus, 4 is strengthened
to 4′. On the other hand, when computing direct consequences in fixpoint semantics, if we have a
ground atom 4E, and 4′′ is an L-instance of 4, then we can use 4′′E; that is, 4 is weakened to
4′′. Due to this reverse, it is not easy to simulate “pushing modal contexts from goals to subgoals”
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by a bottom-up method. One can still do a strict simulation by making severe modifications for
the definitions, but it is not worth to do so.

In this section, we extend the magic-set transformation of Datalog for L-MDatalog, where L ∈
BMD ∪ UMD. The extension does not strictly simulate “pushing modal contexts from goals to
subgoals”. In some cases, e.g. when L ∈ {KDI4s5,KDI45,KD4Ig5a}, it completely loosens modal
contexts. In other cases, e.g. when L ∈ {KD4s5s,KD45(m)}, shapes of modal contexts are pushed
from goals to subgoals, but some loosening still happens. On the other hand, in contrast with our
top-down evaluation of MDatalog, our magic-set technique for MDatalog operates only on relations
of tuples without variables and atom variables. Our presentation is without subgoal rectification,
but the extension with subgoal rectification is straightforward.

10.1 The Magic-Set Transformation

To illustrate the magic-set transformation, we use the L-MDatalog query (MRSG, query(y)), where
MRSG is the following extension of the Datalog program RSG [1]:

23(rsg(x, y)← flat(x, y))
23(rsg(x, y)← up(x, x1), rsg(y1, x1), down(y1, y))
22(rsg(x, y)← 23up(x, x1),22rsg(y1, x1),21down(y1, y))
21(31rsg(x, y)← up(x, x1),31rsg(y1, x1), down(y1, y))
query(y)← 32rsg(a, y)

and flat, up, down are edb predicates. For this example, L can be understood as a modal logic of
multi-degree belief, but it is not necessary so.

We first consider adorned versions of programs and queries. When being resolved with MRSG,
the goal ← query(y) is first replaced by ← 32rsg(a, y). As the first coordinate of the goal atom
is bound and the second coordinate is free, we denote the new goal by ← 32rsg

bf (a, y), where the
superscript ‘bf ’ is called an adornment. Now suppose that we want to resolve this goal with the
third clause of MRSG. To make benefits from adornments, we create an adorned version of the
third clause of MRSG and resolve the goal with it. In that adorned clause, the atom in the head
should be rsgbf (x, y), and because x is bound and up is an edb predicate, x1 will be bound. That
adorned clause is thus

22(rsgbf (x, y)← 23up(x, x1),22rsg
fb(y1, x1),21down(y1, y)).

Note that we do not write adornments for edb predicates.
The relevant adorned clauses for the query (MRSG, query(y)) are as follows:

1. 23(rsgbf (x, y)← flat(x, y))

2. 23(rsgbf (x, y)← up(x, x1), rsgfb(y1, x1), down(y1, y))

3. 22(rsgbf (x, y)← 23up(x, x1),22rsg
fb(y1, x1),21down(y1, y))

4. 21(31rsg
bf (x, y)← up(x, x1),31rsg

fb(y1, x1), down(y1, y))

5. 23(rsgfb(x, y)← flat(x, y))

6. 23(rsgfb(x, y)← down(y1, y), rsgbf (y1, x1), up(x, x1))

7. 22(rsgfb(x, y)← 21down(y1, y),22rsg
bf (y1, x1),23up(x, x1))

8. 21(31rsg
fb(x, y)← down(y1, y),31rsg

bf (y1, x1), up(x, x1))

9. queryf (y)← 32rsg
bf (a, y)

Note that in the clauses 6 - 8, the order of atoms in the bodies is changed so that the binding of y
in down can be “passed” via y1 to rsg and via x1 to up. Denote the above program by MRSGad.
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Definition 10.1 Formally, an adornment γ for an n-ary predicate p is a sequence of n letters ‘b’ or
‘f ’, and p adorned by γ is denoted by pγ . For A = 4p(t1, . . . , tn), where p is an idb predicate, we
use Aγ to denote 4pγ(t1, . . . , tn) and say that a variable x is bound in Aγ if there exists 1 ≤ j ≤ n
such that tj = x and γ(j) = ‘b’, otherwise x is free in Aγ . If A = 4p(t1, . . . , tn) and p is an edb
predicate, then Aγ denotes the atom A itself (this means that we do not use adornments for edb
predicates). Given a clause ϕ = �(A ← B1, . . . , Bk) and an adornment γ for the predicate in A,
the adorned version of ϕ w.r.t. γ is �(Aγ ← Bγ11 , . . . , Bγkk ), where γi is specified as follows: if Bi
is of the form 4p(t1, . . . , tn) and tj is a constant symbol or a variable bound in Aγ or occurring in
B1, . . . , Bj−1 then γi(j) = ‘b’, else γi(j) = ‘f ’.

Definition 10.2 For an L-MDatalog query (P, q(x1, . . . , xk)), let f be the adornment for q con-
sisting of letters ‘f ’ and P ad be the program consisting of all adorned versions of all clauses of P

that are related with qf (i.e. directly or indirectly defining qf ). We call P ad the adorned program
corresponding to the query (P, q(x1, . . . , xk)).

We proceed by giving a further transformation for P ad. Consider, for example, the 8th clause
of MRSGad. As the head of the clause is 31rsg

fb(x, y), from the point of view of SLD-resolution,
“inputs” for the body are bound by a certain relation 31input rsg

fb(y). From 31input rsg
fb(y)

and down(y1, y), we create sup82(y, y1) as a supplement for the 2nd atom in the body of the 8th
clause of MRSGad. The clause is thus transformed to the following:

(s8.1) 21(sup82(y, y1)← 31input rsg
fb(y), down(y1, y))

(s8.2) 21(31rsg
fb(x, y)← sup82(y, y1),31rsg

bf (y1, x1), up(x, x1))

Furthermore, sup82(y, y1) triggers an additional search for 31rsg
bf (y1, x1), which in turn will trigger

a search for 21rsg
bf (y1, x1) (due to the axiom (D)). Thus, sup82(y, y1) adds additional “inputs” for

the search for 21rsg
bf (y1, x1). Hence, we also have the following clause:

(i8.1) 21(21input rsg
bf (y1)← sup82(y, y1))

As another example, the 7th clause of MRSGad is transformed to

(s7.1) 22(sup72(y, y1)← input rsgfb(y),21down(y1, y))
(s7.2) 22(rsgfb(x, y)← sup72(y, y1),22rsg

bf (y1, x1),23up(x, x1))
(i7.1) 22(22input rsg

bf (y1)← sup72(y, y1)).

The first clause of MRSGad is transformed to

(s1.1) 23(rsgbf (x, y)← input rsgbf (x), f lat(x, y)).

The last clause of MRSGad is transformed to

(s9.1) sup91 ← input queryf

(s9.2) queryf (y)← sup91,32rsg
bf (a, y)

(i9.1) 22input rsg
bf (a)← sup91

To trigger a search for the query, we use the following rule

(seed) input queryf ←

We now give a formal definition of the magic-set transformation. We start with auxiliary
notations. For an atom A of the form 4pγ(t1, . . . , tn), where |4| ≤ 1 and i1, . . . , ik are all the
indices such that γ(ij) = ‘b’ for 1 ≤ j ≤ k : by input A we denote the atom 4input pγ(ti1 , . . . , tik);
by input blf A we denote 2ip

γ(ti1 , . . . , tik) if 4 = 3i, and input A otherwise.14 For an adorned
clause ϕi = �(A ← B1, . . . , Bk) and 1 ≤ j ≤ k, let Supij be the atom of predicate supij whose
arguments are the variables that occur both in input A,B1, . . . , Bj−1 and Bj , . . . , Bk, A.

Definition 10.3 Let (P, q(x1, . . . , xk)) be an L-MDatalog query and P ad the corresponding
adorned program. We construct Pm as follows: At the beginning let Pm contain only the

clause input qf ←, where f is the adornment for q consisting of letters ‘f ’. Then for each clause
ϕi = �(A← B1, . . . , Bk) of P ad :

14blf stands for “2-lifting form”.
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• If no idb predicate occurs in B1, . . . , Bk then add to Pm the clause

�(A← input A,B1, . . . , Bk) (s i.1)

• Otherwise, let i1, . . . , ih be all the indices such that for each 1 ≤ j ≤ h, Bij is an atom of an
adorned idb predicate. Then add to Pm the following clauses:

�(Supii1 ← input A,B1, . . . , Bi1−1) (s i.1)
�(Supiij ← Supiij−1

, Bij−1 , . . . , Bij−1) for every 1 < j ≤ h (s i.j)

�(A← Supiih , Bih , . . . , Bk) (s i.(h+ 1))
�(input blf Bij ← Supiij ) for every 1 ≤ j ≤ h (i i.j)

In the last clause given above, we use input blf Bij instead of input Bij because in serial modal
logics we have that �(2iE → 3iE), hence we should accept �(3iinput E → 2iinput E).

The L-MDatalog query (Pm, qf (x1, . . . , xk)) is the result the magic-set transformation for
(P, q(x1, . . . , xk)).

10.2 Correctness of the Magic-Set Transformation

Let (Pm, qf (x1, . . . , xk)) be the result of the magic-set transformation for an L-MDatalog query

(P, q(x1, . . . , xk)). In order to compare (Pm, qf (x1, . . . , xk)) with (P, q(x1, . . . , xk)) and obtain an

equivalence we modify the evaluation of (Pm, qf (x1, . . . , xk)) in two aspects involved with the
fixpoint semantics:

• ignoring adornments in definition of the forward labeled form of an atom,

• extending the set of rules specifying the operator SatL (for input atoms).

From now on, we assume the modification that if α is an adorned atom of the form
43i p

γ(t1, . . . , tn) then the forward labeled form of α is 4〈p(t1, . . . , tn)〉i pγ(t1, . . . , tn) instead of
4〈pγ(t1, . . . , tn)〉i pγ(t1, . . . , tn). Under this assumption, we have the following property:

Lemma 10.1 Let (P, q(x1, . . . , xk)) be an L-MDatalog query over a schema S, where L ∈ BMD∪
UMD, and P ad be the corresponding adorned program. Let I be an edb instance over edb(S)
in L, p a predicate of idb(S), and γ an adornment for p such that pγ is defined by P ad. Then
P adL (I)(pγ) = PL(I)(p).

Proof. It is straightforward to prove by induction on k that TL,Pad,I ↑ k (pγ) = TL,P,I ↑ k (p). The
assertion of the lemma immediately follows. •

We use input E to denote an atom of a predicate with prefix input . An atom E standing alone
or in an atom of the form 4E can be an atom of an arbitrary predicate, except that we exclude
predicates with the double prefix input input .

Observe that, if 4E ← 4′E is a rule specifying rSatL or rNFL then we should accept also
4input E → 4′ input E, where input E = input p(t1, . . . , tk) if E = p(t1, . . . , tk). We give below
additional rules for specifying SatL to deal with input atoms:
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L ∈ {KDI4s5,KDI45} : 4input E → 2m input E if |4| ≥ 1

L = KD4Ig5a : 4input E → 2k input E if |4| ≥ 1
where g(k) is the largest group

L = KD4s5s : 4∇i input E → 2i input E

L = KD45(m) : 4∇i4′ input E →42i4′ input E
4∇i∇′i input E →42i input E

L = sCFG : if 2iϕ→ 2j1 . . .2jkϕ is an axiom of L :
42j1 . . .2jk4′input E →42i4′input E
4∇i4′input E →42j1 . . .2jk4′input E

Note that for L ∈ {KDI4s5,KDI45,KD4Ig5a}, modal contexts of input atoms are completely
loosened (to a modality � such that every atom 4input E is an L-instance of some atom from
SatL({�input E})). For the remaining logics, some loosening still happens, but certain properties
are preserved (and will be passed from goals to subgoals).

The three following auxiliary lemmas can easily be checked for L ∈ BMD ∪ UMD.

Lemma 10.2 Let α and β be ground atoms in L-normal labeled form. Suppose that α is an L-
instance of β. Then every α′ ∈ SatL({α}) is an L-instance of some β′ ∈ SatL({β}).

Lemma 10.3 Let α be a ground atom of the form 4A, where 4 is in L-normal labeled form
and A is of the form 2iE, 3iE, or E. Let α′ be the forward labeled form of α. Suppose that
β ∈ NFL({α′}). Then α is an L-instance of some atom of SatL({β}).

Lemma 10.4 Let 4E and 4′E be ground atoms in L-normal labeled form. Suppose that 4E is
an L-instance of some atom of SatL({4′E}). Then 4′input E is an L-instance of some atom of
SatL({4input E}). (Here, the predicate of E cannot start with input .)

We now prove that the magic-set transformation is correct.

Lemma 10.5 Let (P, q(x1, . . . , xk)) be an L-MDatalog query over a schema S, where L ∈ BMD∪
UMD, P ad be the corresponding adorned program, and (Pm, qf (x1, . . . , xk)) be the result of the
magic-set transformation for (P, q(x1, . . . , xk)). Let I be an edb instance over edb(S) in L and pγ

be an adorned version of p ∈ idb(S). Then every atom α ∈ PmL (I) of pγ is an L-instance of some
atom from P adL (I).

