On the Complexity of Probabilistic Inference in
Singly Connected Bayesian Networks

Dan Wu'! and Cory Butz?

1 School of Computer Science
University of Windsor
Windsor Ontario
Canada N9B 3P4
2 Department of Computer Science
University of Regina
Regina Saskatchewan
Canada S4S 0A3

Abstract. In this paper, we revisit the consensus of computational com-
plexity on exact inference in Bayesian networks. We point out that even
in singly connected Bayesian networks, which conventionally are believed
to have efficient inference algorithms, the computational complexity is
still NP-hard.

1 Introduction

Bayesian networks (BNs) have gained popularity in the last decade as a suc-
cessful framework for processing uncertainty using probability. A Bayesian net-
work [7] consists of two components: a directed acyclic graph (DAG) and a set
of conditional probability distributions (CPDs). The product of these CPDs de-
fines a joint probability distribution (JPD). One of the most important tasks for
a BN is to perform probabilistic inference, which simply means computing the
posterior probability distribution for a set of variables given the evidence that
some other variables in the network are taking specific values. There are two
kinds of probabilistic inference that can be performed, namely, exact inference
and approximate inference. Exact inference means computing the exact posterior
probability distribution. Approximate inference produces an inexact, bounded
solution, but guarantees that the exact solution is within those bounds. In this
paper, we will only comment on the computational complexity of exact inference.

During the development of various probabilistic inference algorithms, the
following statements regarding computational complexity of exact inference in
BNs are made. Singly connected BNs have linear time algorithm in the number
of nodes in a network or the size of the network for exact inference. On the other
hand, multiply connected Bayesian networks do not admit efficient algorithms
for exact inference in the worst case. Finally, exact probabilistic inference in the
general case is NP-hard because it was proved that exact inference in multiply

connected BNs is NP-hard [1] 3. Based on the above remarks, it has come to the
consensus that the singly connected BNs are favorable and tractable while the
multiply connected BNs are intractable (at least in the worst case) and should
be blamed for causing the exact inference in BNs to be NP-hard.

In this paper, we revisit the consensus of computational complexity on exact
inference in BNs. It seems that the consensus is somewhat misleading. Our main
argument is that inference in a singly connected BN can be exponential in the
worst case. More specifically, we adapt the proof in [1] to demonstrate that
exact inference in singly connected BNs can also be NP-hard. That is to say, the
hardness of exact inference in BNs should have nothing to do with the topological
structure of the DAG of a BN.

The paper is organized as follows. In Section 2, we introduce pertinent back-
ground material and notation. We review the current consensus on exact infer-
ence in BNs in Section 3. In Section 4, we point out an inconsistency in the
consensus. We investigate the inconsistency in Section 5. We discuss the impli-
cation of our investigation and conclude the paper in Section 6.

2 Background

We use R = {x1, ..., z,} to represent a set of discrete variables. Each x;
takes value from a finite domain denoted V,,. We use capital letters such as
X to represent a subset of R and its domain is denoted by Vx. By XY we
mean X UY. We write x; = «, where a € V,,, to indicate that the variable
x; is instantiated to the value «a. Similarly, we write X = 3, where § € Vy, to
indicate that X is instantiated to the value (. For convenience, we write p(z;)
to represent p(x; = «) for all @ € V,. Similarly, we write p(X) to represent
p(X =) for all g € Vx.

Definition 1. Let R = {x1, ..., x,} be a set of discrete variables. A Bayesian
network (BN) defined over R consists of two components:(i) a directed acyclic
graph (DAG) D whose nodes correspond one-to-one to the variables in R, and
(i) a set {p(zi|ms,) | 1 < i < n} of CPDs where m,, denotes the parents of
x; in D. The product of the CPDs define a unique joint distribution p(R) as:
p(R) = H1gz‘§n p(@i|ms,).

BNs are usually classified into three categories, according to the topological
structures of their respective DAGs.

Definition 2. A BN is called a tree structure BN if for each node in the DAG
of the BN except the root, there is only one parent node.

