Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3641))

  • 1274 Accesses

Abstract

[4] placed an approximation space (U,≡ ) in a type-lowering retraction with its power set 2U such that the ≡ -exact subsets of U comprise the kernel of the retraction, where ≡ is the equivalence relation of set-theoretic indiscernibility within the resulting universe of exact sets. Since a concept thus forms a set just in case it is ≡ -exact, set-theoretic comprehension in (U,≡ ) is governed by the method of upper and lower approximations of Rough Set Theory. Some central features of this universe were informally axiomatized in [3] in terms of the notion of a Proximal Frege Structure and its associated modal Boolean algebra of exact sets. The present essay generalizes the axiomatic notion of a PFS to tolerance (reflexive, symmetric) relations, where the universe of exact sets forms a modal ortho-lattice. An example of this general notion is provided by the tolerance relation of “matching” over U.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aczel, P.: Frege Structure and the Notions of Proposition, Truth and Set. In: Barwise, J., Keisler, H., Kunen, K. (eds.) The Kleene Symposium, pp. 31–59. North-Holland, Amsterdam (1980)

    Chapter  Google Scholar 

  2. Apostoli, P., Kanda, A., Polkowski, L.: First Steps Towards Computably Infinite Information Systems. In: Dubois, D., Grzymala-Busse, J., Inuiguchi, M., Polkowski, L. (eds.) Rough Sets and Fuzzy Sets. Transactions in Rough Sets. LNCS, vol. 2, pp. 161–198. Springer, Heidelberg (2004)

    Google Scholar 

  3. Apostoli, P., Kanda, A.: Approximation Spaces of Type-Free Sets. In: Ziarko, W.P., Yao, Y. (eds.) RSCTC 2000. LNCS (LNAI), vol. 2005, pp. 98–105. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  4. Apostoli, P., Kanda, A.: Parts of the Continuum: towards a modern ontology of science. Forthcoming. In: Nowak, L. (ed.) Poznan Studies in the Philosophy of Science and the Humanities (2005)

    Google Scholar 

  5. Bell, J.L., Machover, M.: A Course in Mathematical Logic. North Holland, Amsterdam (1977)

    MATH  Google Scholar 

  6. Bell, J.L.: Orthologic, Forcing and the Manifestation of Attributes. In: Proc. of the Southeast Asian Conference on Logic. Studies in Logic, vol. III. North Holland, Amsterdam (1983)

    Google Scholar 

  7. Bell, J.L.: A new Approach to Quantum Logic. Brit. J. Phil. Sci. 37, 83–99 (1986)

    MATH  Google Scholar 

  8. Bell, J.L.: Set and Classes as Many. J. of Philosophical Logic 29(6), 595–681 (2000)

    Google Scholar 

  9. Birkhoff, G.: Lattice Theory, 3rd edn., vol. XXV. Amer. Math. Colloq. Publs (1960)

    Google Scholar 

  10. Blamey, S.: Partial Logic. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philosophical Logic, vol. III, pp. 1–70. D. Reidel Publishing Company (1986)

    Google Scholar 

  11. Cattaneo, G.: Abstract Approximation Spaces for Rough Theories. In: Polkowski, L., Skowron, A. (eds.) Rough Sets in Knowledge Discovery: Methodology and Applications. Springer, Heidelberg (1998)

    Google Scholar 

  12. Chellas, B.F.: An Introduction to Modal Logic. Cambridge University Press, Cambridge (1980)

    Google Scholar 

  13. Feferman, S.: Towards Useful Type-free Theories I. Journal of Symbolic Logic 49, 75–111 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  14. Fine, K.: First-Order Modal Theories. I-Sets. Nous 15, 177–205 (1981)

    MathSciNet  Google Scholar 

  15. Frege, G.: Die Grundlagen der Arithmetik. Eine logisch mathematische Untersachung uber den Begridd der Zahl. Breslau, William Koebner. English translation by J. L. Austin, The Foundations of Arihmetic. Oxford, Basil Blackwell (1950)

    Google Scholar 

  16. Frege, G.: Grundgesetze der Arithmetik. Vols. 1, 2. Jena, Verlag Hermann Pohle. Reprinted at Hildesheim. Vol. 1 is partially translated in [17]. Vol. 2 is translated in part in [18] (1893, 1903)