Proof. It is straightforward to prove this lemma by induction on the number of steps needed to
derive α for PmL (I), using the observation that when transforming P ad to Pm, a clause ϕi = �(A←
B1, . . . , Bk) with Bi1 , . . . , Bih being atoms of adorned idb predicates is broken into

�(Supii1 ← input A,B1, . . . , Bi1−1),
�(Supiij ← Supiij−1

, Bij−1
, . . . , Bij−1) for every 1 < j ≤ h,

�(A← Supiih , Bih , . . . , Bk),
where input A plays the role of an additional restriction. •

Lemma 10.6 Let (P, q(x1, . . . , xk)) be an L-MDatalog query over a schema S, where L ∈ BMD∪
UMD, P ad be the corresponding adorned program, (Pm, qf (x1, . . . , xk)) be the result of the magic-
set transformation for (P, q(x1, . . . , xk)), and I be an edb instance over edb(S) in L. Suppose that
4E ∈ P adL (I), � is the universal modality being a 2-lifting form of 4, and �input E is an L-
instance of some atom of SatL(PmL (I)). Then 4E is an L-instance of some atom of PmL (I).
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Proof. Let n be the smallest number such that4E ∈ TL,Pad,I ↑n. We prove the lemma by induction
on n. Suppose that the assertion of the lemma holds for all n with a smaller value. Suppose that
4E ∈ TL,Pad,I ↑ n is created by first applying some clause ϕi = �′(A ← B1, . . . , Bk) of P ad to
atoms of SatL(I ∪ TL,Pad,I ↑ (n− 1)) to create 4′(A′θ), where A′ is the forward labeled form of A
and θ is the involved substitution, and then normalizing 4′(A′θ). Let 1 ≤ i1 < . . . < ih ≤ k be all
the indices such that Bij for 1 ≤ j ≤ h are atoms of adorned idb predicates. Then Pm contains the
following clauses:

(a) �′(Supii1 ← input A,B1, . . . , Bi1−1),
(b) �′(Supiij ← Supiij−1

, Bij−1
, . . . , Bij−1) for every 1 < j ≤ h,

(c) �′(A← Supiih , Bih , . . . , Bk),
(d) �′(input blf Bij ← Supiij ) for every 1 ≤ j ≤ h.

Since 4E ∈ NFL({4′(A′θ)}), by Lemma 10.3, 4′(input Aθ) is an L-instance of some atom of
SatL({4input E}). By Lemma 10.2 and the assumptions of this lemma, it follows that4′(input Aθ)
is an L-instance of some atom of SatL(PmL (I)). By the clause (a), this implies that 4′(Supii1θ) is
an L-instance of some atom of PmL (I). Consequently, by the clauses (d), 4′(input blf Bi1θ) is an
L-instance of some α ∈ T0L,P (PmL (I)). We have NFL({α}) ⊆ PmL (I), hence by Lemma 10.3, α is an
L-instance of some atom of SatL(PmL (I)). Hence 4′(input blf Bi1θ) is an L-instance of some atom
of SatL(PmL (I)).

We have that 4′(Bi1θ) is an L-instance of some atom of SatL(TL,Pad,I ↑(n− 1)). Let 4′′B′′i1 ∈
TL,Pad,I ↑(n− 1) be the atom such that 4′(Bi1θ) is an L-instance of some atom of SatL({4′′B′′i1}).
Let 4′′′Ei1 = 4′′B′′i1 and let �′′′ be the universal modality being a 2-lifting form of 4′′′. By
Lemma 10.2, 4′(Bi1θ) is an L-instance of some atom of SatL({�′′′Ei1}). By Lemma 10.4, it
follows that �′′′input Ei1 is an L-instance of some atom of SatL({4′(input Bi1θ)}). Hence, by
Lemma 10.2, �′′′input Ei1 is an L-instance of some atom of SatL({4′(input blf Bi1θ)}), and is thus
also an L-instance of some atom of SatL(PmL (I)). Hence, by the inductive assumption, 4′′B′′i1 is
an L-instance of some atom of PmL (I). By Lemma 10.2, it follows that 4′(Bi1θ) is an L-instance of
some atom of SatL(PmL (I)).

Analogously, it can be shown that, for 1 < j ≤ h, 4′(Supiijθ) is an L-instance of some atom

of PmL (I) and 4′(Bijθ) is an L-instance of some atom of SatL(PmL (I)). Hence, by the clause (c),
4′(A′θ) is an L-instance of some 4†(A′θ) ∈ T

0L,Pm(SatL(I ∪ PmL (I))).
If L = KDI45 and there are some modalities 4† with that property then we take a minimally

general one. It can be shown that 4E ∈ NFL({4′(A′θ)}) is an L-instance of some atom of
NFL({4†(A′θ)}). This can easily be checked for the case L 6= KDI45. For the case L = KDI45,
the claim holds due to the SatL rule: 42iα → 42jα if i > j. Therefore 4E is an L-instance of
some atom of PmL (I) = NFL(T

0L,Pm(SatL(I ∪ PmL (I)))). •

Corollary 10.7 Let (P, q(x1, . . . , xk)) be an L-MDatalog query over a schema S, where L ∈ BMD∪
UMD, P ad be the corresponding adorned program, (Pm, qf (x1, . . . , xk)) be the result of the magic-
set transformation for (P, q(x1, . . . , xk)), and I be an edb instance over edb(S) in L. Then every

atom qf (c1, . . . , ck) ∈ P adL (I) belongs to PmL (I).

Proof. Suppose that qf (c1, . . . , ck) ∈ P adL (I). By the definition of Pm, input qf ∈ PmL (I). Hence,

by the above lemma, qf (c1, . . . , ck) ∈ PmL (I). •
The following theorem states that the magic-set transformation for L-MDatalog is correct.

Theorem 10.8 Let (P, q(x1, . . . , xk)) be an L-MDatalog query over a schema S, where L ∈ BMD∪
UMD, (Pm, qf (x1, . . . , xk)) be the result of the magic-set transformation for (P, q(x1, . . . , xk)), and

I be an edb instance over edb(S) in L. Then qf (c1, . . . , ck) ∈ PmL (I) iff q(c1, . . . , ck) ∈ PL(I).

Proof. This theorem immediately follows from Lemmas 10.1, 10.5, and Corollary 10.7. •

11 Conclusions

In this work, we have given formulations for modal deductive databases and defined the modal query
language MDatalog, which is as expressive as the general Horn fragment in modal logics. We have
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defined modal relational algebra L-SPCU and developed evaluation methods for MDatalog. We
have proved the following results for the multimodal logics of belief KDI4s5, KD4s5s, KD45(m),
KDI45, KD4Ig5a, and the class sCFG of serial context-free grammar logics:

• The data complexity of MDatalog in KDI4s5, KD4s5s, KD45(m), KDI45 is complete in
PTIME.

• L-SPCU algebra queries are equivalent (w.r.t. expressiveness) to L-MDatalog queries using
nonrecursive L-MDatalog programs.

• The top-down evaluation algorithm for MDatalog is sound, complete, and tight (w.r.t. the
corresponding SLD-resolution calculus for L-MProlog). For the logics KD4Ig5a and sCFG,
the algorithm works with an approximation method.

• The magic-set transformation for MDatalog is correct.

The magic-set transformation can be combined with the seminaive evaluation to give a more
refined bottom-up evaluation method for MDatalog. For KD4Ig5a and sCFG, it also works with
an approximation method. Our magic-set transformation for MDatalog does not strictly simulate
our top-down evaluation algorithm because modal contexts of goal atoms cannot be pushed from
goals to subgoals in a pure way.

Our formulations and methods are highly modular w.r.t. the base modal logic L and the under-
lying SLD-resolution calculus for L-MProlog. They are appliable for other serial modal logics. For
example, in the report [27], we apply them also for all the basic serial monomodal logics.

This work and our previous work [20] are pioneer works on modal deductive databases. This
work covers most topics of the theory of deductive databases for modal logics. It establishes a
fundamental basis for the subject of modal deductive databases. There remain, of course, some
problems deserving investigation, e.g., MDatalog with negation, behaviors of the redundant elimi-
nation operator, or efficient representation of edb instances.

Our evaluation methods for MDatalog are significantly useful for the computational theory of
modal logics. They are an evidence for the usefulness of the direct approach used for modal logic
programming. The translation approaches [7, 28] used in modal logic programming are not suitable
for modal deductive databases, because they introduce Skolem function symbols and can make
clauses not range-restricted.

Because multimodal logics can be used to reason about multi-degree belief (a kind of uncer-
tainty) and epistemic states of agents, we believe that modal deductive databases will have potential
applications.
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