Definition 3. A BN is called a singly connected BN (also known as polytree) if
there exists at most one (undirected) path between any two nodes in the DAG
of the BN. Obviously, tree structure BNs are special cases of singly connected
BNs.

3 It is perhaps worth mentioning that approximate inference in BNs was also proved
NP-hard [8].

Definition 4. A BN is called a multiply connected BN if there exists more than
one (undirected) path between at least two nodes in the DAG of the BN.

A 1T TN
VNN AV
T/N NN

® (D] (i)

Fig. 1. (i) The DAG of a tree structure BN. (ii) The DAG of a singly connected BN.
(iii) The DAG of a multiply connected BN.

Ezample 1. By definition, the BN in Fig. 1(i) is a tree structure BN. The BN in
Fig. 1(ii) is a singly connected BN. The BN in Fig. 1(iii) is a multiply connected
BN.

The classification of tree structure, singly connected, and multiply connected
BN, resulted to some extent from the historical development of different algo-
rithms for exact inference, which are discussed in the next section.

3 Computational Complexity of Exact Inference: the
Consensus

The key problem in BNs is to perform probabilistic inference, which means com-
puting p(X) or p(X|Y = 3), where X NY = (), and 8 € Vy. The fact that YV is
instantiated to (3, i.e., Y = (3, is called the evidence.

Algorithms for tree structure BNs and singly connected BNs were designed
first. In 1982, Pearl first developed an algorithm featuring message-passing for
carrying out probabilistic inference in tree structure BNs. The following year
Kim and Pearl extended the algorithm to singly connected BNs. These results
were summarized in [6]. For tree structure BNs, Pearl gave a complexity result
for exact inference in [6]. For an m-ary tree with n values in the domain for each
node in the tree structure BN, one needs to store n? + mn + 2n real numbers
and perform 2n? 4+ mn + 2n multiplications per update for inference. Obviously,
both storage and computation are efficient in tree structure BNs. For singly
connected BNs, it is commonly written that the time and space complexity of
exact inference in singly connected BNs is linear in the size of the networks.
Here, the size is defined as the number of CPD entries. Further more, if the
number of parents of each node is bounded by a constant, then the complexity
will also be linear in the number of nodes [8].

For multiply connected BNs, the algorithms developed for singly connected
BNs can be adapted to process multiply connected BNs through conditioning [8].
Nevertheless, the predominant algorithm so far is the so-called local computation
method [5].

The local computation method first transforms the DAG of a BN into a sec-
ondary structure called junction tree through the moralization and triangulation
procedures. A formal treatment on triangulation and building junction trees can
be found in [8]. After constructing the junction tree, a potential (a nonnegative
function) ¢(C;) is formed for each clique C; in the junction tree. We say the size
of a clique C; is the cardinality of its domain, that is, |V, |. It is easy to see
that the bigger the size of a clique, the more expensive the computation will be
whenever ¢(C;) is engaged in the computation for inference.

Exact inference in multiply connected BNs was developed as follows. Lau-
ritzen and Spiegelhalter [4] first proposed the local computation method for exact
inference on junction trees (also called clustering method) and showed that their
method can be implemented in a computationally feasible manner in some real-
life expert systems. The authors were concerned with the size of the clique in
the junction tree (transformed from the DAG of a BN), and they realized that
their method would not be computational feasible if a large clique is present in
the junction tree. Different architectures were developed to implement the local
computation method. Jensen et al. [3] provided an object-oriented version of
the computational scheme in [4]. This extension forms the core of the renowned
Hugin architecture. Consequently, the Hugin architecture has the same concern
as the Lauritzen-Spiegelhalter architecture, namely, the size of the clique in a
junction tree. The Shafer-Shenoy architecture [9] used a different propagation
scheme and used hypertree and Markov tree (junction tree) to describe the ar-
chitecture. In [9], it was repeatedly emphasized that the efficiency and feasibility
of their architecture depends on the size of the clique in a junction tree. Cooper
formally confirmed these concerns by showing that exact probabilistic inference
in BNs is NP-hard [1].

To summarize, the above discussion gives rise to the consensus that singly
connected BNs have efficient inference, while multiply connected BNs do not.
Thus, multiply connected BNs are the core of the inference problem.

4 Inconsistency in the Consensus

Although the local computation method was originally developed with the in-
tention to solve the problem of exact inference in multiply connected BNs, it
is important to realize that it is also applicable to singly connected BNs. In
other words, given a singly connected BN, besides the specifically designed al-
gorithms in [6], one can also apply the local computation architecture to solve
the inference problem in a given singly connected BN. Regarding inference in
singly connected BNs, an inconsistency arises when we compare the specifically
designed algorithms [6] with the local computation method [5].

Consider an application involving a singly connected BN. On one hand, if one
applies the specifically designed algorithms [6], results will be returned in time
linear to the size of the network [8]. On the other hand, if one applies the local
computation architecture, one has to be cautious that the size of the cliques in
the constructed junction tree should be feasible. If a large clique is present in the
junction tree and the size of the clique is not feasible, then the task of inference
would not be computational feasible even given a singly connected BN.

In other words, there are then two different claims regarding inference in a
singly connected BN. One is very positive and says this is definitely efficient
in time linear to the size of the network. The other is rather conservative and
says this may not be computational feasible if the junction tree transformed
from the given singly connected BN contains a large clique. These two claims are
seemingly inconsistent and are more carefully examined in the next section.

5 Exploring the Inconsistency

The concern of the local computation architecture pertains to the presence of
a large clique size in the junction tree, which renders the local computations
intractable. When transforming a singly connected BN into a junction tree, is
it possible to create a large clique? The answer is definitely yes as the following
example shows.

Ezample 2. Consider the singly connected DAG D in Fig. 2 (i). Note that the
node x in D has n parents, i.e., y1, ..., Yn. The junction tree constructed from
D is shown in Fig. 2 (ii). As one may notice that one of the cliques contains
variables x, y1, ..., y,. If nis large, even assuming all the variables are binary,
storing the potential ¢(z, y1, ..., yn) or engaging it in any computation will
not be feasible as the storage and computation will be exponential with respect
to the number of variables involved.

N %
\\v//

I %]

Z S
0] (i)

Fig. 2. (i) A singly connected DAG D, where variable z has a large number of parents.
(ii) The constructed junction tree has a large clique.

Example 2 explicitly demonstrates that a node in a singly connected BN with
a large number of parent nodes must result in a large clique in the transformed
junction tree. That is, it is entirely possible for a singly connected BN to have a
large size clique. The presence of a large size clique will cause not only a storage
problem for the corresponding CPD p(x|y1, ..., Yn), but also the problem of
engaging p(z|y1, ..., Yn) in any computation during inference.

The exponential computational complexity entailed by large size cliques oc-
curring in a junction tree hints that exact inference might be NP-hard. Cooper [1]
successfully proved that the exact inference is NP-hard by transforming a well
known NP-complete problem, namely, the 3SAT problem [2], into a decision
problem version of exact inference in multiply connected BNs. Since a singly
connected BN, as demonstrated in Example 2, may also induce large cliques, it
is thus worth exploring whether exact inference in a singly connected BN is also
NP-complete.

In the following, we first demonstrate that a variant of the 3SAT problem is
itself also a NP-complete problem. We then further show that this variant can
be transformed into a singly connected BN in order to show that exact inference
in singly connected BNs is also NP-hard.

5.1 A Variant of the 3SAT problem

The 3SAT problem includes a collection C' = {e¢1,¢a,...,cm} of clauses on a
finite set U of n Boolean variables. If w is a variable in U, then v and —u are
literals over U. Each clause ¢; contains a disjunction of three literals over U, for
example, (—ug V ug V —ug). A truth assignment for U is an assignment which
assigns either T' (true) or F' (false) to each variable in U. The literal u is true
if and only if the variable u is assigned T. The literal —u is false if and only
if the variable u is assigned F. Given a truth assignment, a clause is satisfied
(or evaluated true) if at least one literal is true. The clause (—us V ug V —ug)
is satisfied (i.e., true) unless us = T, ug = F and ug = T. A collection C' of
clauses over U is satisfiable if and only if there exists some truth assignment
for U that simultaneously satisfies all of the clauses in C. The 3SAT decision
problem involves determining whether there is a truth assignment for U that
satisfies all of the clauses in C. We denote an instance of the 3SAT problem as
I1=(U, C).

Ezample 3. Consider an instance I = (U, C) of the problem 3SAT in which
U = {uy,ug,us,us} and C = {(ug Vug Vusz), (-ug V —ug Vusg), (ug V —ug Vug)}.
One satisfying truth assignment is given by u; = T, up = F, ug = F and
ug = T. Thus, this instance of 3SAT decision problem has the answer “yes” in
this example. This example will be called 3SAT.,.

We now introduce a variant of the 3SAT problem, which will be referred to as
the 3SATV problem. We then prove that the 3SATV problem is NP-complete.

Very much similar to the 3SAT problem, the 3SATV problem also includes
a collection C" of clauses on a finite set U of n Boolean variables. The only

difference between 3SAT and 3SATV is that each variable in U’ is denoted uZ
with not only the subscript ¢ but also a superscript j. The 3SATV decision
problem involves determining whether there is a truth assignment for U " that
satisfies all of the clauses in C" and all the variables in U’ with the same subscript
are assigned the same truth value. We denote an instance of the 3SATV problem
as I = (U,).

Ezample 4. Consider an instance I' = (U, C") of the 3SATV problem, where
U = {ul, u2, ud, w2, ud, ud, w2, ud, ul} and O = {(u} v ulvul), (-ud v
—u3 Vu3), (u3V-u3Vuj)}. We want to determine whether there exists an truth
assignment for U " that satisfies all of the clauses in C'7 furthermore, we require

that variables ul, u?, u} are assigned the same truth value; variable ud, u, u3

are assigned the same truth value; u3, u, u3 are assigned the same truth value.
One satisfying truth assignment is given by v} = T where j =1, 2, 3, u} = F
where j =1, 2, 3, ué = F where j =1, 2, 3 and u} = T. Thus, this instance of
the 3SATV decision problem has the answer “yes”. This example will be called
3SATV,,.

In the following, we will prove that the 3SATV problem is also NP-complete.
We first demonstrate how one can polynomially transform any instance of a
known NP-complete problem, for example, the 3SAT problem, to an instance of
the 3SATV problem. We use an example to illustrate this transformation.

Consider the instance I = (U, C) in 3SAT,, in Example 3 and the instance
I = (U/, C") in 3SATV,, in Example 4. We demonstrate how one can transform
I=(U, C)into I' = (U, C"). If we rewrite the clause set C' from 3SAT,, and
the clause set C' from 3SATV., together below, one may immediately realize
that the transformation is straightforward.

C = {(Ul V U9 \Y U3), (—\ul \Y U2 V U3), (Ug \Y —Us \Y ’U,4)},

C' = {(uf Vup Vub), (-uf V3 v ud), (u3 v ud Vo))

The clause set C' is obtained by transforming each clause in C' to a clause in
C’. More specifically, we transform one-to-one a clause ¢ (in C) to a clause ¢
(in C/) by adding a superscript j to each variable u; occurring in the clause c
to obtain the variable u] which will appear in the transformed clause ¢ . The
superscript j indicates that the original variable w; appears for the jth time
in the clause set C. For example, consider the clause (—uy V —ug V ug) in C
above. When transforming this clause to a corresponding clause in C/, we add
superscript to each variable occurring in it, namely, u1, us2, and ug. Since u; now
appears for the second time (variable u; appears for the first time in the clause
(u1 V ug V ug)), it is then transformed into the variable u?. Similarly, us and u3
are transformed into u2 and u3, respectively. Once we obtain the transformed
clause set ', the set of Boolean variable U "is just the union of all the variables
occurring in each clause in . Obviously, this process can be generalized to be
applied to any instance of the 3SAT problem in polynomial time.

Besides showing that one can transform polynomially any instance of the
3SAT problem to an instance of the 3SATV problem, in order to prove that the

3SATYV problem is NP-complete, we also need to show that any instance I of
the 3SAT problem is satisfiable if and only if the transformed instance I’ of the
3SATYV problem is also satisfiable.

Suppose instance I is satisfiable, that means there exists a truth assignment
to the variables in U such that all the clauses in C' are evaluated true. For the
instance I, we now demonstrate a truth assignment to the variables in U " such
that all the clauses in C' are evaluated true as well. For each variable u; in U ,
there are variables v} in U " which are constructed from the multiple occurrence
of the variable u; among the clauses in C. We assign the same truth value of u;
to those variables v in U ". In other words, it u; is assigned T(F), then ul are
all assigned T(F). For any clause ¢ in C' consisting of variables u;, u;, and u,
according to the construction process of I ,, there is a corresponding clause ¢
in ¢’ consisting of variable u!, ui, and uy. Since ul, ui", and uy are assigned
the same truth values as those of u;, uj, and ug, respectively, and clause c is
satisfiable, it then follows that the clause ¢ is also satisfiable. Therefore, every
clause in € is satisfiable.

Suppose the instance ["is satisfiable, we now need to show that there exists
a truth assignment to the variables in U under which every clause in C' is satisfi-
able. Consider a truth assignment to the variables in U " such that each clause ¢
in C" is satisfiable. For variables u] in U, they are all assigned the same truth
value, we then assign the same truth value assigned to uZ to the variable u; in U.
We thus obtain a truth assignment to every variable in U. Suppose the clause ¢
in C" consists of variable ub uj', and uy. According to the construction process
described early, there is a corresponding clause ¢ in C consisting of variables u;,
u;, and ug. Since u;, u;, and uy are assigned the same truth values as those of
ul, uj", and uy, respectively, it then follows that the clause ¢ in C' is satisfiable.
Therefore, every clause c in C is satisfiable.

The above discussion in fact proves the following theorem.

Theorem 1. The 3SATYV problem is NP-complete.

5.2 The Complexity of Exact Inference in Singly Connected BNs

To prove that a problem ' is NP-hard, it is sufficient to transform a known
NP-complete problem @ to Q' and to show that this transformation can be
done in time that is polynomial in the size of Q. In this subsection, we trans-
form the 3SATYV problem to a decision-problem version of probabilistic inference
using singly connected BNs (PISBND). The transformation from the PISBND
decision problem to the probabilistic inference problem, called PISBN, will be
straightforward. Therefore, we will show that PISBN is NP-hard.

We first show how to polynomially transform 3SATV into PISBND, a decision
problem that determines whether p(Y = T') > 0 in a given singly connected BN.
PISBN returns “yes,” if p(Y =T) > 0; it returns “no,” otherwise.

Let I' = (U, C') be any instance of the 3SATV problem. We seek to con-
struct a singly connected BN on U 'C"Y from any instance of 3SATV in polyno-

mially time, where Y is a new variable, such that p(Y = T) > 0 if and only if
C' is satisfiable.

The nodes i in the constructed singly connected BN are U U C" U {Y'}. Each
variable u] € U’ is represented as a node u; in the singly connected BN. Each
clause ¢; € C' is represented as a node ¢; in the singly connected BN. For each
clause ¢; € ', let the three literals in ¢; be denoted w}, w? and w?. For instance,
given clause ca = (—uy V =g V ug), then w} = uy, w3 = uz, w3 = uz. The edges
can now be defined as follows. For each node ¢; € C', there is a directed edge
from each of the three literals w}, w? and w? to ¢;. Finally, there are directed
edges from each ¢; € C’ to variable Y.

U, uh Ul u? v Uy @, @y uhy,

NIV,

S~

Fig. 3. A singly connected BN transformed from 3SATV,,.

Ezxample 5. Given the example 3SATV,,, the DAG of the constructed singly
connected BN is shown in Figure 3.

The CPDs for the singly connected BN are now constructed. For each of
the root nodes v/ € U, the CPD p(u!) is p(ul = T) = 1/2. For each of the
clause nodes ¢; € €', the CPD p(c]|w w? w]) is defined as follows. If clause
¢ is T, then p(c; = T|w w?wd) =1; 0therw1se if clause ¢; is F, then p(cj =

T|wj,w?,w?) = 0. The last CPD to construct is p(Y|e1,ca,...,em). If 1 =T,
and co = T, ..., and ¢, = T, then p(Y = T|c1,co,...,¢m) = 1; otherwise,
p(Y =T|ey,¢a,...,¢m) = 0. That is, if at least one clause ¢; = F, then p(Y =
Tley,ca, ... cm) = 0. We now show the claim in the next result.

Theorem 2. Let I' = (U', C') be any instance of the 3SATV problem. Con-
sider the singly connected BN on U C'Y constructed as above. Then C' is sat-
isfiable if and only if p(Y = T) > 0 in the constructed singly connected BN. *

Thus, we have shown that any instance of 3SATV can be polynomially trans-
formed to PISBND. This result implies that PISBN is NP-hard.

6 Concluding Remarks

Our analysis raises the question as to why inference in singly connected BNs is
considered to be efficient. The complexity of exact inference in singly connected

4 Due to page limit, the proof will appear in an extended version of this paper.

BNs was written as O(N - ¢°) in [6], where N is the number of variables in the
BN, ¢ denotes the cardinality of the domain of each variable, and the number of
parents for each variable in the BN is bounded by e. Obviously, if e is bounded
and ¢ is fixed, ¢° is the coefficient of N and O(N¢®) could be considered linear
and not exponential. However, if the number of parents for each variable in the
BN is not bounded by e, then as N grows bigger, e may also grow bigger (e can
be as large as N — 1), then the complexity O(Ng®) perhaps can not be simply
considered as linear(or polynomial) anymore.

Our investigation in the previous sections has showed that the feasibility of
exact inference lies with whether the DAG of a BN contains a node with a large
number of parent nodes (which causes exponential storage and computation).
The presence of a node with a large number of parents can occur in both singly
connected and multiply connected BNs. Therefore, in both singly and multiply
connected BNs, the computation for exact inference will be exponential in the
worst case. On the contrary, the computational cost in tree structure BNs is
efficient as characterized by Pearl in [6]. This is a result of the fact that, by
definition, every node in a tree structure BN has at most one parent node.
Subsequently every clique in the constructed junction tree will contain only two
nodes, i.e., no large size clique will ever be created.

References

[1] G.F. Cooper. The computational complexity of probabilistic inference using
bayesian belief networks. Artificial Intelligence, 42(2-3):393—405, 1990.

[2] M.R. Garey and D.D. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W.H. Freeman and Company, New York, 1979.

[3] F.V. Jensen, S.L. Lauritzen, and K.G. Olesen. Bayesian updating in causal proba-
bilistic networks by local computation. Computational Statistics Quarterly, 4:269—
282, 1990.

[4] S.L. Lauritzen and D.J. Spiegelhalter. Local computation with probabilities on
graphical structures and their application to expert systems. Journal of the Royal
Statistical Society, 50:157-244, 1988.

[6] Vasilica Lepar and Prakash P. Shenoy. A comparison of Lauritzen-Spiegelhalter,
Hugin, and Shenoy-Shafer architectures for computing marginals of probability
distributions. In Gregory F. Cooper and Serafin Moral, editors, Proceedings of the
14th Conference on Uncertainty in Artificial Intelligence (UAI-98), pages 328-337,
San Francisco, July 24-26 1998. Morgan Kaufmann.

[6] J. Pearl. Fusion, propagation, and structuring in belief networks. Artificial Intel-
ligence, 29:241-288, 1986.

[7] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible In-
ference. Morgan Kaufmann Publishers, San Francisco, California, 1988.

[8] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach (2nd
edition). Prentice Hall, Englewood Cliffs, New Jersey, 2003.

[9] G. Shafer. Probabilistic Expert Systems. Society for Industrial and Applied Math-
ematics, 1996.