    Google Scholar 

  17. Frege, G.: Translations from the Philosophical Writings of Gottlob Frege. Edited and translated by Peter Geach and Max Black. Oxford, Basil Blackwell (1960)

    Google Scholar 

  18. Furth, M.: The Basic Laws of Arithmetic: Expositition of the system. University of California Press, Berkeley (1964)

    Google Scholar 

  19. Gilmore, P.C.: Natural Deduction Based Set Theories: A New Resolution of the Old Paradoxes. J. of Symbolic Logic 51, 394–411 (1986)

    Article  MathSciNet  Google Scholar 

  20. Kock, A.: Synthetic Differential Geometry. In: London Math. Soc. Lecture Notes, vol. 51. Cambridge University Press, Cambridge (1981)

    Google Scholar 

  21. Kripke, S.: Semantical Analysis of Modal Logic I. Normal Modal Propositional Calculi. Zeitschrift f. Math. Logik und Grundlagen d. Math., 9 (1963)

    Google Scholar 

  22. Lewis, D.: Counterpart Theory and Quantified Modal Logic. J. of Philosophy 65, 113–126 (1968); Reprinted in Michael J. Loux (ed), The Possible and the Actual. Cornell, U.P. (1979)

    Article  Google Scholar 

  23. Orlowska, E.: Semantics of Vague Concepts. In: Dorn, G., Weingartner, P. (eds.) Foundations of Logic and Linguistics, Problems and Their Solutions. Plenum Press, NewYork (1985)

    Google Scholar 

  24. Parsons, C.: What is the iterative conception of set? In: Butts, R.E., Hintikka, J. (eds.) Logic, Foundation of Mathematics, and Computability Theory, pp. 335–367. D. Reidel, Dordrechtz (1977); Reprinted in P. Benacerraf, P., Putnam, H. (eds.), Philosophy of Mathematics: Selected Readings. 2nd ed. Cambridge University Press. (1983) 503-529. Also reprinted in Mathematics in Philosophy, Selected Essays, Cornell University Press.

    Google Scholar 

  25. Parsons, C.: Modal Set Theories. Journal of Symbolic Logic 46, 683–684 (1981)

    Google Scholar 

  26. Pawlak, Z.: Rough Sets, Algebraic and Topological Approaches. International Journal of Computer and Information Sciences 11, 341–356 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  27. Plotkin, G.: A Power Domain Construction. SIAM Journal on Computing 5, 452–487 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  28. Scott, D.: Continuous lattices. Lecture Notes in Math., vol. 274, pp. 97–136. Springer, Berlin (1971)

    Google Scholar 

  29. Scott, D.: Data Types as Lattices. SIAM Journal on Computing 5, 522–587 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  30. Skowron, A., Stepaniuk, J.: Generalized Approximation Spaces. In: Proc. 3rd Int. Workshop on Rough Sets and Soft Computing, San Jose, USA, November 10-12 (1994)

    Google Scholar 

  31. Skowron, A., Stepaniuk, J.: Tolerance Approximation Spaces. Fundementa Informaticae 27, 245–253 (1996)

    MATH  MathSciNet  Google Scholar 

  32. Smyth, M.: Power Domains. Journal of Computer and Systems Science 16, 23–36 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  33. Smyth, M., Plotkin, G.: The Categorical Solutions of Recursive Domain Equations. In: Proc. of the 18th FOCS Conference (1977)

    Google Scholar 

  34. Yao, Y.Y.: On Generalizing Pawlak Approximation Operators. In: Polkowski, L., Skowron, A. (eds.) CSL 1997. LNCS, vol. 1414, pp. 289–307. Springer, Heidelberg (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Apostoli, P.J., Kanda, A. (2005). Proximity Spaces of Exact Sets. In: Ślęzak, D., Wang, G., Szczuka, M., Düntsch, I., Yao, Y. (eds) Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing. RSFDGrC 2005. Lecture Notes in Computer Science(), vol 3641. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11548669_10

Download citation

  • DOI: https://doi.org/10.1007/11548669_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28653-0

  • Online ISBN: 978-3-540-31825-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics